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Abstract—The importance of cryptography on ensuring secu-
rity or integrity of the electronic data transaction had become
higher during the past few years. Multiple security protocols are
currently using various block ciphers. One of the most widely
used block ciphers is the Advanced Encryption Standard (AES)
which is chosen as a standard for its higher efficiency and stronger
security than its competitors. Unfortunately, the encryption and
decryption processes of AES takes a considerable amount of
time for large data size. The GPU is an attractive platform for
accelerating block ciphers and other cryptography algorithms
due to its massively parallel processing power. In this work,
an implementation of the AES-128 ECB Encryption on three
different GPU architectures (Kepler, Maxwell and Pascal) has
been presented. The results show that encryption speeds with
207 Gbps on the NVIDIA GTX TITAN X (Maxwell) and 280
Gbps on the NVIDIA GTX 1080 (Pascal) have been achieved
by performing new optimization techniques using 32bytes/thread
granularity.

Keywords—AES; ECB; CUDA; GPU; Rijndael; Throughput;
Granularity; Performance optimization; Encryption

I. INTRODUCTION

Today’s web communication and cloud computing requires
more secure data communications than ever before and as a
result, block ciphers cryptography becomes more important
day by day. One of the most widely used block ciphers
is the Advanced Encryption Standard (AES) [1] which is
chosen as a standard for higher efficiency and stronger security
than its competitors. Since AES algorithm consists of a large
amount of homogeneous computations, the use of hardware
accelerators such as GPUs has been concluded to be one of the
most important methods to achieve high-speed data encryption
technology.

Over the past few years, the GPU has evolved into pow-
erful parallel computing devices with a high cost-performance
ratio. Although it was originally developed only to accelerate
graphic applications, the GPUs has been researched as an ef-
ficient hardware accelerator for non-graphical general compu-
tations. Thus, GPU has been addressed since then as GPGPUs
(General-Purpose Computation on Graphics Processing Unit).

In this paper, multiple optimization techniques has been
exploited to achieve higher throughput and speedup for the
AES algorithm on three different GPU architectures: Kepler

(Nvidia GTX 780), Maxwell (Nvidia GTX TITAN X) and
Pascal (Nvidia GTX 1080).

GPUs performance is affected severely by memory ac-
cesses especially in block ciphers because of the high load
of accessing and writing data, thus it was essential to exhaust
many possible approaches of key storage and the way its ac-
cessed. New computational and parallel granularities have also
been experimented and placed in comparison with the latest
previous work. Also, different sizes of input (random plaintext)
has been tested and analyzed for their effect on CUDA AES-
128 ECB encryption performance has been introduced.

The rest of the paper is organized as follows. Section
II presents a detailed description of the implemented AES
algorithm. Different implementation techniques of AES using
GPU is presented in Section III . Related work is introduced
in Section IV. Section V explains our proposed work. The
experimental results on different platforms are presented and
analyzed in Section VI. Finally, Section VII concludes this
work and discusses future research directions.

II. OVERVIEW OF AES ALGORITHM

AES is a block cipher established by National Institute of
Standards (NIST) based on the Rijndeal cipher [1] and adopted
for replacing the Data Encryption Standard (DES). AES can
currently encrypt blocks of 16 bytes at a time. If the number
of bytes being encrypted is larger than the specified block
length, then AES is executed concurrently. Interestingly, AES
executes all its computations on bytes rather than bits. Hence,
AES 128 bit block of plain-text is treated as 16 bytes, which
are arranged in four columns and four rows for processing
as a matrix called ”state”. In AES a state defines the current
condition of the block. The operations of AES depends on a
variable called number of rounds (Nr) which is fixed for each
key size. AES Encryption consists of 10 rounds for 128-bit
key, 12 rounds for 192-bit key and 14 rounds for 256-bit key.
Each of these rounds uses a different 128-bit round key, Which
is calculated from the original AES key as shown in Fig. 1.

A. Operation of AES

The AES-128 algorithm basically consists of two phases:
Key expansion and Transformation rounds. The next sections
will explain them briefly.

978-1-5090-5443-5/17/$31.00 c©2017 IEEE 1 | P a g e
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Fig. 1: General AES Architecture [1]

Fig. 2: AES Round Structure [1]

1) Key expansion: The AES algorithm takes the Cipher
Key and performs a key scheduling algorithm to generate
round keys [1]. It allows for the full key expansion to precede
the round transformations, which is better if multiple blocks
are encrypted using the same key.

2) Transformation Rounds: Input plaintext data to be di-
vided into 16 Byte Blocks arranged in a 4x4 column-majored
array state. This also means that AES has to encrypt a
minimum of 16 bytes. If the plain text is smaller than 16
bytes then it must be padded. Each round consists of four
processing steps: AddRoundKey, SubBytes, ShiftRowsm and
MixColumns. Note that the initial round only includes Ad-
dRoundKey step that depends on the encryption key, while
the last round does not include MixColumns step as shown in
Fig.2.

2.1 SubBytes: The 16 input bytes are substituted by looking
up a fixed 2D 15x15 Substitution Box (S-box) which is pre-
given. The result is a matrix of four rows and four columns.

TABLE I: AES Modes of Operation [2]

Mode Description Parallelization
potential

Electronic
Codebook

(ECB)

For a given key, the forward cipher
function is applied directly and
independently to each block of the
plaintext.

Suitablefor
parallelization

Cipher
Block

Chaining
(CBC)

Each successive plaintext block is
exclusive-ORed with the previous
output/ciphertext block to produce the
new input block. The forward cipher
function is applied to each input block
to produce the ciphertext block.

Decryption is
suitable for

parallelization

Cipher
Feedback

(CFB)

The feedback of successive ciphertext
segments into the input blocks of the
forward cipher to generate output
blocks that are exclusive-ORed with
the plaintext to produce the ciphertext
,and vice versa.

Not suitable for
parallelization

Output
Feedback

(OFB)

The iteration of the forward cipher on
an IV to generate a sequence of output
blocks that are exclusive-ORed with
the plaintext to produce the ciphertext,
and vice versa.

Not suitable for
parallelization

Counter
(CTR)

The application of the forward cipher
to a set of input blocks, called
counters, to produce a sequence of
output blocks that are exclusive-ORed
with the plaintext to produce the
ciphertext, and vice versa.

Suitable for
parallelization

XEX-based
tweaked-codebook

mode with
ciphertext stealing

(XTS)

IEEE standard, IEEE Std 1619-2007,
which a method of encryption for data
stored in sector-based devices

Suitable for
parallelization

The first four bits of the byte are used to index the row, while
the second four bits used to index columns of the S-Box.

2.2 ShiftRows: Each row goes through cyclic shifts by
differing offsets. First row is not shifted, Second row is shifted
one byte position to the left, third row is shifted two positions
to the left, fourth row is shifted three positions to the left.
The result is a new matrix consisting of the same 16 bytes but
shifted with respect to each other.

2.3 MixColumns: Each column of four bytes is now
transformed using a special linear transformation represented
by the polynomial c(x) given by:[1]:

C(X) = {03}X3 + {01}X2 + {01}X + {02}. (1)

This function takes as input the four bytes of one column
and outputs four bytes, that replace the original column. The
result is a new matrix consisting of 16 new bytes.

2.4 AddRoundKey: The 16 bytes of the input matrix (128
bits input) are XOR-ed with the 128 bits of the round key
which is done in each round in the Algorithm.

Each transformation has an inverse from which decryption
follows in a straightforward way by reversing the steps in
each round: AddRoundKey (inverse of itself), InvMixColumns,
InvShiftRows, and InvSubBytes.

B. Fast AES approach

In Fast AES, A lookup table solution could be substituted
for the four steps in an AES transformation round, to enable a
more compact and efficient implementation on 32-bit or more
bits processors. In this method, four lookup tables are defined

978-1-5090-5443-5/17/$31.00 c©2017 IEEE 2 | P a g e



Computing Conference 2017
18-20 July 2017 | London, UK

as: T0, T1, T2 and T3. Each table (or T-box) accepts one
byte of input, and comes out with a 32-bit column vector.
The operations of each transformation round can be defined
as follows:

ej = T0[a0,j ]⊕ T1[a0,j ]⊕ T2[a0,j ]⊕ T3[a0,j ]⊕Kj (2)

where a0,j represents the round input, Kj is one column
of the stage key and ej denotes one column of the round
output in terms of bytes of a0,j . According to the compact
solution above, it only takes 4 exclusive-OR operations and 4
table lookups per column per round, and hence parallelizable
which reduce the computational complexity. Although the
transformation order of AES decryption and encryption are
different, an equivalent version of decryption algorithm and
encryption algorithm has the same structure [1]. This algorithm
requires only four lookup table transformations and four XOR
operations.

C. AES Modes of operation

In Table I six modes of AES encryption is recommended by
NIST [1] providing different levels of security and parallelism
(Electronic Code book (ECB), Cipher Block Chaining (CBC),
Cipher Feedback (CFB), Output Feedback (OFB), Counter
(CTR) and XTS (Xor-encrypt-xor Tweaked codebook mode
with cipher text Stealing)). The experiments was based on a
CUDA AES implementation in ECB mode which is exploitable
for parallel acceleration.

III. IMPLEMENTATION TECHNIQUES ON GPU PLATFORM

All previous work of AES on GPGPU are divided into four
major implementation techniques [3]:

• Memory usage optimization

• Parallel granularity

• GPU platform specific optimization

• CPU-GPU data transfer optimization

A. Memory optimization

In this subsection, this work focuses on three main pa-
rameters: (1) Input plaintext, (2) Lookup tables, and (3) Key
expansion.

1) Input plain-text: In order to achieve maximum perfor-
mance, encrypted plain-text are stored into global memory,
which require the access pattern to be coalesced. This can be
done by using the built in SIMD data types (int4 for 128-bit
), so that its possible to combine the 16 linear bytes for a
coalesced memory access [3].

2) Lookup tables: Many approaches for accessing AES
lookup tables using GPU have been done to obtain max
performance. The best choice to store (T-box) is in the shared
memory in GPU as the access speed is faster and the require-
ment for optimized usage is less stringent [3].

TABLE II: Occupancy in GPU SM 5.2 [3]

thread blocksize
(TBS)

Total blocks
(2048/TBS)

Occupancy (active
blocks/total blocks) 100

64 32 75%
128 16 100%
256 8 100%
512 4 100%

1024 2 100%

3) Key expansion: Many approaches for accessing AES key
using GPU have been done to obtain max performance. The
best approach is to pre-compute the encryption keys in CPU,
and they are only generated once for entire encryption process.
The expanded keys are then copied to GPU global memory
and when the GPU kernel is launched, each thread in a warp
copies key value(s) from global memory and stored it in one or
two registers, which is known as warp shuffle operation. This
approach has been appeared in modern GPU architectures [3].
There are 32 threads in a warp, so up to 64 keys can be kept in
total. By using this strategy, the encryption keys can be kept
entirely in registers for high access speed. This work bench
marks the warp shuffling approach and compares it with the
shared memory approach.

B. Parallel granularity

There are two main approaches in this section previously:

• Multiple threads can cooperatively encrypt one block
(4 bytes/thread, 8 bytes/thread).

• Each thread can encrypt one whole block (16
bytes/thread).

According to previous work, the second approach (16
byte/thread granularity) should be the best one [4] [7] [10] as
the entire encryption of a block can be done within a thread, no
synchronization and shared data between threads are needed.

In this work a new approach is proposed such that one
thread will be encrypting multiple blocks (32 bytes/thread, 64
bytes/thread, etc..).

C. GPU platform specific optimization

Each GPU architecture usually have its own hardware
layout which is slightly different in design from previous
architectures, thus optimizations may differ from architecture
to another. The GPU occupancy is a measure of thread
parallelism in a CUDA program. The higher the occupancy,
the more opportunities an Stream Multiprocessor (SM) has to
put, compute and load/store units to work each cycle which
leads to higher throughput. The implementation thread block
size will affect the GPU occupancy which depends on GPU
architecture. As an example for Maxwell GPU SM 5.2, the
thread block size which satisfy 100% Occupancy are (128, 256,
512, 1024) TBS as shown in Table II. The CUDA occupancy
tool provided by the Nvidia SDK calculates such values [11]

In this work, benchmarks and experiments are executed
on the latest three generations of Nvidia GPU architectures.
Basically, one of the main optimizations that this work has

978-1-5090-5443-5/17/$31.00 c©2017 IEEE 3 | P a g e
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TABLE III: Summary of Previous Implementation Techniques and Performance on AES-128 ECB

References AES
(Gbps) Mode GPU device Architecture Memory

Optimizations
Computation
granularity Year

Mei et al.[4] 51.2 Unknown GS9200M Tesla T-box and key in shared memory Unknown 2010
Bos et al.[5] 59.6 Unknown GTX295 Tesla T-box and key in shared memory Unknown 2010
Nishikawa et al.[6] 48.6 ECB Tesla C2050 Fermi T-box and key in shared memory 16B/thread 2012
Li et al.[7] 60.0 ECB Tesla C2050 Fermi T-box and key in shared memory 16B/thread 2012
Gilger et al.[8] 47.0 ECB GeForce GTX 295 Fermi T-box and key in shared memory 16B/thread 2012
Nishikawa et al.[9] 68.6 ECB GTX680 Kepler T-box and key in shared memory 16B/thread 2014

TABLE IV: Comparison of Eight Practical Parallel AES
Schemes

AES schemes Shared Memory
Approach

Warp Shuffle
Approach

1024 TPB - 16 B/thread 1024 byte per thread
16 Byte Granularity

1024 byte per thread
16 Byte Granularity

512 TPB - 16 B/thread 512 byte per thread
16 Byte Granularity

512 byte per thread
16 Byte Granularity

256 TPB - 16 B/thread 256 byte per thread
16 Byte Granularity

256 byte per thread
16 Byte Granularity

128 TPB - 16 B/thread 128 byte per thread
16 Byte Granularity

128 byte per thread
16 Byte Granularity

1024 TPB - 32 B/thread 1024 byte per thread
32 Byte Granularity

1024 byte per thread
32 Byte Granularity

512 TPB - 32 B/thread 1024 byte per thread
32 Byte Granularity

1024 byte per thread
32 Byte Granularity

256 TPB - 32 B/thread 1024 byte per thread
32 Byte Granularity

1024 byte per thread
32 Byte Granularity

128 TPB - 32 B/thread 1024 byte per thread
32 Byte Granularity

1024 byte per thread
32 Byte Granularity

performed is about both the CUDA blocks and grids dimen-
sions that forms the granularity of the GPU parallelism; These
dimensions affects the multiprocessors inside the GPU and
the distribution of the work loads over them. We do believe
that this work will have a considerable impact on performance
especially on the latest architectures.

D. CPU-GPU data transfer optimization

Generally in GPGPU, the data transfer overhead is sub-
stantial. However, to exploit the effective performance, it is
necessary to consider the overhead caused by data transfer
between CPU and GPU. Generally, to hide this overhead,
Nvidia GPUs provide the function of overlapping data transfer
(memory copy) and processing using stream programming
model [11].

IV. RELATED WORK

There are several research work focusing on implementa-
tion techniques used for optimizing AES using GPU that are
mentioned above. Table III summarizes previous implementa-
tions techniques of CUDA based AES-128 ECB on GPU since
2010.

Di Biagio et al. implemented AES-CTR using GT8800
in [12]. They explored the fine grain (4 bytes/thread) and
coarse grain (16 bytes/thread) parallel implementation and
found that 16 Bytes/thread show better performance because
no synchronization between threads is needed.Di Biagio et al.
proposed to store T-box in shared memory instead of constant
memory, and discussed about shared memory partitioning to
avoid bank conflicts.

Same approach was adopted by Mei et al. in [4]. The
authors proposed an efficient approach to parallelize AES and
fine-tune the memory utilization in GeForce 9200M GS. They
also used 16 bytes/thread granularity, and stored both the T-box
and key in shared memory. They achieved 48 Gbps maximum
throughput speed.

Bos et al. discussed three strategies to generate the key:
on the fly, in texture and in shared memory in [24]. They
also run multiple streams to overlap memory copy and kernel
execution. They performed implementation using GTX295.

N. Nishikawa in [10] implemented AES on CUDA
and studied the following computation granularities: (1) 16
bytes/thread: Meaning that each thread is mapped to a standard
AES plain-text block having a size of of 16 bytes. (2) 8
bytes/thread and 4 bytes/thread: With sizes less than 16 byte,
it means that more than one thread will be needed to complete
the work on an AES plaintext block. (3) 1 byte/thread: Where
16 threads are required to process a whole plain-text block.
Moreover, they stored the T-box table and round keys on
shared memory. The best performance they got was 35.2 Gbps
throughput rate using 16 bytes/thread granularity.

Li et al. in [7] stored T-boxes on on-chip shared mem-
ory. Morever, the granularity where one thread handles a 16
Bytes AES block was adopted. They achieved the highest
performance of around 60 Gbps throughput on NVIDIA Tesla
C2050 GPU.although the AES encryption and decryption make
significant performance advance, the bandwidth of PCI-E bus
and page-lock memory allocation cost are vital limitations.
It makes the throughput of encryption and decryption greatly
reduced. Even overlapping techniques used, this problem can’t
be solved satisfactorily.

Nishikawa et al. in [9] presented implementation of block
ciphers in NVIDIA and AMD GPU based on Kepler and
GCN architectures and analyzed energy efficiency of both GPU
platforms. They achieved the highest performance of around
68.6 Gbps throughput on Geforce GTX 680 on the Kepler
architecture.

A. H. Khan. in [13] we implement the AES-128 ECB
Encryption on two of the recent and advanced GPUs (NVIDIA
Quadro FX 7000 and Tesla K20c) with different memory usage
schemes and varying input plaintext sizes and patterns. We
obtained a speedup of up to 87x against an advanced CPU
(Intel Xeon X5690) based implementation

Wai-Kong Lee. in [3] presented implementation of block
ciphers in NVIDIA GTX 980 with Maxwell architecture. Their
implementation focus on four main areas, namely memory
optimization, algorithmic optimization, parallel granularity and
GPU platform specific optimization. they also proposed a novel
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Fig. 3: Warp Shuffle approach for NVIDIA GTX 780

method to store the encryption keys in high speed registers and
exchange it across threads in same warp using warp shuffle
operation existing in Maxwell architecture to further accelerate
the performance. As for granularity they used 16 bytes/thread
granularity.

V. PROPOSED APPROACH

We implement AES algorithm and evaluate its performance
using eight different parallel schemes as shown in Table IV.
The experiments are performed on three different platforms
whose specifications are introduced in section VI-A. We fo-
cused in three techniques of optimization seeking the best
performance results.

• Key memory location: We will be storing the round
keys in either shared memory or in registers accessing
them through warp shuffling technique.

• Computation granularity: We propose trying a new
approach for the parallel granularity in this work by
increasing the work done per thread, making a single
thread handles more than a single AES block. We will
be running a 32 bytes/thread benchmarks versus the
classical 16 byte/thread approach.

• Thread Block size (TPB): This is a factor that has been
neglected through the past research done on AES in
the latest GPU architectures. We believe that due to
the changes and the increase of parallelism level, this
should be a major factor now affecting computation
performance. We chose to experiment with thread
block sizes (1024 TPB, 512 TPB, 256 TPB, 128 TPB)
due to the fact that they satisfy a 100% occupancy
generally over the latest GPU architectures.

In this work, the focus mainly is on the total kernel time
which exempts the data transfer time as the optimizations done
focus on the processing performance. For simplification we
divide these implementation schemes into two approaches :

• Shared memory approach: Encryption keys in Shared
Memory.

• Warp shuffle approach: Encryption keys in registers
and accessing them using warp shuffle feature.

TABLE V: Configurations of Three Experiment Platforms

Platform GPU CPU

1
NVIDIA GTX 780
CUDA Cores =2880
Architecture: Kepler

Intel Xeon E5-2640 v2
Total: 8 Cores

2
NVIDIA GTX TITAN X
CUDA Cores =3072
Architecture: Maxwell

Intel Xeon E5-2640 v2
Total: 8 Cores

3
NVIDIA GTX 1080
CUDA Cores =2560
Architecture: Pascal

Intel Xeon E5-2640 v2
Total: 8 Cores

VI. EXPERIMENTS AND PERFORMANCE EVALUATION

We present results for the eight approaches of our imple-
mentation described earlier which executed on three different
GPU architectures: Kepler, Maxwell and Pascal.

A. Experimental platforms

In order to exhibit the effects, of the AES implementation
schemes experimented in this work, for different block inputs
we use three different platforms supporting three different
GPU devices with the most recent GPU architectures(Kepler,
Maxwell and Pascal) as shown in table V.

B. Experimental results on Kepler platform

We implement the eight AES implementation schemes on
Kepler platform using NVIDIA GTX 780. We evaluate their
performance (throughput) results using two implementation
Approaches:

1) Warp Shuffle Approach: After applying the warp shuffle
technique in order to optimize memory access by sharing the
key data between the threads of the same warp through their
register. Figure. 3, demonstrates the throughput of the eight
schemes on Kepler platform for different input block sizes (1M
byte to 512M byte). It was observed that when input block
sizes increases the throughput of all schemes increases which
demonstrates that higher input block sizes get full optimization
from GPU. It was also observed that 512 TPB - 16 B/thread
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Fig. 4: Shared Memory approach for NVIDIA GTX 780

scheme give the best throughput values during the majority of
input block sizes with max throughput equal to 78 Gbps.

2) Shared Memory Approach: By placing the key in Shared
Memory, a throughput increase was observed, shown in Fig-
ure. 4, over the Warp Shuffle approach. It was also observed
that 512 TPB - 32 B/thread scheme give the best throughput
value during the majority of input block sizes with max
throughput equal to 80 Gbps.

C. Experimental results on Maxwell platform

We implement the eight AES implementation schemes on
Maxwell platform using NVIDIA GTX TITAN X which is one
of the fastest single-GPU graphics in Maxwell family. From
the results we can find obvious speed improvements over
Kepler platform. We evaluate their performance (throughput)
results using two implementation Approaches:

1) Warp Shuffle Approach: Using Warp Shuffle technique,
the same experiments were executed. Figure. 5 demonstrates
the throughput of eight schemes on Maxwell platform for
different input block size (1M byte to 512M byte) we observe
that when input block sizes increases the throughput of all
schemes increases which demonstrates that higher input block
sizes get full optimization from GPU. We also observe that
256 TPB - 32 B/thread and 128 TPB - 32 B/thread schemes
give the best throughput values during the majority of input
block sizes with max throughput equal 203 Gbps for 256 TPB
- 32 B/thread.

2) Shared Memory Approach: Using Shared Memory key
location, the average throughput results on Maxwell platform
for Shared Memory Approach are shown in Figure 6. It
shows again obvious speed improvements over Warp Shuffle
Approach. We also observe that 512 TPB -32 B/thread, 256
TPB - 32 B/thread and 128 TPB - 32 B/thread schemes give
the best throughput values during the majority of input block
sizes with max throughput equal 207 Gbps for 256 TPB - 32
B/thread.

D. Experimental results on Pascal platform

The eight AES implementation schemes were tested on the
new pascal platform to evaluate their performance (throughput)

results using two implementation approaches. The results
shows obvious speed improvements over Maxwell platform
which was expected as the Nvidia GeForce GTX 1080 is the
latest GPU in the new Pascal Architecture.

1) Warp Shuffle Approach: After applying the warp shuffle
technique in order to optimize memory access by sharing
the key data between the threads of the same warp through
their register, Figure. 7 it was observed that it increases
throughput as input block sizes increases. It was also observed
that 512TPB-32B/thread, 256TPB-32B/thread and 128TPB-
32B/thread schemes gave the best throughput values during
the majority of input block sizes reaching a max throughput of
272 Gbps for 256 TPB-32B thread and 128 TPB-32B/thread.

2) Shared Memory Approach: When key was stored in
shared memory the average throughput results on Pascal plat-
form, shown in Figure. 8, showed obvious speed improvements
over Warp Shuffle Approach. It was also observed that 512
TPB-32B/thread, 256 TPB-32B/thread, 128 TPB-32B/thread
schemes gave the best throughput values during the majority
of input block sizes with max throughput equal 280 Gbps for
128 TPB-32B/thread.

E. Experiment analysis and discussion

We did micro benchmarks on the three GPU architectures
(Kepler, Maxwell and Pascal) as shown in tables VI, VII, and
VIII. Below is the analysis for the experimental results shown
in these tables:

1) Parallel granularity: Generally, for Kepler GPU 16
bytes/thread granularity gives the best throughput results.
However, for the modern architectures Maxwell and Pascal
GPUs, its clear that 32 bytes/thread granularity (Two AES
blocks per thread) gives better throughput than the classical
16 bytes/thread granularity (One AES block per thread), espe-
cially for large input size. We explained this as follows:

1.1 The thread can process two blocks of data in the
32 byte/thread scenario rather than one block done by 16
bytes/thread. By doing this, thread block switching will be
reduced and hence increases performance.

1.2 The shared memory access in the 32 byte/thread
scenario will be twice shared memory access done by 16
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Fig. 5: Warp Shuffle approach for NVIDIA GTX TITAN X
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Fig. 6: Shared Memory approach for NVIDIA GTX TITAN X
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Fig. 7: Warp Shuffle approach for 1080 GPU
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Fig. 8: Shared Memory approach for NVIDIA GeForce GTX 1080 GPU

TABLE VI: Microbenchmarks for NVIDIA GeForce GTX 780 (Kepler) [Gbps]

Data size AES Approachs 1024 TPB
16 B/thread

512 TPB
16 B/thread

256 TPB
16 B/thread

128 TPB
16 B/thread

1024 TPB
32 B/thread$

512 TPB
32 B/thread

256 TPB
32 B/thread

128 TPB
32 B/thread

512 M
Shared memory

approach 76.05 80.52 76.19 76.19 61.16 70.92 68.73 68.73

Warp shuffle
approach 70.55 78.73 71.3 71.3 59.97 69.2 69.81 69.81

256 M
Shared memory

approach 75.19 77.94 77.22 77.22 61.16 71.68 71.94 71.94

Warp shuffle
approach 70.42 72.46 71.17 71.17 59.35 66.67 69.44 69.44

128 M
Shared memory

approach 66.23 67.57 65.79 65.79 51.28 61.35 61.73 61.73

Warp shuffle
approach 59.52 62.11) 60.61 60.61 50.25 58.14 59.52 59.52

64 M
Shared memory

approach 62.5 65.79 64.94 64.94 50.0 60.24 60.98 60.98

Warp shuffle
approach 59.52 60.98 60.24 60.24 49.02 58.14 58.82 58.82

bytes/thread. By doing this, kernel execution time will be
increased which will minimize performance.

A trade off is shown between the number of blocks and
shared memory accessed. In modern GPU architectures like
Maxwell and Pascal they have larger number of streaming
multiprocessors (SMs) and also larger number of active blocks
per multiprocessors compared with Kepler GPU. this will run
multiple blocks without block switching which will maximize
performance (throughput).

2) Key memory location: Warp shuffle did not seem to be
a very effective optimization over the use of shared memory
in the experiments we have made.

3) Thread block size: Generally, for Maxwell and Pascal
GPUs: 128 TPB and 256 TPB are the best thread block size
which gives the best performance result in the majority of the
micro benchmarks done. Moreover, for Kepler GPU: 512 TPB
is the best thread block size which gives the best throughput
in the majority of the presented micro benchmarks.

VII. CONCLUSION

Eight parallel AES schemes were presented focusing on
three aspects of optimization: key memory location, com-
putation granularity and thread block size seeking the best
performance (throughput). For simplicity, we classify these

schemes in two main categories: 1) Shared memory approach
and 2) Warp shuffle approach. These eight schemes are bench
marked on the the three latest generations of Nvidia GPU
architectures: Kepler, Maxwell and Pascal.

After implementing the new proposed approaches in both
multiple parallel granularities and thread block sizes, we
managed to explore areas that haven’t been experimented thor-
oughly in previous research exploiting new GPU architectures,
in terms of workload distribution over threads and thread
blocks, to gain higher performance. In modern architectures
this was very useful especially in terms of increasing workload
per thread by encrypting two or three AES blocks per CUDA
thread. This work has achieved the highest performance up
to date to the best of our knowledge reaching a throughput
of 279.86 Gbps at encryption speed of AES-128 on the GTX
1080 - Pascal architecture.

However, in the benchmarks we have made, it shows
that some techniques varied in performance effect from an
architecture to another. Some of the optimizations we have
made such as the parallel granularity tweaking did not have
much effect on the older platforms. The variation of the effect
of the optimizations from platform to another as well as the
variation of such effects based on input size shows that the
quantitative approach has been useful to reach the higher
throughput that this work has presented.
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TABLE VII: Microbenchmarks for NVIDIA GeForce GTX TITAN X (Maxwell) [Gbps]

Data size AES Approachs 1024 TPB
16 B/thread

512 TPB
16 B/thread

256 TPB
16 B/thread

128 TPB
16 B/thread

1024 TPB
32 B/thread$

512 TPB
32 B/thread

256 TPB
32 B/thread

128 TPB
32 B/thread

512 M
Shared memory

approach 195.13 198.59 196.23 194.17 188.68 205.13 207.25 201.01

Warp shuffle
approach 186.92 195.12 194.17 186.92 189.57 194.02 203.05 201.04

256 M
Shared memory

approach 183.49 183.49 181.82 186.92 172.41 188.19 189.92 192.31

Warp shuffle
approach 186.92 194.17 194.17 147.06 188.68 194.02 202.02 199.08

128 M
Shared memory

approach 161.29 163.93 163.93 163.93 153.85 163.93 166.67 166.67

Warp shuffle
approach 149.25 156.25 156.25 156.25 149.25 158.73 163.93 163.93

64 M
Shared memory

approach 161.29 161.29 161.29 161.29 151.52 161.29 166.67 166.67

Warp shuffle
approach 147.06 156.25 156.25 121.95 147.06 156.25 161.29 161.29

TABLE VIII: Microbenchmarks for NVIDIA GeForce GTX 1080 (Pascal) [Gbps]

Data size AES Approaches 1024 TPB
16 B/thread

512 TPB
16 B/thread

256 TPB
16 B/thread

128 TPB
16 B/thread

1024 TPB
32 B/thread$

512 TPB
32 B/thread

256 TPB
32 B/thread

128 TPB
32 B/thread

512 M
Shared memory

approach 268.46 261.44 270.27 268.46 242.42 277.78 277.78 279.86

Warp shuffle
approach 246.91 259.44 259.74 258.06 245.4 268.46 272.11 272.11

256 M
Shared memory

approach 226.67 219.78 227.27 224.72 220.96 260.25 240.1 240.1

Warp shuffle
approach 216.79 219.78 217.39 229.89 223.9 224.72 239.27 240.96

128 M
Shared memory

approach 227.27 217.39 227.27 222.22 208.33 238.1 238.1 238.1

Warp shuffle
approach 208.33 217.39 217.39 212.77 204.08 222.22 227.27 227.27

64 M
Shared memory

approach 227.27 217.39 227.27 227.27 208.33 238.1 238.1 238.1

Warp shuffle
approach 200.0 217.39 217.39 217.39 200.0 217.39 227.27 227.27

VIII. FUTURE WORK

We believe that due to number of architectures currently
active on GPUs, and since it became quite useful as a hardware
accelerator, the development of an auto-tuner that select the
best configuration parameters based on the GPU architecture
would be our next target for future work.
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