
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/225172453

Godson-T: An Efficient Many-Core Architecture for Parallel Program Executions

Article  in  Journal of Computer Science and Technology · November 2009

DOI: 10.1007/s11390-009-9295-3 · Source: dx.doi.org

CITATIONS

34
READS

210

12 authors, including:

Fenglong Song

Chinese Academy of Sciences

23 PUBLICATIONS   118 CITATIONS   

SEE PROFILE

Lei Yu

Harbin Engineering University

57 PUBLICATIONS   1,229 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Fenglong Song on 16 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/225172453_Godson-T_An_Efficient_Many-Core_Architecture_for_Parallel_Program_Executions?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/225172453_Godson-T_An_Efficient_Many-Core_Architecture_for_Parallel_Program_Executions?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fenglong_Song?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fenglong_Song?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fenglong_Song?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei_Yu26?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei_Yu26?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Harbin_Engineering_University?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei_Yu26?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fenglong_Song?enrichId=rgreq-16ab6068345b8f3bd7933355d8baf358-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE3MjQ1MztBUzo5NzU5MDEyMTA3NDcwMUAxNDAwMjc4NzA2Nzgy&el=1_x_10&_esc=publicationCoverPdf


Fan DR, Yuan N, Zhang JC et al. Godson-T: An efficient many-core architecture for parallel program executions. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 24(6): 1061–1073 Nov. 2009

Godson-T: An Efficient Many-Core Architecture for Parallel Program

Executions

Dong-Rui Fan∗ (���), Member, CCF, IEEE, Nan Yuan (� �)
Jun-Chao Zhang (���), Member, CCF, ACM, Yong-Bin Zhou (���), Wei Lin (� �)
Feng-Long Song (���), Xiao-Chun Ye (���), He Huang (� �), Lei Yu (� �)
Guo-Ping Long (���), Hao Zhang (� �), and Lei Liu (� �)

Key Laboratory of Computer Systems and Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

E-mail: {fandr, yuannan, jczhang, ybzhou, linwei, songfenglong, yexiaochun, huangh, yulei, longguoping, zhanghao,

lawrenceliu}@ict.ac.cn

Received March 13, 2009; revised September 28, 2009.

Abstract Moore’s law will grant computer architects ever more transistors for the foreseeable future, and the challenge is
how to use them to deliver efficient performance and flexible programmability. We propose a many-core architecture, Godson-
T, to attack this challenge. On the one hand, Godson-T features a region-based cache coherence protocol, asynchronous
data transfer agents and hardware-supported synchronization mechanisms, to provide full potential for the high efficiency
of the on-chip resource utilization. On the other hand, Godson-T features a highly efficient runtime system, a Pthreads-

like programming model, and versatile parallel libraries, which make this many-core design flexibly programmable. This
hardware/software cooperating design methodology bridges the high-end computing with mass programmers. Experimental
evaluations are conducted on a cycle-accurate simulator of Godson-T. The results show that the proposed architecture has
good scalability, fast synchronization, high computational efficiency, and flexible programmability.

Keywords many-core, parallel computing, multithread, data communication, thread synchronization, runtime system

1 Introduction

The previous researches of increasing the single
thread performance through increasing the clock fre-
quency are now hitting the so-called Power Wall and
ILP Wall[1]. The computer industry has widely con-
sensus that the incremental performance must largely
come from increasing the number of processing cores
on a die. This has led to the swift changes in com-
puter architectures in recent years: multi-core proces-
sors are popular, and many-core processors begin to
spread. The Moore’s Law suggests that the number of
on-chip processing cores doubles every generation. It is
anticipated that the future microprocessors will accom-
modate tens, hundreds, even thousands of processing
cores. Although many-core processors provide tremen-
dous computational capability, expressing and exploit-
ing the parallelism correctly and efficiently from such

processors remain a grand challenge.
Parallelization always requires much programming

effort, although it is not necessary to parallelize all
sequential applications. Even though the parallel
programs work correctly, performance tuning can be
much daunting. Parallel programming brings lots of
complex problems that are highly related to the perfor-
mance issue, for example, managing conflict accesses to
shared resource, synchronizing between threads, and so
on. In many cases, the big programming effort cannot
be transformed into performance gaining. This prob-
lem is unlikely resolved by software programming in-
frastructure alone. Our solution is to provide a widely-
used programming paradigm and extremely efficient ar-
chitectural supports for multithreaded programs. The
programmers majorly focus on expressing parallelism,
while the processor and runtime system concentrate on
efficient parallel executions.

Regular Paper
∗Corresponding Author
Supported by the National Basic Research 973 Program of China under Grant No. 2005CB321600, the National High-Tech

Research and Development 863 Program of China under Grant No. 2009AA01Z103, the National Natural Science Foundation of China
under Grant No. 60736012, the National Science Fund for Distinguished Young Scholars under Grant No. 60925009, and the Beijing
Natural Science Foundation under Grant No. 4092044.



1062 J. Comput. Sci. & Technol., Nov. 2009, Vol.24, No.6

Fig.1. Overview of Godson-T processor. (a) Microarchitecture of Godson-T. (b) Memory hierarchy and bandwidth of Godson-T.

This paper gives an introduction to Godson-T, a
many-core architecture being developed with deep sub-
micron process. Godson-T provides efficient architec-
tural support for two fundamental multithreading ope-
rations: data communication and thread synchroniza-
tion. In the rest of the paper, Section 2 gives an
overview of Godson-T processor. Section 3 describes
the Godson-T multithreaded programming environ-
ment and runtime system. Section 4 highlights the
architectural supports for efficient thread communica-
tion and synchronization. The experimental results and
analysis are shown in Section 5. Related work and con-
clusion are presented in Section 6 and Section 7, respec-
tively.

2 Overview of Godson-T Processor

As shown in Fig.1, the Godson-T processor has 64
homogeneous, in-order and dual-issue processing cores
running at 1GHz. The 8-pipeline processing core sup-
ports MIPS ISA and the synchronization instruction
extensions. Two floating-point operations including a
multiply-accumulation can be issued to fully-pipelined
function units in a cycle. The peak floating-point per-
formance of Godson-T is 192GFlops. Each processing
core has 16KB 2-way set-associative private instruc-
tion cache and 32KB local memory. The local mem-
ory functions as a 32KB 4-way set-associative private
data cache in default. It also can be configured as
an explicitly-controlled and global-addressed Scratch-
pad Memory (SPM), or a hybrid of cache and SPM. A
Data Transfer Agent (DTA) is built in each core for fast
data communication. When the processing core is do-
ing calculations, DTA can be programmed to manage
various patterns of data transfer asynchronously.

In addition, there are 16 address-interleaved L2
cache banks (256KB each) distributed along four sides

of the chip. The L2 cache is shared by all cores and can
serve up to 64 cache accessing requests in total. Four L2
cache banks in the same side of the chip share a memo-
ry controller. The memory hierarchy to Godson-T is
shown in Fig.1(b).

A dedicated synchronization manager provides ar-
chitectural support for efficient mutual exclusion, bar-
rier and signal/wait synchronization. The 8 × 8, 128-
bit-width packet-switching 2-D mesh network connects
all on-chip units. The mesh network employs the de-
terministic X-Y routing policy and provides 2 TB/s on-
chip bandwidth among 64 processing cores.

3 Software Programming Environments

Given a many-core processor like Godson-T, the
challenge is how to efficiently utilize the large on-chip
computational capability. In this section, we give a brief
introduction to Godson-T’s software programming en-
vironments.

Although some former parallel programmers argue
that programming with threads is error-prone[2], mul-
tithreading is ironically the most popular parallel pro-
gramming paradigm in the real world. Programming
with threads is not so difficult for majority of cases[3−4].
Programming on Godson-T is based on multithread-
ing. Providing a simple and reasonable programming
abstraction is undoubtedly critical to programmability.
The software stack of Godson-T platform is shown in
Fig.2. Conventional C programming and its tool chain
are adopted. Besides, we provide a Pthreads-like C li-
brary for task management. Therefore, a large amount
of parallel program sources written with Pthreads can
be ported onto Godson-T conveniently. The library
provides a rich set of APIs for task management, in-
cluding batch thread management which can signifi-
cantly reduce tasking overhead by grouping identical



Dong-Rui Fan et al.: Godson-T: An Efficient Many-Core Architecture 1063

operations in batches. Programmer is responsible for
creating, terminating and synchronizing tasks by in-
serting appropriate Pthreads-like APIs.

We developed a software runtime system —
GodRunner[5], focusing on efficiently abstracting a
large number of hardware threading units and dynamic
load-balancing. GodRunner task model (in our termi-
nology, task resides in software, while thread resides
in hardware) adopts create-join method inspired by
Pthreads. GodRunner task does not support preemp-
tive execution, because frequent context-switch incurs
save-restore overhead and cache thrashing. Therefore,
a task will keep on executing on a threading unit until
it terminates. Non-preemptive execution can make task
initialization simple and fast, for example, the stack is
statically allocated to each threading unit, which avoids
the time-consuming dynamic allocation. GodRunner
permits programmers to create more tasks than hard-
ware thread units, and transparently maps them to
hardware thread units at runtime. As shown in Fig.3.
GodRunner is responsible for swapping the completed

Fig.2. Software stack of Godson-T platform.

Fig.3. Task scheduling by using GodRunner.

task out and scheduling a new one in a thread unit. Dif-
ferent task scheduling algorithms can be incorporated
into GodRunner flexibly. We have implemented two
well-known task scheduling algorithms for efficient dy-
namic load balancing: work-stealing[6] and conditional-
spawning[7].

4 Architectural Supports for Multithreading

Unlike sequential programs, threads in parallel pro-
grams may be dependent on each other. Hence, a com-
munication mechanism must be provided for managing
data transfer among the threads. Since the threads ex-
ecute asynchronously, additional synchronization ope-
rations must be used to realize the data transfer from
a producer to a consumer at the correct time. A multi-
threaded program, no matter how complex it is, is al-
ways orchestrated by a collection of computation, com-
munication and synchronization operations. From this
point of view, Godson-T provides efficient and ease-to-
use architectural supports for data communication and
thread synchronization. In this section, firstly we will
introduce the novel data communication mechanisms
of Godson-T. Then we will introduce the novel thread
synchronization mechanisms of Godson-T.

4.1 Thread Communication

4.1.1 Region-Based Cache Coherence Protocol

The conventional directory-based cache coherence
protocols for large-scale parallel architecture guarantee
that any read and write requests at a memory location
perform in partial order. However, this makes the de-
sign and verification of the protocol very complex. Ano-
ther problem of the directory-based protocols is that
their hardware overhead would increase quickly when
more cores and larger caches are put into a single chip,
because the size of a directory is proportional to both
the number of cores and the cache size. Furthermore,
the directory-based protocols also suffer from unnec-
essary cache invalidations, like invalidations caused by
false sharing. These unproductive invalidations degrade
both the performance and the scalability. In Godson-T,
these problems are overcome by a novel Region-based
Cache Coherence (RCC) protocol.

Maintaining all data (either shared or private) co-
herent in cache hierarchy is very expensive[8]. So the
principle of our proposed cache coherence protocol is
that the coherence of data should be lazily guaranteed
upon request. The shared access and private access
are expected to be distinguished. The cache hierarchy
benefits from understanding different types of accesses
and takes corresponding consistency operations to min-
imize the side effect. As a result, RCC is proposed. In



1064 J. Comput. Sci. & Technol., Nov. 2009, Vol.24, No.6

our terminology, a region is a code sequence beginning
with an open region primitive and ending with a close
region primitive. Memory accesses inside the region
are regarded as shared accesses and guaranteed coher-
ent, while accesses outside the region are not guaran-
teed coherent. Ideally, regions only embrace the shared
accesses. The flexibility of the RCC allows users to de-
clare the regions in either coarse grain or fine grain.
This is convenient for users to ensure the correctness of
the program at first and then make incremental perfor-
mance improvement by reducing the size of regions. It
is convenient to port a parallel program to Godson-T
correctly by just inserting these primitives at synchro-
nization points, such as mutual exclusive locks.

As mentioned in Section 2, the 32KB local memory
on each core can be configured as a private L1 data
cache, and 16 address-interleaved L2 cache banks are
shared by all L1 caches. In this two-level cache hierar-
chy, data communication performs through the shared
L2 cache, so that the newest value of shared data should
be put to or fetched from the L2 cache. This is carried
out by region-based consistency primitives and corre-
sponding consistency operations in L1 cache. The pro-
tocol does not involve the hardware directory or those
sophisticated protocol state machines.

Since the cache protocol updates data lazily, all
shared data accesses are required to be figured out ex-
plicitly for the best performance. The shared and pri-
vate data accesses should be differentiated on such plat-
forms containing so many cores. The underlying cache
hierarchy should perform only necessary expensive con-
sistency operations for good scalability. This objective
can be achieved by simply declaring the shared object
as “shared”, as in UPC[9]. Thus, accessing to the shared
objects can be automatically identified and guaranteed
by RCC protocol.

4.1.2 Orchestrating Data Movement

Feeding the sufficient data to the function units is a
great challenge due to the tremendous on-chip compu-
tational capability. This problem is relieved on Godson-
T by overlapping the communication and the compu-
tation. Data Transfer Agent (DTA) is provided on
each core to support the fast and asynchronous data
transfer. Unlike traditional DMA mechanism, DTA is
a more advanced communication-centric coprocessor in
Godson-T design. It provides a versatile set of opera-
tions for users and cooperates with network-on-chip,
enabling less restrictive and more efficient data com-
munication on many-core architecture.

The conventional cache organization permits only
vertical data communication in memory hierarchy (i.e.,
between different levels of memory hierarchy). The

communication latency might be long and the commu-
nication bandwidth might be restricted by the memo-
ry hierarchy (e.g., bandwidth degraded due to conflict
accesses to the same L2 bank, the network conges-
tion and the L2 cache miss). So that, the horizontal
data communication (i.e., from the local memory to
other cores’ local memory directly) is proposed to uti-
lize the low latency of the on-chip communication and
the tremendous on-chip bandwidth (2TB/s on Godson-
T) of many-core architecture to compensate the in-
sufficient off-chip bandwidth. DTA supports both the
vertical and the horizontal data transfer, as shown in
Fig.4(a). It should be pointed out that DTA also sup-
port an additional vertical operation which prefetches
data blocks from off-chip memory into on-chip L2 cache.
This is quite useful for the programs with large data set
that exceeds the L2 cache size. The off-chip memory la-
tency can be tolerated by double-buffering on L2 caches
and overlapping L2 prefetch operations and on-chip
computations. Horizontal data communications are
also supported among different SPMs. Compared with
vertical operations, the horizontal operations make bet-
ter utilization of the tremendous on-chip bandwidth.
Therefore, keeping data on SPM as much as possible
and communicating through horizontal DTA operations
are encouraged.

Fig.4. Data communications supported by DTA operations. (a)

Vertical and horizontal DTA operations. (b) 2D strided DTA

operations.

Besides accessing the continuous data blocks, DTA
also supports data accessing with 2-D stride: block
stride and chunk stride, as shown in Fig.4(b). More-
over, DTA operations are not restricted to one-to-one



Dong-Rui Fan et al.: Godson-T: An Efficient Many-Core Architecture 1065

data communication. It can recognize the generated
addresses of different destinations automatically. It
can communicate with different memory units in an
operation, and can just move data blocks inside the
local SPM. With the 2-D stride operations of DTA,
the programmers would be much free from the restric-
tion of data layout and the communication patterns in
algorithms. For example, it is convenient to retrieve
a matrix, and transpose it on-the-fly through a DTA
operation. The flexibility is also enhanced by support-
ing up to 4 outstanding operations in DTA.

Another important feature of DTA is its automatic
network-load aware function. DTA sends a “ping” re-
quest to a destination after sending a bunch of data
requests to the destination. When the “echo” response
is returned, DTA can adjust the injection bandwidth
to the network according to the round-trip latency au-
tomatically. It is unnecessary to send special “ping”
request in DTA load operations since the round-trip
latency can be estimated by the load request and the
data response. This function is critical to preserve the
delivered bandwidth of the network. If DTAs send out
their packets into network continuously and blindly, the
on-chip network will be congested soon. This results in
poor utilization of the bandwidth.

Programming SPM and DTA on Godson-T is much
like programming a conventional DMA engine. Cur-
rently, it is done manually on Godson-T. Orchestrat-
ing data movement explicitly could be painful. How-
ever, we believe more advanced programming mod-
els and compiler techniques will alleviate this burden.
There are already a lot of promising works in this field.
For example, the Partitioned Global Address Space
(PGAS) languages[9−11], developed for clustered com-
puters, are naturally fit for Godson-T. The PGAS lan-
guages, assuming a hardware environment similar to
Godson-T, can program DMA automatically. Other
examples include Sequoia[12] and Hierarchical Tiled
Array[13]. These languages focus on organizing data
reuse and movement automatically between different
levels of memory hierarchy, where DMA is also auto-
matically used.

4.2 Thread Synchronization

4.2.1 Synchronization Without Memory

Synchronization in the conventional shared-memory
programming is based on memory communication
mechanism (e.g., cache coherence protocol). We pro-
pose a synchronization scheme including several syn-
chronization primitives and a novel synchronization
manager to handle mutual exclusion, barrier and pro-
ducer/consumer synchronization effectively. The main

difference between our scheme and conventional ones is
that our scheme cooperates with memory communica-
tion but does not build on it. This separation makes
our synchronization scheme extra-efficient.

Table 1 listed dedicated synchronization primitives.
These primitives are not associated with the memory
locations. Instead, they use id to identify different syn-
chronizations. It offers users another space to conve-
niently express the synchronization. An example is the
mutable accessing to a shared array: the address of el-
ement can be used as the id of the lock to access the
shared element, so that the program could be easily
orchestrated with fine-grained locks without the array
of lock variables in memory. Compared with the con-
ventional synchronization, the proposed method does
not have to emulate synchronization with a sequence of
memory accesses. The dedicated synchronization prim-
itives are also more analyzable for compiler and hard-
ware, enabling more opportunities for optimization.

Table 1. Architecturally Supported Synchronization Primitives

Primitive Function

read lock
id

Acquire a read lock denoted by id. The requested
core is sleeping until the acknowledgement from SM
is received. Note that the acknowledgement may be
received before lock since try lock is used.

write lock
id

Acquire a write lock denoted by id. The requested
core is sleeping until the acknowledgement from SM
is received. Note that the acknowledgement may be
received before lock since try lock is used.

unlock id Release a lock denoted by id.

signal id,
count

Produce a semaphore id that has count consumers.

wait id Consume a semaphore id.

barrier
id, count

Perform the barrier synchronization denoted by id
and involved count core number. The requested core
is sleeping until the acknowledgement from SM is
received.

An on-chip Synchronization Manager (SM) is pro-
posed to handle the primitives listed above efficiently.
SM is a 128-entry and 4-way set-associative table in
which each entry records a synchronization request.
The overflow of the table will trigger a software replace-
ment process. SM handles mutual exclusion by using
queue-based MCS algorithm[14]. In a similar way, the
SM collects barrier requests with the same barrier id.
When the last barrier request arrives, SM sends out
ACK messages to all involved processing cores. The
ACK message with longer routing distance has higher
priority to be sent out first. Hence, all involved cores
restart at approximately the same time, which is help-
ful to reduce the overhead of load imbalance. SM
can also control producer-consumer synchronization by
handling the signal/wait pair.



1066 J. Comput. Sci. & Technol., Nov. 2009, Vol.24, No.6

4.2.2 Full/Empty Bit Synchronization

Godson-T supports the fine-grain synchronization
by associating the full/empty bits with the local SPMs.
The full/empty bit tagged on memory cell indicates the
presence of data on the memory location, e.g., “1” for
“full”, and “0” for “empty”. Compared with the pre-
vious works about full/empty bits[15−16], our scheme
has three advantages. 1) It is built with on-chip memo-
ry, not off-chip memory. Hence, the synchronization
is extremely fast. This also avoids the sophisticated
cache hierarchy design when the full/empty bit mecha-
nism is associated with off-chip memory. 2) 8-bit tag
of each data cache line changes to the full/empty bits
when the local memory is configured as SPM, so no
more hardware budget is required. 3) Besides synchro-
nized load/store instructions, the data-driven synchro-
nization mechanism is naturally incorporated into the
DTA operations. The synchronized DTA operations
are expected to improve the utilization of the function
units in memory-intensive applications. Fig.5 is the il-
lustration of the performance improvement by using the
synchronized DTA operations.

Fig.5. Synchronized DTA operations.

Fig.6. State machine of full/empty bit.

There are two types of fine-grain synchronization
instructions on Godson-T: sync type and future type.
The former is used for producer-consumer style syn-
chronization, whereas the latter is used for future data
object protection. Fig.6 illustrates the state machine of
full/empty bit. An instruction will fail and retry when
it operates on an improper state of full/empty bit, and

the state of full/empty bit will not be changed. Vari-
ous synchronization patterns can be constructed based
on these two basic synchronization types. For exam-
ple, the single-writer-multiple-reader synchronization
can be implemented with the cooperation of store.sync
and load.future.

5 Experimental Results and Analysis

In this section, experimental platform and bench-
marks are introduced at first. The design features of
Godson-T are examined through experimental evalua-
tion and analysis in the following subsections.

5.1 Experimental Platform and Benchmarks

Experiments are conducted on a cycle-accurate
simulator of Godson-T architecture. Major architec-
tural parameters used in the experiments are listed in
Table 2. To compare the synchronization efficiency, we
also setup an SMP machine. This machine has eight
2.4GHz AMD Opteron processors and each processor
has dual cores.

5.1.1 Evaluation of Data Communication

Four kernels of SPLASH-2[17] and two bioinformatics
applications (pFind[18] and iBLASTP[19]) are ported to
Godson-T to examine the efficiency of the proposed
cache organization. For executing correctly on the
Region-based coherence protocol, the program sources
are slightly modified for correctness, e.g., to identify
and tag the regions. pFind is a search engine sys-
tem for the automated peptide and protein identifi-
cation from the tandem mass spectra. The subset-
seed based iBLASTP is a protein banks comparison
algorithm derived from the well-known BLAST. Two
important kernels including SGEMM (Single-precision
General Matrix Multiplication) and FFT are composed
to exploit the potential of high-performance computing
of Godson-T. Intensive optimizations are manually ap-
plied on the kernels, such as using the SPM and DTA
of Godson-T. These kernels are frequently used in the
high-performance computing community, representing
the dense algebra and spectral method in 13 “motifs”[1].

5.1.2 Evaluation of Thread Synchronization

The microbenchmarks and methodology described
in [20] are adopted to evaluate the mutual exclusion
and barrier synchronization mechanism of Godson-T.
These microbenchmarks perform stress testing of syn-
chronization primitives. We use two micro-benchmarks
to evaluate the efficiency of the producer-consumer syn-
chronization supported by the full/empty-bit mecha-
nism of Godson-T: the 2-D wavefront, which is common



Dong-Rui Fan et al.: Godson-T: An Efficient Many-Core Architecture 1067

in scientific codes with abundant single-writer-multiple-
reader synchronizations; and the Loop 6 from the
Livermore Loop benchmarks[21], which computes lin-
ear recurrence equations with abundant single-writer-
multiple-reader synchronizations.

Table 2. Simulation Parameters of Godson-T

Micro-Architecture

Processing Core

Processing
core

64 cores, in-order, dual-issue, each running at
1 GHz

Load-to-use
latency

3 cycles

FMAC unit
latency

4 cycles

Memory Subsystem

L1 I-cache 16 KB, 2-way set associative, 32B/cacheline

Local mem-
ory

Configured to 32KB SPM, 16 64-bit-width
SRAM sub-banks with 2 memory ports each (1
for read, 1 for write)

L2 cache 16 banks, total 4MB, 8-way set-associative,
64 B/cacheline

Memory
controller
& off-chip
DRAM

4 memory controllers, running at the same clock
rate as the processing core, 64-bit FSB. (Each
memory controller controls a 1GB DDR2-800
DRAM. DRAM clock is 400MHz, tCAS= 5,
tRCD=5, tRP= 5, tRAS=15, tRC=24 mea-
sured at memory clock.)

Contentionless Latency

L1 I-cache
hit

1 cycle

SPM load/
store hit

1 cycle

Mesh
network

2 cycles per hop

L2 hit 12∼40 cycles according to routing distance

Off-chip
memory

62∼120 cycles according to routing distance and
DRAM access pattern (e.g., whether the access
is on the same row as previous ones)

Synchro-
nization

Each synchronization request to SM and ac-
knowledgement from SM spend 6∼66 cycles.
Lock or barrier request consume additional cy-
cles until the synchronization dependence is re-
solved, e.g., a barrier request should wait until
all barrier requests from all involved processing
cores are collected in SM.

5.2 Main Observations

Observation 1 (See Subsection 5.3 for Details).
Our experimental results show that the proposed thread
communication mechanisms of Godson-T have the fol-
lowing advantages.

1) The experiment shows that our low-cost cache co-
herence mechanism on Godson-T assures good scalabil-
ity for traditional multithreaded programs. (See Sub-
section 5.3.1)

2) DTA significantly boosts the performance of both

vertical and horizontal data communication, and feeds
ample data to all processing cores to reach the perfor-
mance as high as the peak performance of Godson-T.
(See Subsection 5.3.2)

Observation 2 (See Subsection 5.4 for Details).
Our experiments demonstrate that the features of
our proposed thread synchronization mechanisms of
Godson-T have the following advantages.

1) The architectural support of synchronization, in-
cluding mutual exclusion and barrier synchronization,
makes the synchronization even thousands of times
faster than Pthreads on traditional SMP machine, and
also outperforms atomic-instruction based synchroniza-
tion on Godson-T. (See Subsection 5.4.1)

2) On-chip memory-based full/empty bit synchro-
nization of Godson-T significantly reduces the synchro-
nization overhead. The DTA operations combined with
fine-grain synchronization can further reduce the com-
munication overhead. (See Subsection 5.4.2)

5.3 Experimental Results and Analysis of
Thread Communication

5.3.1 Evaluating the Scalability of Cache Coherence
Protocol

Fig.7 illustrates the speedup of two bioinfor-
matics applications and four kernels of SPLASH-
2. Both bioinformatics applications achieve excel-
lent speedup, because they are embarrassingly parallel
and computation-intensive. The speedup of the four
SPLASH-2 kernels with default input data-set size is
comparable or superior to [17], even though [17] uses
ideal memory. The sub-linear speedup of the kernels is
mainly due to the on-chip interconnection congestion
(FFT), the capacity miss of 4MB L2 cache (RADIX,
CHOLESKY), and the load imbalanced algorithm (LU,
CHOLESKY). The performance of these kernels can be
improved after adopting load-balanced algorithm and

Fig.7. Speedup of the bioinformatics applications and SPLASH-2

benchmarks on Godson-T. (Characters in parentheses means the

input data set.)



1068 J. Comput. Sci. & Technol., Nov. 2009, Vol.24, No.6

optimizing for Godson-T. The optimized FFT kernel on
Godson-T is 10.5 times faster than that in SPLASH-2
with the same algorithm. Nevertheless, the efficiency
and scalability of the proposed region-based cache co-
herence protocol has been solidly proved for conven-
tional multithreaded programs.

5.3.2 Evaluating On-Chip DTA

The SGEMM and 1-D FFT are optimized on
Godson-T by directly utilizing architectural support
such as SPM and DTA.

SGEMM. In the 1280 × 1280 SGEMM kernel, tiling
and double buffering are used for each level of mem-
ory hierarchy. We choose 40× 40 matrix multiplication
for each core to fill SPM storage, so that the whole
processor calculates 320× 320 matrix multiplication in
Cannon’s algorithm. Each of the iteration in Cannon’s
algorithm is synchronized with the barrier primitive.
When each core does calculation, DTA gets data from
neighboring cores through horizontal DTA operation
and prefetch another 320 × 320 matrix block from off-
chip memory to L2 cache for the next-turn multiplica-
tion through vertical DTA operation. Both on-chip and
off-chip bandwidths are sufficient in this case. Almost
all the data communication overhead is hidden by com-
putation. The detail algorithm can be found in [22].

1-D FFT. We use the well-known six-step 1-D FFT
algorithm described in SPLASH-2 with a 64K single-
precision floating-point complex array. The complex
array is treated as a 2-D matrix, and needs to be trans-
posed in steps 1, 4 and 6. These transposes can defi-
nitely benefit from the strided DTA operations. In step
1, columns of the matrix are transferred from the off-
chip memory to each SPM by vertical DTA operations.
The FFT calculations in steps 2, 3 can be overlapped
with step 1. In step 4, the transpose is done through ex-
changing columns of matrix among SPMs by DTA hor-
izontal operations. This can be overlapped with step 5.
Step 6 is a vertical DTA operation to store the results
from SPM to the L2 cache.

Fig.8 demonstrates the efficiency of using SPM and
DTA. All the kernels running on different configura-
tions use the same algorithm described above. The
data communication in cache configuration can only be
realized through shared L2 cache vertically. SPM con-
figuration uses load/store instructions to perform hori-
zontal communication. The DTA configuration uses
DTA horizontal operations. The theoretical perfor-
mance is estimated by assuming that data always exist
on SPM when they are required. Thus the difference
between theoretical and actual performance mainly rep-
resents the overhead of data communication. The per-
formance on cache organization slightly outperforms

that on SPM, even though SPM enables the horizon-
tal communication. The reason is that a cache miss
causes a whole cache line refilled — this is a kind of
data prefetching that would benefit regular data ac-
cessing in these kernels. But this prefetching will not
happen in basic SPM configuration. Performance has
been dramatically accelerated by DTA operations since
much data communication latency has been removed
from the critical path of the execution. But there still
exists a gap between actual performance and theoretical
performance for FFT, since a fraction of data access-
ing latency cannot be hidden in computation for this
algorithm.

Fig.8. Performance comparisons of SGEMM and 1-D FFT.

To illustrate the benefit of the flow-control function
of DTA, we take SGEMM as an example. When 64
threads start to run, each of the threads needs to verti-
cally retrieve three 40 × 40 matrices from L2 caches to
its local SPM. During the retrieving, the utilized band-
width of our proposed DTA is 5.6 times larger than the
DTA without network flow-control.

Table 3 concludes the performance and efficiency of

Table 3. Performance (GFlops) and Computational

Efficiency (%) Comparisons

Benchmark

Processor SGEMM 1-D FFT

Efficiency Performance Efficiency Performance

Godson-T 95.9% ∗ 122.81 33.2% 63.72

IBM Cell 99.9%∗∗ 204.70 20.4% 41.80

Cyclops-64 43.4% 13.90 25.8% 20.70

GTX8800 60.0% 206.00 29.9% 155.00
∗The SGEMM kernel contains only multiply-and-add operation,

so that the ideal peak performance is measured by the multiply-

and-add function unit, which is 128 GFlops.
∗∗Efficiency of SGEMM on Cell is slightly better than that on

Godson-T, because 256KB SPM for each SPE on Cell makes

better utilization of data locality.



Dong-Rui Fan et al.: Godson-T: An Efficient Many-Core Architecture 1069

SGEMM and 1-D FFT kernels on Godson-T. The best
performance reported publicly on several other parallel
processors is also listed in [23–27]. As we can see, the ef-
ficiency of Godson-T is comparable or superior to other
processors. Compared with other processors, Godson-
T provides explicit but simple memory hierarchy ab-
straction with fast and versatile data communication
mechanisms (e.g., horizontal DTA operation), which is
very important to obtain extremely high computational
efficiency.

5.4 Experimental Results and Analysis of
Thread Synchronization

5.4.1 Evaluating Synchronization Without Memory

A series of micro-benchmarks and methodologies de-
scribed in [20] are adopted to stress testing the synchro-
nization overhead of Godson-T. Fig.9 depicts the over-
head of the mutual exclusion synchronization. Fig.9(a)
shows that the overhead of FAA-based lock (imple-
mented by fetch-and-add atomic memory operations)
and SM-based lock (primitives handled by synchroniza-
tion manager) on Godson-T is approximately 10 times
lower than that on the SMP machine when there is no
lock contention. Fig.9(b) shows the transferring over-
head of locks (the period between a thread releasing

a lock and the lock acquired by another thread) when
all active threads contending for the same lock. The
SM-based lock overhead remains constant as the num-
ber of threads increases, while the cost of other types
of locks increases. Besides, the transfer time of SM-
based lock costs much lower than the others. Fig.9(c)
shows the average load latency of the load operations is-
sued in critical sections when there are multiple threads
contending for the same lock. The test evaluates the
side effect of lock contention on network-on-chip. In
this figure, these locks do not have obvious influence
on the network. In conclusion, SM-based lock greatly
outperforms other locks, and the results also reveal its
good scalability even though there is a heavy lock con-
tention. Note that the performance of FAA-based lock
on Godson-T, which represents lock mechanism based
on atomic operations, is also worse than SM-based lock
even though they share the same on-chip latency and
bandwidth.

Fig.10 shows the overhead of the barrier synchro-
nization. Fig.10(a) shows that the raw overhead of bar-
rier without workload between barriers. It can be seen
that the overhead on Godson-T is significantly less than
the SMP machine. As the number of threads increases,
the overhead of barrier synchronization slightly grows

Fig.9. Overhead of mutual exclusion synchronization. (a) Lock overhead without lock contention. (b) Lock transferring overhead. (c)

Average time for each load.

Fig.10. Overhead of barrier synchronization. (a) Barrier overhead without workload. (b) Barrier overhead with load imbalancing. (c)

Average time of each load.



1070 J. Comput. Sci. & Technol., Nov. 2009, Vol.24, No.6

on Godson-T. But the overhead grows by several hun-
dreds or even thousands of times on the SMP ma-
chine. The result proves the good scalability of our
approach on thread synchronization. Fig.10(b) shows
the overhead of the barrier synchronization of load-
imbalancing threads. The average overhead on the
SMP machine is larger than Godson-T by hundreds of
times. Fig.10(c) shows the negative effect on network
when there are multiple threads performing the bar-
rier operations. The Pthreads barrier makes more and
more congestion as the number of threads increases,
while this phenomenon does not appear on Godson-T.

5.4.2 Evaluating Full/Empty Bit Synchronization

We use two micro-benchmarks to evaluate the effi-
ciency of the producer-consumer synchronization sup-
ported by the full/empty-bit mechanism of Godson-T:
the 2-D Wavefront and Livermore Loop 6. In 2-D Wave-
front, each element of a 2-D matrix A is determined by
three adjacent elements: A[i][j] = A[i−1][j−1]+A[i−
1][j] + A[i][j − 1]. The first row and the first column
of matrix A are initialized before execution. A is a
512 × 512 double-precision matrix in our implementa-
tion. To parallel the program, rows of A are distributed
on SPMs and assigned to threads in round-robin. The
dependence of elements is guaranteed by ldc1.sync and
sdc1.sync operating with full/empty bit. Performance
is compared with a serial version of the program. As
illustrated in Fig.11, the parallelized program shows an
optimal speedup over the serial one.

Fig.11. Speedup of 2-D Wavefront.

Livermore Loop 6 is described as follows:

for (i = 1; i < n; i + +)
for (k = 0; k < i; k + +)

W [i]+ = B[k][i] ∗ W [(i − k) − 1];

In this loop, W [i] depends on W [i − 1] ∼
W [0] recursively. The single-writer-multiple-reader
synchronization is easily guaranteed by ldc1.future and
swc1.sync. Besides, before calculating W [i], we issue a

synchronized DTA operation to transfer the required
part of B to the corresponding SPM and set the
full/empty bits. Then we use an ldc1.sync to load
B[k][i] from the SPM when it is required.

The performance of the parallelized program de-
scribed in [21] with coarse-grained synchronization is
compared with our programs using full/empty bits,
with or without DTA support. The result in Fig.12
shows that compared with the coarse-grained synchro-
nization version, the fine-grain synchronization gains
70% speedup of the performance, and the synchronized
DTA operation further increases 56.8% performance.

Fig.12. Speedup of Livermore loop 6.

6 Related Work

There has been a considerable amount of previous
researches on multi-core and many-core architectures.
It is well beyond the scope of this paper to cover all
such related works. We will summarize the works that
most closely resemble the techniques proposed in our
paper.

Location consistency cache protocol[28] is also a
region-based cache coherence protocol, in which the re-
gion contains only one memory access. The difference
between CRF[29] and our work is that our cache per-
forms consistency operation guided by the region, while
the operation is guided by cache instructions in CRF.
Our cache protocol tallies with Scope Consistency[30]

memory model proposed in DSM, but implemented in
hardware approach. Besides, the producer region and
the consumer region are differentiated in our cache co-
herence protocol to avoid unnecessary and expensive co-
herence operations. BulkSC[31] also supports a region-
based sequential consistency (SC) memory model. A re-
gion in BulkSC is called a chunk. BulkSC dynamically
groups sets of consecutive instructions into chunks that
appear to execute sequentially. BulkSC has hardware
support for chunk checkpoint and rollback to ensure
SC. It is fundamentally different from RCC. RCC is
much weaker than SC and a region in RCC is stati-
cally decided. A motivation of RCC is to minimize the



Dong-Rui Fan et al.: Godson-T: An Efficient Many-Core Architecture 1071

unnecessary synchronizations. The idea of RCC is to
distinguish different memory accesses. This is a major
step over traditional memory consistency models which
consider all memory accesses with the same way.

Several parallel architectures adopt explicitly pro-
grammable on-chip memory rather than coherent data
cache, such as IBM Cell[32], Cyclops-64[33], nVidia
GeForce[34]. Godson-T provides SPM enabling both
vertical and horizontal data communication. More-
over, the efficient data communication and fine-grained
synchronization mechanisms are provided with Godson-
T’s SPM. Cell also supports both horizontal and ver-
tical DMA operations, but Cell’s DMA operations are
function-limited and not aware of network congestion.
The main difference between our full/empty bit syn-
chronization scheme and the previous works[15−16] is
that our design is based on fast on-chip local memory,
rather than off-chip memory. Moreover, our scheme can
cooperate with DTA to facilitate on-chip data commu-
nication.

There are many works about the hardware sup-
ported mutual exclusion synchronization[16,35] and bar-
rier synchronization[36−38]. These schemes are based
on memory communication or network infrastructure.
However, our proposed synchronization scheme is to-
tally independent of memory hierarchy and network in-
frastructure.

7 Conclusion

Performance and programmability are often consi-
dered as two contrary sides of a parallel architecture.
Godson-T shows a solution to achieving performance
without losing programmability. The programmability
of Godson-T is compatible with the popular conven-
tional multithreading programming on cache hierarchy.
Godson-T also provides the accessibility of on-chip re-
source and reasonable abstraction of micro-architecture
for programmers to easily obtain high performance. We
believe the design methodology used in Godson-T will
contribute to the future many-core architecture designs.

References

[1] Asanovic K et al. The landscape of parallel comput-
ing research: A view from Berkeley. Technical Report
No.UCB/EECS-2006-183, University of California, Berkeley,
December 18, 2006.

[2] Lee E A. The problem with threads. Computer, 2006, 39(5):
33–42.

[3] Cantrill B, Bonwick J. Real-world concurrency. ACM Queue,
2008, 6(5): 16–25.

[4] Adve S V, Adve V S et al. Parallel computing research at
Illinois: The UPCRC agenda. Technical Report, University
of Illinois at Urbana-Champaign, November 2008.

[5] Yuan N, Yu L, Fan D. An efficient and flexible task man-
agement for many-core architectures. In Proc. Workshop on

Software and Hardware Challenges of Manycore Platforms,
in Conjunction with the 35th International Symposium on
Computer Architecture (ISCA-35), Beijing, China, June 22–
26, 2008, pp.1–17.

[6] Blumofe R D, Leiserson C E. Scheduling multithreaded com-
putations by work stealing. Journal of the ACM, 1999, 46(5):
720–748.

[7] Palatin P, Lhuillier Y, Temam O. CAPSULE: Hardware-
assisted parallel execution of component-based programs. In
Proc. the 39th Annual IEEE/ACM International Symposium
on Micro-Architecture, Washington, DC, USA: IEEE Com-
puter Society, Dec. 9–13, 2006, pp.247–258.

[8] Villa O, Palermo G, Silvano C. Efficiency and scalability of
barrier synchronization on NoC based many-core architec-
ture. In Proc. CASES 2008, Atlanta, USA, Oct. 19–24, 2008,
pp.81–90.

[9] Carlson W W, Draper J M et al. Introduction to UPC and
language specification. Technical Report No. CCS-TR-99-
157, University of California, Berkeley, 1999.

[10] Numrich R W, Reid J. Co-array Fortran for parallel program-
ming. SIGPLAN Fortran Forum, 1998, 17(2): 1–31.

[11] Yelick K, Semenzato L et al. Titanium: A high-performance
Java dialect. Concurrency: Practice and Experience, 1998,
10(11-13): 825–836.

[12] Fatahalian K, Horn D R et al. Sequoia: Programming the
memory hierarchy. In Proc. the 2006 ACM/IEEE Confer-
ence on Supercomputing, Tampa, Florida, Nov. 11–17, 2006,
pp.83–95.

[13] Bikshandi G, Guo J et al. Programming for parallelism and
locality with hierarchically tiled arrays. In Proc. the Eleventh
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, New York, USA, March 29–31, 2006,
pp.48–57.

[14] Mellor-Crummey J M, Scott M L. Synchronization without
contention. In Proc. Architectural Support for Programming
Languages and Operating Systems, Santa Clara, USA, April
8–11, 1991, pp.269–278.

[15] Alverson R, Callahan D et al. The Tera computer system. In
Proc. the 4th Int. Conf. Supercomputing, Amsterdam, The
Netherlands, June 11–15, 1990, pp.1–6.

[16] Zhu W, Sreedhar V C et al. Synchronization state buffer:
Supporting efficient fine-grain synchronization on many-core
architectures. In Proc. the 34th Annual International Sympo-
sium on Computer Architecture, San Diego, USA, June 9–13,
2007, pp.35–45.

[17] Woo S C, Ohara M et al. The SPLASH-2 programs: Char-
acterization and methodological considerations. In Proc. the
22nd Annual International Symposium on Computer Archi-
tecture, Santa Margnerita Ligure, Italy, June 22–24, 1995,
pp.24–36.

[18] Fu Y, Yang Q et al. Exploiting the kernel trick to corre-
late fragment ions for peptide identification via tandem mass
spectrometry. Bioinformatics, 2004, 20(1): 1948–1954.

[19] Altschul S, Madden T, Schaffer A et al. Gapped Blast and
Psi-Blast: A new generation of protein database search pro-
grams. Nucleic Acids Research, 1997, 25(17): 3389–3402.

[20] Kumar S, Jiang D et al. Evaluating synchronization on
shared address space multiprocessors: Methodology and per-
formance. ACM SIGMETRICS Performance Evaluation Re-
view (SIGMETRICS 1999), 1999, 27(1): 23–34.

[21] Feo J. An analysis of the computational and parallel complex-
ity of the Livermore loops. Parallel Computing, 1988, 7(2):
163–185.

[22] Yuan N, Zhou Y et al. High performance matrix multipli-
cation on many cores. In Proc. European Conference on
Parallel and Distributed Computing (Euro-Par), Delft, The
Netherlands, Aug. 25–28, 2009, pp.948–959.



1072 J. Comput. Sci. & Technol., Nov. 2009, Vol.24, No.6

[23] Volkov V, Demmel J W. Benchmarking GPUs to tune dense
linear algebra. In Proc. 2008 ACM/IEEE Conf. Super-
computing (SC 2008), Austin, USA, Now. 15–21, IEEE Press,
2008, pp.1–11.

[24] Chen L, Hu Z et al. Optimizing fast Fourier transform on a
multi-core architecture. In Proc. IEEE International Paral-
lel and Distributed Processing Symposium, Long Beach, USA,
March 26–30, 2007, pp.1–8.

[25] Hu Z, Cuvillo J et al. Optimization of dense matrix multi-
plication on IBM Cyclops-64: Challenges and experiences.
In Proc. Euro-Par 2006, Dresden, Germany, August 28–
September 1, pp.134–144.

[26] Govindaraju N K et al. High performance discrete
Fourier transforms on graphics processors. In Proc. the
2008 ACM/IEEE Conference on Supercomputing (SC2008),
Austin, USA, Nov. 15–21, 2008, pp.13–24.

[27] Williams S, Shalf J et al. The potential of the cell processor
for scientific computing. In Proc. CF’06, Ischia, Italy, May
3–5, 2006, pp.9–20.

[28] Gao G R, Sarkar V. Location consistency — A new memory
model and cache consistency protocol. IEEE Transactions on
Computers, 2000, 49(8): 798–813.

[29] Shen X et al. Commit-reconcile & fences (CRF): A new mem-
ory model for architects and compiler writers. In Proc. the
26th Annual International Symposium on Computer Archi-
tecture, Atlanta, USA, May 2–4, 1999, pp.150–161.

[30] Lftode L et al. Scope consistency: A bridge between release
consistency and entry consistency. In Proc. the Eighth An-
nual ACM Symposium on Parallel Algorithms and Architec-
tures, Padua, Italy, June 24–26, 1996, pp.277–287.

[31] Ceze L, Tuck J et al. BulkSC: Bulk enforcement of sequential
consistency. In Proc. the 34th Annual International Sympo-
sium on Computer Architecture, San Diego, USA, June 9–13,
2007, pp.278–289.

[32] Hofstee P. Power efficient architecture and the cell processor.
In Proc. HPCA-11, San Francisco, USA, February 12–16,
2005, pp.258–262.

[33] Almasi G, Cascaval C et al. Dissecting cyclops: A detailed
analysis of a multithreaded architecture. ACM SIGARCH
Computer Architecture News, 2003, 31(1): 26–38.

[34] Lindholm E et al. NVIDIA Tesla: A unified graphics and
computing architecture. IEEE Micro, 2008, 28(2): 39–55.

[35] Mellor-Crummey, J M, Scott M L. Synchronization without
contention. In Proc. Architectural Support for Programming
Languages and Operating Systems, Santa Clara, USA, April
8–11, 1991, pp.269–278.

[36] Keckler S W et al. Exploiting fine-grain thread level paral-
lelism on the MIT multi-alu processor. In Proc. the 25th
Annual International Symposium on Computer Architecture,
Barcelona, Spain, June 27–July 1, 1998, pp.306–317.

[37] Sampson J, Gonzalez R. Exploiting fine-grained data paral-
lelism with chip multiprocessors and fast barriers. In Proc.
the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, Orlando, USA, Dec. 9–13, 2006, pp.235–
246.

[38] Villa O et al. Efficiency and scalability of barrier synchro-
nization on NoC based many-core architecture. In Proc.
CASES 2008, Atlanta, USA, October 19–24, 2008, pp.81–90.

Dong-Rui Fan graduated from
the Department of Mathematical Sci-
ence at Beijing Jiaotong University
with a Bachelor’s degree in 2000, and
he received the Ph.D. degree from

Institute of Computing Technology
(ICT), Chinese Academy of Sciences
(CAS) in 2005. Now, he is an asso-
ciate researcher at ICT, a member of
CCF and IEEE. He worked together

with members of AMS (Advanced Micro-System) research
group and designed the new processing models — Godson-

X and Godson-T. Currently, His research interest focuses
on many-core system, including the design of microarchi-
tecture, parallel processing, and runtime system.

Nan Yuan graduated from the

Department of Computer Science
and Technology at Beijing Univer-
sity of Posts and Telecommunication
with a Bachelor’s degree in 2004, and
he is currently a Ph.D. candidate of
ICT, CAS. His current research inter-
ests include parallel architecture de-

sign and runtime system design.

Jun-Chao Zhang is currently an
engineer at ICT, CAS. He received
his Ph.D. degree in computer sci-

ence from ICT, CAS in 2005 and
his B.Eng. degree from Xi’an Jiao-
tong University in 1999. His re-
search interests include computer ar-
chitecture, parallel computing, com-
piler and parallel languages. He is an
ACM member and CCF member.

Yong-Bin Zhou received his
B.Eng. degree from University of
Science and Technology of China
(USTC). Currently, he is a Ph.D.

candidate in computer science at
ICT, CAS. His recent research topics
include computer architecture and
parallel computing.

Wei Lin received his B.Sc.

degree from Tianjin University.
Currently, he is a Ph.D. candi-
date in computer science at ICT,
CAS. His research interests in-
clude computer architecture, par-
allel computing, and operating sys-
tem.



Dong-Rui Fan et al.: Godson-T: An Efficient Many-Core Architecture 1073

Feng-Long Song graduated
from the Department of Management
and Economics at Shandong Normal
University and received Master’s de-

gree in 2006. He is a Ph.D. candidate
of ICT, CAS. His research interests
focus on high performance computer
architecture, on-chip memory hierar-
chy, and parallel computing.

Xiao-Chun Ye received his
B.Sc. degree from Beijing Normal
University in 2004. Currently, he is a

Ph.D. candidate in computer science
at ICT, CAS. His recent research
topics include computer architecture,
parallel computing, and bioinformat-
ics.

He Huang is a Ph.D. can-
didate at ICT, CAS. His re-

search interests include proces-
sor micro-architecture, operating
system and VLSI backend de-
sign.

Lei Yu is currently a Ph.D. can-
didate at ICT, CAS. His current re-

search interests include computer ar-
chitecture and parallel computing.

Guo-Ping Long is cur-
rently a Ph.D. candidate at ICT,
CAS. His research interests in-
clude parallel programming, per-
formance modeling and evalua-
tion.

Hao Zhang is an assistant re-

searcher at ICT, CAS. Zhang re-
ceived the Ph.D. degree in computer
science from ICT in 2008. His re-
search interests include design, anal-
ysis, implementation, and bench-
marking of processor architectures;

switching and routing of on chip net-
works; and high throughput memory
system.

Lei Liu received his B.Sc. de-
gree from Peking University in 2004.

Currently he is a Ph.D. candidate
at ICT, CAS. His research topic is
power management of many-core ar-
chitecture.

View publication statsView publication stats

https://www.researchgate.net/publication/225172453

