

Tanner EDA Solutions General MEMS Overview

Региональный менеджер Mentor Graphics в России

☑ denis_lobzov@mentor.com
 ☑ +7 916 323 9821
 ☑ Москва, Шаболовка 10

Corporate Overview & History

SIEMENS Ingenuity for life

- Tanner EDA solutions have been in the market since 1988, 30 years.
- Widely used for analog/mixedsignal ICs and MEMS.
- 1,000+ of customers in 67 countries
- Tanner EDA was acquired by Mentor Graphics March 3, 2015
- Mentor joined Siemens in February, 2017

Worldwide Locations

Tanner EDA Solutions Overview

Analog/Mixed-Signal IC Design

 A complete analog & mixed-signal IC design environment in one highly-integrated end-to-end flow

MEMS Design and Modeling

Tanner EDA offers proven, powerful MEMS tools from mask design to 3D model creation for visualization and export to FEM analysis and MEMS-IC co-simulation

- Internet of Things (IoT)
- RF Applications
- MEMS Design & 3D Modeling
- Automotive
- Life Sciences
- Sensors & IC
- Military, Aerospace, Space
- Power Management
- Imaging & Displays
- Consumer Electronics
- Industrial

How Tanner Tools Address IoT Designs

- Top-down design of MEMS, analog, and digital in a single tool flow for all the design on a single die or multiple dies
- Co-design first level packaging of MEMS die and ASIC die
- The MEMS design tool leader with layout features for MEMS including true-curve support, 3D model creation, all-angle & equation based DRC, and co-simulation of MEMS and IC
- Support and PDKs from specialty foundries like X-Fab, TowerJazz, ON-Semi, and MEMS fabs Restricted © 2018 Mentor Graphics Corporation

Breakthroughs with Tanner EDA

"With L-Edit, I can go from concept to finished GDSII in about two weeks. There's never been anything as easy to use as Tanner tools."

Pete Loeppert Vice President R&D Knowles Acoustics

Souvenir Olympic Torch by MEMSIC

- Electronics and MEMS on the same die
- Low cost, high volume, low size, low power

Accelerometer Chip

Images courtesy of Yongyao Cai, Director, Technology Partnership and Development, MEMSIC, Inc.

Olympic Torch in Action

Restricted © 2018 Mentor Graphics Corporation

Combining Techniques – TPMS Sensor

- Single die handles analog,
 ADC, power management,
 digital control, and RF
- Co-designed with MEMS pressure sensor, combined into a single IC package
- Only external components are passives, battery, and antenna

Source: Swindon Silicon Systems

MEMS DESIGN FLOW

Design Flow - Other MEMS Tools

- How Can I Get 2D Layout Masks From My 3D Model?
- How Can I Be Certain My Layout Masks Will Fabricate My 3D MEMS Structure?

2D Mask Layout

Restricted © 2018 Mentor Graphics Corporation

Design Flow - Tanner/SoftMEMS

Always Work From Layout Masks Which Are Used For Fabrication
No Translating The 3D Model To 2D Layout Masks = Less Risk

MEMS Design Flow – Bottom-Up Methodology

A Siemens Busines

MEMS Design Flow – Top-down Methodology

Mento

MEMS LAYOUT

L-Edit MEMS – Full Custom All-Angle Layout Editor

- The Only Tool Developed *Specifically* for MEMS and IC Design
- True Curve Support
- Technology Configurable
- Enhanced Boolean Operations
- Advanced Editing Support:
 - Object Snapping
 - Base Point
 - Alignment
- GDSII, CIF, EPS & DXF support
- Programmable Interface

Restricted © 2018 Mentor Graphics Corporation

L-Edit - All-Angle Generate Layers

Generate Layers	×
Command Sets	Bun
Chandred Derived Lewer	Accept
Calibre025, 5M drc	
	Cancel
	E dit
Layers to generate	
EXGATE_NP	
MGATE_L	
VINCE W	
HV_PGATE_W	
☑HVN_GOX	
□N_ACT_PW	
INGATE W	
Mark All	
Automatically mark intermediate layers	
Merge polygons after layer generation	

18 Your Initials, Presentation Title, Month Year

Curve Representations

- True Curved Polygon Representation
- Curved Object Types
- Graphical Editing Comparable With AutoCAD
- Textual Editing Of Curves

Object((S)					
n layer:	Construct1	Edit Object(s)				
Circle (1)		On layer: Construct1	Edit Object(s)			
Propertie	Coordinates (Microns)	Pie Wedge (1) Coordinates (Microns) Center X: 19.000 Sweep Angle (Counte Begin: 60.000 End: 130.000 Radius: Properties One by one	Qn layer: Construct1 Torus (1) Qn layer: Coordinates (Microns) Center X: 0 Sweep Angle (Counterclockwise Begin: 2000 End: 80.000 Radius 1: 5000 Radius 2: 1000 Carter Construct1 Construct1 Yertices (Microns) Polygon (1) Yertices (Microns) # X & Y Curve Hei 1 19884 1 1084 3 19.884 9 634 4 28.434 2 2584 -4.356 5 31.884 9 634 Add Vertex Delete Vertex Go To Show Qurve Height			
			Properties One by one Properties One by one OK Cancel			

Reconstruct Curves From All-angle Edges

L-Edit – Object Snapping and Basepoint

Object Snap

- Snap cursor to object features
 - vertex
 - midpoint
 - edge / centerline
 - intersection
 - center
 - pin (port on instance)
 - instance
- Base Points for Precise
 Positioning

Base Poin	t	×
<u>ବ</u> ୍ଦ୍ଧ	26.50 35.00	

Setup Design layout1 Technology Grid Object Snap Interactive DF Enable Object Snapping Object Snap modes Image: Setup Design Object Snap modes Image: Display Image: Display Design Object Snap mode Image: Display Design Object Snap mode	Selection Drawing Xref files RC Node Highlighting Vias Instance MBB snapping Instance MBB Abut MBBMBB of objects on the Icon layer Offset (Microns) X: 0.000 Y: 0.000 Y: 0.000 Markers Display markers Auto Pick Color Size: 12 pixels Size: 12 pixels
--	--

Complex Construction

L-Edit - All-Angle Generate Layers

A Siemens Business

23 Your Initials, Presentation Title, Month Year

DXF Import/Export

- DXF Import With Boundary Reconstruction
 - Some CAD Tools Fracture
 Polygons Into Edges
 During Export
 - Connects Adjoining Edges
 Within A Tolerance
 Together Into A Filled
 Polygon
 - Can reconstruct curves from a series of all-angle edges

L-Edit - DRC for MEMS

- All Angle Design Rule Checking
- Check for minimum spacing between any type of polygonal objects on various layers.
- Find design flaws immediately!
- Complex DRC rules can be created and customized to meet proprietary MEMS fabrication processes.
- Development and maintenance of technology files easily manageable.

Tanner Calibre One

- Run Calibre nmDRC[™]
 And Calibre nmLVS[™]
 Directly From L-Edit
- Use Calibre RVE[™] To
 View Calibre DRC, LVS,
 And PEX Results In
 L-Edit And S-Edit
- Access to equation based DRC (eqDRC) capability
- Foundry qualified signoff

DRC

27

- Customary IC DRC rules produce large amounts of false errors in MEMS/Photonics designs
- False positive errors can mask the actual design error
- Equation based DRC (eqDRC) solves problem
- MEMS context sensitive rules
- Support device specific rules, e.g., fillets, mechanical rules
- Capture expert knowledge

False positives from standard DRC run

Real Error – need to fix!

MEMS LAYOUT TOOLS

Y28r Initials, Presentation Title, Month Yea

SoftMEMS Solid Modeler Pro

- MEMS toolbar
 - Arbitrary curves
 - Microfluidics and other MEMS technologies
- Easy MEMS
 - MEMS specific tasks such as adding release holes for Plates
- Library Palette
 - Basic layout generators for many MEMS devices creates layout you
 can use as a starting point and then modify for your specific design

Libraries

- Supports SPICE, Verilog-A, VHDL-AMS, Matlab
- 3-View System of each component:
 - Schematic
 - Simulation models
 - Parameterized Layout
- Library creation by users with examples from us
- Important to encapsulate design rules in the library

Design Rules and Guidelines

- DRC checks manufacturing rules, spacing, surround, size, etc.
- MEMS context sensitive rules
- Support device specific rules, e.g., fillets, pad rules
- Capture expert knowledge

MEMS 3D TOOLS

Solid Modeling with SoftMEMS

- Create a 3D Solid model from masks and fabrication process description
- Gives 3D graphical representation of MEMS fabrication process
- Embedded in L-Edit
- Multiple views and cross-section
- Snapshot of model can be output
- Output may be sent to FEM/BEM programs for 3D Analysis

Fabrication Process Editor

- Describes fabrication processing steps and sequence
- Commands:
 - Wafer manipulation
 - Deposit: Conformal, Snowfall, Fill
 - Etch: Isotropic, Aniostropic, Dry, etc
 - Implant
 - Grow
 - Mechanical Polish
 - Electroplating
 - Wafer Stacking

Process Definition Process Name: MUMPS Process steps	Version: 4.0 Unit: microns
# Label 1 Wafer 2 Deposit Nitride 3 Deposit Poly0 4 Etch Poly0 5 Etch Hole0 6 Deposit Ox1 7 Etch Dimple 8 Etch Anchor1 9 Deposit Poly1 10 Etch Poly1 11 Etch Hole1 12 Deposit 0x2 13 Etch Poly1-Poly2 Via 14 Etch Poly2 15 Deposit Poly2 16 Etch Poly2 17 Etch Hole2 ✓ Enable Øisplay 3D model for this step Add Step Delete Step Comment: Wafer	Command: Wafer Wafer ID: w1 Mask Name: substrate Thickness: 5 Target: substrate
In	nport Export OK Cancel

Mask/Process Co-design

- Designers and process engineers collaborate
- Process compatibility checked
- Find fabrication issues
- Communicate between fab & design house
- Predict shape, predict performance

Virtual Prototyping

- New designers can learn
- Example: Improperly anchored Pad

Step-

#

2

Label

Wafer Deposit Nitride

Deposit Poly0

Source: Joel Kubby, UCSC

Material Properties

- Material properties depend on deposition conditions unique to fab process
- Pre-stress in materials effect performance
- Important to simulate using the correct material properties
- CAD can help to characterize materials

RTA BOL

Package Modeling

- MEMS package determines device performance
- Co-Design MEMS + Package
- Energy Harvester
 - Visual The Device
 - Communicate With The Fab
 - Create 3D Model of MEMS And Package For FEM Analysis
 - Virtual Prototyping
 - Coupled Fluid-Mechanical-**Piezo-Electric Simulation**

MEMS Packaging – Mechanical Robustness

softMEMS Source: MicroGen

SYSTEM LEVEL SIMULATION

MEMS & IC Co-Simulation

- Schematics can contain both IC & MEMS Devices
- IC modeled using standard TSMC IC SPICE models
- MEMS modeled using behavioral descriptions with mechanical, electrostatic, magnetic, fluidic disciplines
- MEMS models

- No universal primitives as in digital design
- Primitives may exist in application areas
 - i.e. beam, gaps, plate

Approach to System Modeling

- Models can be used in T-Spice
 - No universal primitives as in digital design
 - Primitives may exist in application areas – i.e. beam, gaps, plate
- Create libraries of models when possible
- Supports Parametric, Transient, AC, and Noise Analysis
- Describe models with
 - SPICE
 - Verilog-A

System Modeling- Circuits and Sensors

Men

A Siemens Busin

MODEL BUILDER

System Model Builder

Creates a model ready for simulation from analytical equations
 Outputs model in SPICE, C, Verilog-A, or VHDL-AMS

External	Model	General	or				
le <u>H</u> elp							
D 🔁 📕	N) 💐	1					
Pins/Para	meters	Equation	n Editor				
] = [
atan	asin	acos	e^x	<u>10^×</u>		December Name	
tan	sin	COS	In	log	anchor	Fingers	
	fabs	sqrt		integ	vanchor	FingerGap	disp
INV	abs	хгу	t	d/dt	actuate	Finger Thickness Finger Overlap	vact
7	8	9	С	AC			
4	5	6	×	1			
1	2	3	+				
0		exp	()			
c0 = Fin disp = V vact = V Current(Current(Current(gerThick (ottage(a (ottage(v (actuate) (anchor) (vactuata (vanchor	ness * 8 ctuate) - /actuate)) = -0.5 * = -Curre e) = Finge r) = -Curr	854e-12 Voltage - Voltag c0 * Fing nt(actua ers * ((Fin ent(vact	/Finger (anchor) e(vanch lers *por te) ngerOve uate)	'Gap) ior) w(vact,2) erlap - disp)*c0*diff(vact) - c	:0*diff(disp)*vact)	Add Edit Remove
Model	Name:	Com	bDrive				
						Genera	ite E <u>x</u> it

46 Your Initials, Presentation Title, Month Year

Compact Model Creation

- MEMS must be analyzed in 3D
- Translate Results From A Coupled-Finite Element/Boundary Element Model Simulation To Behavioral Model

Compact Model Builder

- Reduced Order Model Generation From FEM Results
- Handles Coupled Electrostatic-Structural Reduction

Top plate

Plate

Computed capacitance

- Handles Multiple Degrees Of Freedoms
- Linear Combination of Models
- Pull-In Voltage Computation

Plane of symetry (xz)

Compact Model Builder-Assembly

Compact Model Builder-Parametric models

Example-Coupled Magnetic-Mechanical MEMS

- Magnetic Actuator
- Couple magnetics to mechanics
- Enable system simulation

System design trade-offs

Source: Advanced Micro sensors

DESIGN KITS FOR MEMS

Document Fabrication Process

Creates HTML document from Process Description showing materials used and a cross-section of each fabrication step
Process Documentation for: PolyMUMPs :

Etch Poly0 SoftMEMS MEMS Pro Library 3D Tools 2D Tools Easy M Technology Manager Date of generation: 03/23/17 16:53:32 3D Process Steps Edit Material Database General Layers Materials Preset Wafers Deposit Metal Detect True Curves Show Intermediate Units: micron Edit Preset Wafers Foundry: SoftMEMS Sten Edit Process Definition **Author: SoftMEMS** # Label Step Name: Wafe Document Process Wafer Command: Wafer **Organization: SoftMEMS** Deposit Poly0 Mechanical Polish Etch Poly0 Export Process to EXCEL Deposit Metal Wafer ID: W1 **Revision No: 1.00** Mechanical Polis Deposit Poly1 Use preset Wafer: Set 3D Area **Units System: SI** Etch Poly1 Sacrificial Etch Mask Name: substrate Clear 3D Area Deposit Metal Units for steps: micron Deposit Poly1 Target View 3D Model Fixed Thicknes View Cross Section **Materials List** Defeature 3D Model Delete Model Etch Poly1 Substrate Export 3D Model Poly0 -Enable Poly0 + Add Step Sacrificial Etch Metal Comment: This is a wafe Poly1 Deposit Metal

Wafer Step

Deposit Poly0

Design Kits

- Standardize information exchange, even if not for standard process
- Modeling formats, material properties, design rules
- Tech Transfer success the more that is documented the higher success rate

DESIGN FOR MANUFACTURABILITY FOR MEMS

Statistical Analysis

- Statistical analysis based on process/mask variations
 - Incorporates statistical data from foundries
 - Monte Carlo, Yield analyses

Enables users to:

- Develop process corners for simulation
- Design centering
- Calculate sensitivity

Restricted © 2018 Mentor Graphics Corporation

Parasitic Extraction and LVS

- MEMS devices must be simulated with their environment
- Problems occur if details left out
- Parasitics in multiple energy domains: thermal, electronic etc.
- Re-simulate after extraction of parasitics
- Create "multi-physics" netlist with parasitics included

Layout.s	spc
* Circui	t Extracted by Tanner Research's L-Edit V8.20 / Extract V8.20 ;
* TDB Fi	le: C:\Demo\Extract.tdb
* Cell:	CellO Version 1.8
* Extrac	t Definition File: mumps.ext
* Extrac	t Date and Time: 04/05/2002 - 15:53
t NODE N	TANE ALTACEC
- NODE N	A - LEFT ACCOLON
-	1 - LEFT (30,310) 2 - DICHT (256 200)
*	2 - RIGHT (250,505) 2 - ROTTON (156,267)
*	A = TOP (157, 267)
	T = 10F (107,000)
XSpringI	nst_1 5_m BOTTOM_m 5_e BOTTOM_e fspring L=0.0002 W=2E-006 IG
XCombins	st_1 6_m LEFT_m 6_e LEFT_e comb W=4E-006 L=4E-005 GAP=3E-006
XSpringI	inst 5_m TOP_m 5_e TOP_e fspring L=0.0002 W=2E-006 IG=1E-005
XCombIn≘	st 7_m RIGHT_m 7_e RIGHT_e comb W=4E-006 L=4E-005 GAP=3E-006
XPlateIn	ast LEFT_m RIGHT_m BOTTOM_m TOP_m LEFT_e RIGHT_e BOTTOM_e
* Total	Nodes: 7
* Total	Elements: 9
* Total	Number of Shorted Elements not written to the SPICE file: 0
* Extrac	t Elapsed Time: O seconds
. END	
4	
•	P

Design for Manufacturing

- Process and Mask Design changes to Improve Yield
- Sensitivity-What parameters need to be controlled?
- Design Centering- Variation Tolerant designs
- Design Optimization used to generate layout that is most tolerant

Tunable Filter for WDM Applications

Tunable filtering:

- The distance between two mirrors determines the range of frequencies that are filtered out
- The distance between two mirrors is controlled by electrostatic actuation

Tunable Filter 3D Design

- Top electrode: metal ring suspended on three support arms
- Bottom electrode: polysilicon ring
- Top/bottom mirrors: layers of polysilicon, oxide, and nitride

IC TOOL FLOW

Design Flow

Mento

Contact Information

ntaci

Phone (800) 547-3000

Sales

— TannerEDA_Sales@mentor.com

Support

— https://support.mentor.com

Website

— www.mentor.com/tanner

Corporate Website

www.mentor.com

63

A Siemens Business

www.mentor.com