

Your One Stop IoT Solution

ASIC/ SoC Integration and Verification

- EX: You want design the max Power.

In the FE begin, you need consider in mind for Power

Integrate ASIC/SOC

Always think of how to improve PPA

- Bus performance
- Clock/reset arch plan
- ASIC/SOC boot plan
- Memory usage plan

- Performance issue at Host A.
- Host A want read data form Ext mem from SDRAM Through HOST B to Ext SD Card.
- After analysis with it. We find There have 4 timing path in this critical path. Ext to HOST A . HOST A to SDRAM.
 SDRAM to HOST B. HOST B to Ext SD.
- After Optimization this arch. We reduce full path from 4 path to 2 path. This could increase 50% performance.

- After review system power save plan.
- Optimization RTL for Clock Gate.
- Separate to Operate/Sleep/Slow mode for SW Control.
- After Optimization, power is reduce.

ſ	SD3.0 IO	SD3.0 SLAVE		SDRAM (32MB)		NOR FLASH (8MB)		SI	DIO 3.0 HOST	SD3.0 IO SD3.0	
Γ	LVD	CLK GEN		SDRAM controller		Autoload controller			PSW x2		
L				16K Icache ARM			16K	SD3	3.0 HOST		
	LDO X9					1926EJ	Dcache	US	SB2 OTG	USB PHY	
	BUS MXTRIX]	
	WDT	INTC	SCU	тмо		APB1	UART1		RTC		
	I2C	SPI	GPIO	PWN	1	SSI	UART	2	I2S		

Scenario #3

- There have a power limit in the ASIC Boot up time.
- After review system power usages in ASIC Boot.
- Optimization RTL for System reset control flow.
- Separate reset to HW Boot/SW Boot/Operate mode.
- After Optimization, power is reduce.

INTG VRFY

Scenario #2.3

- There are use 16 SRAM on chip.
- After review application use, we optimization RTL for memory number and memory size.
- After Optimization, power is reduce.

₹

INTG VRFY

Your One Stop IoT Solution

ASIC/SoC Verification

Verification

Always think of how to improve PPA

- HW/SW control flow
- FPGA Verification
- Timing verification
- Chip-level verification

- Review system Function/TMOD Verification Plan.
- Distinguish Verification for Function/TMOD

Functional & Test Mode

Review system Function/TMOD

Verification Plan.

- There will Separate.
- Verification IP for TMOD.
- Increase ASIC verification Level.

HW/SW Co-V

Where does SW code boot from?

What is the Application?

- Finish HW IP Level Verification.
- Use SW to build up System level Verification.
- Use HW&SW Co-work for Deep System
 Verification.

- This is HW/SW SOC Platform
- ARM C compiler is link with ARM JTAG
- UART could display SW process massage on PC
- FPGA JTAG is use for program SOC Design
- When SOC on, we will program SOC Design and SW

Ke<u>yasic</u>

SW VIP

PL

rd rm

- KeyASIC FPGA verification program
- Implemented 27+ IPs on SoC FPGA.
- If SOC HW Design have any change. This SW VIP could verification quickly.
- KA also implement Linux base Bootloader
- New IP verification can be easily integrated in this Boot-loader.

	== KeyASIC Diagnostic U	tility Ver 1.1							
	System Info	mation							
: P1041C, PCB Ver	: 2015/2, Diagnostic Ut	ility Ver : 1.1							
ock(MHz): OSC 24, PLI	L 96, ARM 96, HCLK 96,	PCLK 48, SDM 48	, SDSW 4	8, SDIO 48					
L2 0, I2S 24, SPI 24									
nory : 32MB, Clock	k 96MHz, Vendor : Etron	, Model Name :	EM63A1650	GD-10					
Flash : 8MB, Vendor : MXIC, Model Name : MX25L6406E									
IP Verification Tests									
lGlock	[2]Timer	[21 DEM		[4]Watabdog					
ICRIO		[3] PWM		[4]watchdog					
J SDDAM	[10]Mem Ctrl	[/]DW_OARI		[0]120 [12]TCM					
10W T25(*)	[14]SDT/SST	[15]DW SDT							
JSD Host	[18]SD Switch	[19]Switch to M1		[20]Switch to M2					
	[22]USB2_OTG(*)	[23] Interrupt (*)		[20] Switten to Hz					
SISPT SD	[26]GPV(*)	[27]Run All		[21]Autorodu()					
<u></u>	[20]017()	[27]Kun AII							
Tools									
10015									
 read memory 	h <1:27> - show he	lp	mmc - mmc subsystem						
- modify memory	result - show re	sults	sf - flash subsystem						
- write memory	clear – clear r	esults	icache [on off]						
- read register	q - quit te	st mode dcache		[on off]					
- modify register	m - back to	main menu	reglog –	<on off print clr></on off print clr>					
- write register	kamenu - enter t	est mode	dmesg -	<on off></on off>					
ect Test (1 - 27):#h 1									

Power Verification

Power Estimation & Design for Power

- Synopsys PrimeTime-PX.
- Create real application test vector estimation.
- Re-view different Operate mode.

PT-PX

Check power in term of:

- I/O
- Memory
- Black_Box
- Clock
- Register
- Combo logic
- Report Segmented & total power

Attributes

- i Including register clock pin internal power
- u User defined power group

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(%)	Attrs
io_pad	0.0000	2.614e-03	0.0221	0.0247	(90.03%)	
memory	0.0000	0.0000	1.647e-04	1.647e-04	(0.60%)	
black_box	0.0000	0.0000	0.0000	0.0000	(0.00%)	
clock_network	1.503e-03	1.771e-04	4.259e-05	1.723e-03	(6.28%)	i
register	1.192e-05	1.161e-05	6.748e-04	6.983e-04	(2.54%)	
combinational	5.200e-07	3.714e-07	1.489e-04	1.498e-04	(0.55%)	
sequential	0.0000	0.0000	1.560e-07	1.560e-07	(0.00%)	
Net Switching Power	= 2.803e-0	3 (10.21 ^s	\$)			
Cell Internal Power	= 1.516e-0	3 (5.52%	\$)			
Cell Leakage Power	= 0.023	1 (84.27	5)			
		-				
Total Power	= 0.027	5 (100.009	8)			

		Original (TYP)	l - Carlos	Optimization (TYP)				
	01_mode	02_mode	03_mode	01_mode	02_mode	03_mode		
io_pad	2.662E-03	1.320E-02	2.850E-02	2.662E-03	1.260E-02	2.662E-03		
тето	1.647E-04	1.754E-03	2.032E-03	1.647E-04	1.742E-04	1.647E-04		
block_box	9.777E-11	7.229E-11	0.000E+00	1.289E-10	1.446E-10	0.000E+00		
clock_network	1.842E-04	4.261E-03	2.020E-02	1.842E-04	1.629E-03	1.723E-03		
register	5.449E-04	5.823E-04	6.642E-04	5.448E-04	5.720E-04	6.983E-04		
combinational	1.485E-04	1.508E-04	2.222E-04	1.483E-04	1.516E-04	1.498E-04		
segential	1.547E-07	3.530E-07	7.130E-07	1-547e-07	1.833E-07	1.560E-07		
total power	3.704E-03	(2.000E-02)	(5.160E-02)	3.704E-03	(1.510E-02)	(5.398E-03)		
seqential total power	1.547E-07 3.704E-03	3.530E-07 2.000E-02	7.130E-07 5.160E-02	1.403E-04 1-547e-07 3.704E-03	1.510E-04 1.833E-07 1.510E-02	1.490E-04 1.560E-07 5.398E-03		

- Analysis 3 system Operate mode for Estimation detail power information.
- After design optimization. 20mW drop to 15mw . 51mW drop to 5mW.

Chip Verification

- Verification with EVB
- Build real application with PCB Environm
- Camera access KA WIFI SOC

Summary

- PPAC as the key index to measure how good a chip is Besides having the right knowledge & skillset
- Execute your flow with disciplines, always check back against PPAC at any stages!
- A chip design methodology outline is presented and will be covered in details in the coming sessions

Thank You