
Keep Net Working - On a Dependable and Fast Networking Stack

Tomas Hruby Dirk Vogt Herbert Bos Andrew S. Tanenbaum
The Network Institute, VU University Amsterdam

{thruby,dvogt,herbertb,ast}@few.vu.nl

Abstract—For many years, multiserver1 operating systems
have been demonstrating, by their design, high dependability
and reliability. However, the design has inherent performance
implications which were not easy to overcome. Until now
the context switching and kernel involvement in the message
passing was the performance bottleneck for such systems to
get broader acceptance beyond niche domains. In contrast to
other areas of software development where fitting the software
to the parallelism is difficult, the new multicore hardware is a
great match for the multiserver systems. We can run individual
servers on different cores. This opens more room for further
decomposition of the existing servers and thus improving
dependability and live-updatability. We discuss in general the
implications for the multiserver systems design and cover in
detail the implementation and evaluation of a more dependable
networking stack. We split the single stack into multiple servers
which run on dedicated cores and communicate without kernel
involvement. We think that the performance problems that
have dogged multiserver operating systems since their inception
should be reconsidered: it is possible to make multiserver
systems fast on multicores.

Keywords-Operating systems; Reliability; Computer network
reliability; System performance

I. INTRODUCTION

Reliability has historically been at odds with speed—as
witnessed by several decades of criticism against multiserver
operating systems (“great for reliability, but too slow for
practical use”). In this paper, we show that new multicore
hardware and a new OS design may change this.

Reliability is crucial in many application domains, such as
hospitals, emergency switchboards, mission critical software,
traffic signalling, and industrial control systems. Where
crashes in user PCs or consumer electronics typically mean
inconvenience (losing work, say, or the inability to play
your favorite game), the consequences of industrial control
systems falling over go beyond the loss of documents, or
the high-score on Angry Birds. Reliability in such systems
is taken very seriously.

By radically redesigning the OS, we obtain both the fault
isolation properties of multiserver systems, and competitive
performance. We present new principles of designing multi-
server systems and demonstrate their practicality in a new
network stack to show that our design is able to handle very
high request rates.

1Operating systems implemented as a collection of userspace processes
(servers) running on top of a microkernel

The network stack is particularly demanding, because it
is highly complex, performance critical, and host to several
catastrophic bugs, both in the past [14] and the present [4].
Mission-critical systems like industrial control systems often
cannot be taken offline to patch a bug in the software stack—
such as the recent vulnerability in the Windows TCP/IP
stack that generated a storm of publicity [4]. When uptime is
critical, we need to be able to patch even core components
like the network stack on the fly. Likewise, when part of the
stack crashes, we should strive toward recovery with minimal
disturbance—ideally without losing connections or data.

In this paper, we focus on the network stack because it
is complex and performance critical, but we believe that the
changes we propose apply to other parts of the operating
system as well. Also, while we redesign the OS internals,
we do not change the look and feel of traditional operating
systems at all. Instead, we adhere to the tried and tested
POSIX interface.

Contributions: In this paper, we present a reliable and
well-performing multiserver system NewtOS2 where the
entire networking stack is split up and spread across cores to
yield high performance, fault isolation and live updatability
of most of the stack’s layers. We have modified Minix 3 [1]
and our work has been inspired by a variety of prior art,
such as Barrelfish [5], fos [43], FlexSC [39], FBufs [12],
IsoStack [37], Sawmill Linux [16] and QNX [33]. However,
our design takes up an extreme point in the design space,
and splits up even subsystems (like the network stack) that
run as monolithic blobs on all these systems, into multiple
components.

The OS components in our design run on dedicated cores
and communicate through asynchronous high-speed channels,
typically without kernel involvement. By dedicating cores
and removing the kernel from the fast path, we ensure
caches are warm and eliminate context switching overhead.
Fast, asynchronous communication decouples processes on
separate cores, allowing them to run at maximum speed.

Moreover, we achieve this performance in spite of an
extreme multiserver architecture. By chopping up the net-
working stack into many more components than in any other
system we know, for better fault isolation, we introduce even
more interprocess communication (IPC) between the OS

2A newt is a salamander that, when injured, has the unique ability to
re-generate its limbs, eyes, spinal cord, intestines, jaws and even its heart.

components. As IPC overhead is already the single most im-
portant performance bottleneck on multiserver systems [26],
adding even more components would lead to unacceptable
slowdowns in existing OS designs. We show that a careful
redesign of the communication infrastructure allows us to
run at high speeds despite the increase in communication.

Breaking up functionality in isolated components directly
improves reliability. Making components smaller allows us to
better contain the effects of failures. Moreover, components
can often be restarted transparently, so that a bug in IP,
say, will not affect TCP. Our system recovers seamlessly
from crashes and hangs in drivers, network filters, and most
protocol handlers. Since the restarted component can easily
be a newer or patched version of the original code, the same
mechanism allows us to update on the fly many core OS
components (like IP, UDP, drivers, packet filters, etc.).

The OS architecture and the current trend towards many-
core hardware together allow, for the first time, an architecture
that has the reliability advantages of multiserver systems and
a performance approximating that of monolithic systems [7]
even though there are many optimizations left to exploit. The
price we pay is mainly measured in the loss of cores now
dedicated to the OS. However, in this paper we assume that
cores are no longer a scarce resource as high-end machines
already have dozens of them today and will likely have even
more in the future.

Outline: In Section II, we discuss the relation between
reliability, performance, multiservers and multicores. Next,
in Section III, we explain how a redesign of the OS greatly
improves performance problems without giving up reliability.
We present details of our framework in Section IV and
demonstrate the practicality of the design on the networking
stack in Section V. The design is evaluated in Section VI
We compare our design to related work in Section VII and
conclude in Section VIII.

II. RELIABILITY, PERFORMANCE AND MULTICORE

Since it is unlikely that software will ever be free of bugs
completely [19], it is crucial that reliable systems be able
to cope with them. Often it is enough to restart and the
bug disappears. For reliability, new multicore processors
are double-edged swords. On the one hand, increasing
concurrency leads to new and complex bugs. On the other
hand, we show in this paper that the abundance of cores and a
carefully designed communication infrastructure allows us to
run OS components on dedicated cores—providing isolation
and fault-tolerance without the performance problems that
plagued similar systems in the past.

Current hardware trends suggest that the number of cores
will continue to rise [2], [3], [23], [29], [35], [36] and that the
cores will specialize [31], [39], [41], for example for running
system services, single threaded or multithreaded applications.
As a result, our view on processor cores is changing, much
like our view on memory has changed. There used to be a

time when a programmer would know and cherish every byte
in memory. Nowadays, main memory is usually no longer
scarce and programmers are not shy in wasting it if doing so
improves overall efficiency—there is plenty of memory. In the
same way, there will soon be plenty of cores. Some vendors
already sacrifice cores for better energy efficiency [2], [3].
The key assumption in this paper is that it is acceptable to
utilize extra cores to improve dependability and performance.

Unfortunately, increasing concurrency makes software
more complex and, as a result, more brittle [24]. The OS is no
exception [28], [32], [34]. Concurrency bugs lead to hangs,
assertion failures, or crashes and they are also particularly
painful, as they take considerably longer to find and fix than
other types of bugs [24].

Thus, we observe (a) an increase in concurrency (forced by
multicore hardware trends), (b) an increase in concurrency
bugs (often due to complexity and rare race conditions),
and (c) systems that crash or hang when any of the OS
components crashes or hangs. While it is hard to prevent (a)
and (b), we can build a more reliable OS that is capable of
recovering from crashing or hanging components, whether
they be caused by concurrency bugs or not.

Our design improves OS reliability both by structural
measures that prevent certain problems from occurring in
the first place, and by fault recovery procedures that allow
the OS to detect and recover from problems. Structural
measures include fault isolation by running OS components
as unprivileged user processes, avoiding multithreading in
components, and asynchronous IPC. For fault recovery, we
provide a monitor that checks whether OS components are
still responsive and restarts them if they are not.

The research question addressed in this paper is whether we
can provide such additional reliability without jeopardizing
performance. In existing systems, the answer would be: “No”.
After all, the performance of multiserver degrades quickly
with the increase in IPC incurred by splitting up the OS in
small components.

This is true even for microkernels like L4 that have
optimized IPC greatly [26], and is the main reason for the
poor performance of multiserver systems like MINIX 3 [1].
However fast we make the mechanism, kernel-based IPC
always hurts performance: every trap to the kernel pollutes the
caches and TLB with kernel stuff, flushes register windows,
and messes up the branch predictors.

In the next section, we discuss how we can reduce this
cost in a new reliable OS design for manycore processors.

III. RETHINKING THE INTERNALS

As a first step, and prior to describing our design, we
identify the tenets that underlie the system. Specifically,
throughout this work we adhere to the following principles:

1) Avoid kernel involvement on the fast path. Every
trap in the kernel pollutes caches and branch predictors
and should be avoided when performance counts.

MM EXT2 IP/ICMP APP

PM TCP UDP APP

VFS PF NetDrv APP

… APP

APP

APP

Figure 1. Conceptual overview of NewtOS. Each box represents a core.
Application (APP) cores are timeshared.

2) Do not share cores for OS components. There is no
shortage of cores and it is fine to dedicate cores to
OS components, to keep the caches, TLBs and branch
prediction warm, and avoid context switching overhead.

3) Split OS functions in isolated components. Multiple,
isolated components are good for fault tolerance: when
a component crashes, we can often restart it. Moreover,
it allows us to update the OS on the fly.

4) Minimize synchronous intra-OS communication.
Synchronous IPC introduces unnecessary waits. Asyn-
chronous communication avoids such bottlenecks. In
addition, asynchrony improves reliability, by preventing
clients from blocking on faulty servers [21].

We now motivate the most interesting principles in detail.

A. IPC: What’s the kernel got to do with it?
All functions in a multiserver system run in isolated servers.

A crash of one server does not take down the entire system,
but the isolation also means that there is no global view of
the system and servers rely on IPC to obtain information
and services from other components. A multiserver system
under heavy load easily generates hundreds of thousands of
messages per second. Considering such IPC rates, both the
direct and indirect cost of trapping to the kernel and context
switching are high.

To meet the required message-rate, we remove the kernel
from high-frequency IPC entirely and replace it with trusted
communication channels which allow fast asynchronous
communication. Apart from initially setting up the channels,
the kernel is not involved in IPC at all (Section IV).

As shown in Figure 1, every OS component in NewtOS
can run on a separate core for the best performance while the
remaining cores are for user applications. The OS components
themselves are single-threaded, asynchronous user processes
that communicate without kernel involvement. This means
no time sharing, no context switching, and competing for
the processor resources. Caching efficiency improves both
because the memory footprint of each component is smaller
than of a monolithic kernel, and because we avoid many
expensive flushes. By dedicating cores to OS components, we
further reduce the role of the kernel because no scheduling
is required and dedicated cores handle interrupts. This leaves
only a thin kernel layer on each system core.

Removing the kernel from fast-path IPC also removes the
additional inefficiency of cross-core IPC that is, paradoxically,

only noticeable because there is no longer a context switch.
Single core systems partially hide IPC overhead behind the
context switch. If a server needs another server to process a
request, that process must be run first. Therefore, the trap to
the kernel to send a message is the same as needed for the
context switch, so some of the overhead is “hidden”.

On multicores, context switching no longer hides the cost
of IPC and the latency of the IPC increases because of the
intercore communication. The kernel copies the message and
if one of the communicating processes is blocked receiving, it
must wake it up. Doing so typically requires an interprocessor
interrupt which adds to the total cost and latency of the IPC.

If enough cores are available, we can exclude the kernel
from the IPC. Our measurements show that doing so reduces
the overhead of cross-core communication dramatically.

B. Asynchrony for Performance and Reliability

A monolithic system handles user space requests on
the same core as where the application runs. Many cores
may execute the same parts of the kernel and access the
same data simultaneously, which leads to lock contention
to prevent races and data corruption. We do not require
CPU concurrency per server and event-driven servers are
fast and arguably less complex than threads (synchronization,
preemption, switching, etc.) and help avoid concurrency bugs.
For us, single threaded servers are a good design choice.

However, synchronous communication between the servers
(blocking until receiving a reply), as used in most multiserver
systems may well make the entire system single threaded
in practice. Thus, dedicating a separate core to each server
reduces the communication cost but does not scale further.

Ideally, we would like the cores to process tasks in parallel
if there is work to do. To do so, the servers must work as
independently of each other as possible to increase intra-OS
parallelism. Only asynchronous servers can process other
pending requests while they wait for responses from others.

An argument against asynchrony is that it is difficult to
determine whether a process is just slow or whether it is
dead. However, a multiserver system, unlike a distributed
system, runs on a single machine and can take advantage of
fast and reliable communication provided by the interconnect.
Together with the microkernel, it makes detection of such
anomalies much simpler.

Most microkernels provide synchronous IPC because it is
easy to implement and requires no buffering of messages. In
practice, support for asynchronous communication is either
inefficient (e.g., Minix 3) or minimal. Specifically, the large
number of user-to-kernel mode switches results in significant
slowdowns here also. In contrast, the communication channels
in our design increase asynchrony by making nonblocking
calls extremely cheap.

While asynchrony is thus needed for scalability on multi-
cores, it is equally important for dependability. The system
should never get blocked forever due to an unresponsive or

dead server or driver. In our design, a misbehaving server
cannot block the system even if it hogs its core. Better
still, our asynchronous communication lets servers avoid
IPC deadlocks [38]. Since servers decide on their own from
which channel and when to receive messages (in contrast
to the usual receive from anyone IPC call), they can easily
handle a misbehaving server that would otherwise cause a
denial-of-service situation.

IV. FAST-PATH CHANNELS

The main change in our design is that instead of the tradi-
tional IPC mechanisms provided by the microkernel, we rely
on asynchronous channels for all fast-path communication.
This section presents details of our channel implementation
using shared memory on cache-coherent hardware. Shared
memory is currently the most efficient communication option
for general-purpose architectures. However, there is nothing
fundamental about this choice and it is easy to change the
underlying mechanism. For instance, it is not unlikely that
future processor designs will not be fully cache coherent,
perhaps providing support for the sort of message passing
instead as provided by the Intel SCC [23]. Moreover, besides
convenient abstractions, our channels are generic building
blocks that can be used throughout the OS. By wrapping the
abstraction in a library, any component can set up channels
to any other component.

Our channel architecture has three basic parts: (1) queues
to pass requests from one component to another, (2) pools to
share large data, and (3) a database containing the requests
a component has injected in the channels and which we are
waiting for to complete or fail. We also provide an interface
to manage the channels. The architecture draws on FBufs [12]
and Streamline [10], but is different from either in how it
manages requests.

Queues: Each queue represents a unidirectional com-
munication channel between one sender and one consumer.
We must use two queues to set up communication in both
directions. Each filled slot on a queue is a marshalled request
(not unlike a remote procedure call) which tells the receiver
what to do next. Although we are not bound by the universal
size of messages the kernel allows and we can use different
slot sizes on different queues, all slots on one queue have
the same size. Thus we cannot pass arbitrarily sized data
through these channels.

We use a cache friendly queue implementation [17], [10],
that is, the head and tail pointers are in different cache lines to
prevent them from bouncing between cores. Since the queues
are single-producer, single-consumer they do not require any
locking and adding and removing requests is very fast. For
instance, on the test machine used in the evaluation section,
the cost of trapping to the kernel on a single core using the
SYSCALL instruction in a void Linux system call takes about
150 cycles if the caches are hot. The same call with cold
caches takes almost 3000 cycles. In contrast, on our channels

it requires as little as 30 cycles to asynchronously enqueue a
message in a queue between 2 processes on different cores
while the receiver keeps consuming the messages. The cost
includes the stall cycles to fetch the updated pointer to the
local cache.

Pools: We use shared memory pools to pass large
chunks of data and we use rich pointers to describe in what
pool and where in the pool to find them. Unlike the queues
which are shared exclusively by the two communicating
processes, many processes can access the same pool. This
way we can pass large chunks from the original producer to
the consumers further down the line without the need to copy.
Being able to pass long chains of pointers and zero-copy are
mechanism crucial for good performance. All our pools are
exported read only to protect the original data.

Database of requests: As our servers are single-
threaded and asynchronous, we must remember what requests
we submitted on which channels and what data were
associated with each request. After receiving a reply, we
must match it to the corresponding request. For this purpose,
the architecture provides a lightweight request database that
generates a unique request identifier for every request.

Our channel architecture also provides an interface to
publish the existence of the channels, to export them to a
process, and to attach to them. We discuss this in more detail
in Section IV-C.

A. Trustworthy Shared Memory Channels

Shared memory has been used for efficient IPC for a long
time [12] and in many scenarios [11], [6], [10], [27]. The
question we address here is whether we can use it as a trusted
communication channel without harming dependability.

Kernel-level IPC guarantees that a destination process is
reliably informed about the source process. Our channels
offer the same guarantees. As servers must use the trusted
(and slower) kernel IPC to set up the channels (requesting
permission to export or attach to them), the kernel ensures that
processes cannot change the mappings to access and corrupt
other processes’ address spaces. Since a process cannot make
part of its address space available to another process all by
itself, setting up the shared memory channel involves a third
process, known as the virtual memory manager. Each server
implicitly trusts the virtual memory manager. Once a shared
memory region between two processes is set up, the source
is known.

Likewise, we argue that communication through shared
memory is as reliable as communication through the kernel.
In case the source is malicious or buggy, it can harm the
receiving process by changing data in the shared location
when the receiver was already cleared to use them. The
receiving process must check whether a request make sense
(e.g., contains a known operation code) and ignore invalid
ones. If the sender tampers with the payload data, the effect is
the same as if it produced wrong data to begin with. Although

incorrect data may be sent to the network or written to disk,
it does not compromise the network or disk driver.

In addition, we use write protection to prevent the con-
sumer from changing the original data. While the consumer
can, at any time, pass corrupted data to the next stage of a
stack, if a request fails or we need to repeat the request (e.g.,
after a component crash, as discussed in Section V), we can
always use the original data.

We must never block when we want to add a request
and the queue is full, as this may lead to deadlocks. Each
server may take its own unique action in such a situation.
For instance, dropping a packet within the network stack
is acceptable, while the storage stack should remember the
request until the congestion is resolved.

B. Monitoring Queues

If a core is busy, there is no problem to check the queues
for new requests. However, once a core is not fully loaded,
constant checking keeps consuming energy, even though there
is no work to do. Therefore, we put idle cores to sleep. But
the process must wake up immediately when there is more
work to do. The sender can use kernel IPC to notify the
receiver that a new request is available, but that is precisely
what we want to avoid. To break the circle, we use the
MONITOR and MWAIT pair of instructions, recently added to
the Intel x86 instruction set, to monitor writes to a memory
location while the core is idle. In addition to the shared
memory channels, each server exports the location it will
monitor at idle time, so the producers know where to write
to.

Unfortunately, these instructions are, available only in
privileged mode—so we must use the kernel to sleep.
Although we only need the kernel’s assistance when a server
has no work to do and we want to halt the core, the overhead
of restoring the user context when a new request arrives
adds to the latency of the MWAIT. This fact encourages
more aggressive polling to avoid halting the core if the gap
between requests is short. Part of the latency is absorbed by
the queues we use to implement the communication channels.
If the MWAIT were optionally allowed in unprivileged mode,
we would get perfect energy consumption aware polling with
extremely low wake-up latency. In our opinion, the kernel
should be able to allow this instruction in an unprivileged
mode (as it can disable it in the privileged one) when it
knows that the core is dedicated to a process and thus this
process cannot prevent other processes from running when it
halts its core. Moreover, a core cannot be disabled entirely,
as an interrupt, for example from another core, can always
wake it up. Although such instructions are fairly unique to
x86, they prove so useful that we expect other architectures
to adopt variants of them in the future.

C. Channel Management

As there is no global manager in our system, the servers
must set up the channels themselves. After all, we do not
want our recovery mechanisms to depend on another server
which itself may crash. When a server starts, it announces its
presence by a publish-subscribe mechanism. Another server
subscribed to the published event can then export its channels
to the newly started one. Exporting a channel provides the
recipient with credentials to attach to it. In our case, it can
use the credentials to request the memory manager to map
it into its address space. A server can also detach from a
channel. This is only used when the other side of the channel
disappears. We never take a channel away from an active
server since it would crash after accessing the unmapped
memory. Pools are basically channels without the additional
queue structuring and the limit of how many processes can
attach to it, therefore we use the same management for both.

Because we use the pools to pass large chunks of data
without copying, not only the processes that communicate
immediately with each other must be able to attach pools.
Each channel is identified by its creator and a unique id. The
creator publishes the id as a key-value pair with a meaningful
string to which a server can subscribe. After obtaining the
identification pair, the server can request an export of the
pool from its creator, which the creator can grant or deny.

D. Channels and Restarting Servers

When a server crashes and restarts it has to reattach
channels which were previously exported to it. Since the
channels exported by a crashed server are no longer valid,
their users need to detach from them and request new exports.
The identification of the channels does not change.

We cannot hide the fact that a server crashed from the ones
it talked to since there may have been many requests pending
within the system. Reestablishing the channels to a server
which recovered from a crash is not enough. Servers that
kept running cannot be sure about the status of the requests
they issued and must take additional actions. We use the
request database to store each request and what to do with
it in such a situation. We call this an abort action (although
a server can also decide to reissue the request). When a
server detects a crash of its neighbor, it tells the database to
abort all requests to this server. While the database removes
the requests, it executes the associated abort actions. Abort
actions are highly application specific. For instance, servers in
a storage stack are likely to clean up and propagate the abort
further until an error is returned to the user-space processes.
On the other hand, servers in a networking stack may decide
to retransmit a packet or drop it, which we discuss in the
following Section V.

The channels allow a component to be transparently
replaced by a newer version on the fly as long as the interface
to the rest of the system stays unchanged. Since a new

Process Process Process

PM

PFMM

NetDrv

Microkernel

Network Stack

SATADrv

SYSCALL

VFS

Ext2

TCP

IP / ICMP

NetDrv

UDP

Figure 2. Decomposition and isolation in multiserver systems

incarnation of a server in our system inherits the old version’s
address space, the channels remain established.

V. DEPENDABLE NETWORKING STACK

The network stack is a particularly critical part of current
OSs, where often extreme performance is as important as high
reliability since downtime may have a high cost. In addition,
the network stack is very complex and frequently contains
critical bugs, as witnessed recently by the vulnerability in
Microsoft systems [4]. Thus, we selected the networking
stack as the most interesting subsystem in the OS to evaluate
our design.

In contrast to monolithic OSs that are very good in
performance but do not address reliability at all, we opted for
an extreme design. In case of a fatal error in the stack, the
rest of the system keeps working. As we shall see, the system
can often fix the problem automatically and seamlessly. In
situations when it cannot, the user can take an action like
saving data to disk and reboot which is still more than a
user can do when the whole system halts.

Our stack goes even well beyond what is currently found
in other multi-server systems. For instance, Herder et al. [22]
showed in the original Minix 3 how to repair faulty network
userspace drivers at runtime by restarting them. However, net-
work drivers are near-stateless components and the network
protocols know how to recover from packet loss. Any fault
in IP, say, would crash the entire stack. However, because
the network stack itself is stateful, it was possible to restart
it, but not to recover the state. We decompose the network
stack in even more smaller (and simpler) separate processes,
which increases isolation, but also the amount of IPC.

Figure 2 shows how we split up the stack into multiple
components. The dashed box represents what is usually a
single server in a multiserver system and the boxes inside
are the servers in NewtOS. We draw a line between the IP
layer and the transport protocols. Our IP also contains ICMP
and ARP. For security reasons, the networking stack usually
contains a packet filter which we can also isolate into a
standalone process. Again, such an extreme decomposition
is practical only if we do not significantly compromise
performance.

Each of the components has at least some state and the size

Component Ability to restart
Drivers No state, simple restart

IP Small static state, easy to restore

UDP Small state per socket, low frequency of change, easy
to store safely

Packet filter Static configuration, easy to restore, information about
existing connections is recoverable

TCP Large, frequently changing state for each connection,
difficult to recover. Easy to recover listening sockets

Table I
COMPLEXITY OF RECOVERING A COMPONENT

of this state and the frequency at which it changes determines
how easily we can recover from a failure (Table I).

After drivers, the simplest component to restart is IP. It has
very limited (static) state, basically the routing information,
which we can save in any kind of permanent storage and
restore after a crash. ARP and ICMP are stateless. To recover
UDP, however, we need to know the configuration of the
sockets, a 4-tuple of source and destination address and ports.
Fortunately, this state does not change very often. The packet
filter has two kinds of state. The more static portion is its
configuration by the user which is as simple to recover as
IP state. However, there is also dynamic state. For instance,
when a firewall blocks incoming traffic it must not stop
data on established outgoing TCP connections after a restart.
In NewtOS, the filter can recover this dynamic state, for
instance, by querying the TCP and UDP servers.

The biggest challenge is recovering TCP. Besides the 4-
tuple part of the state, it has a frequently changing part
for congestion avoidance and reliable transport. In fact,
all unacknowledged data are part of this state. Although
preserving such state for recovery is difficult, research in this
area shows how to design such system components [9].

In our design, we isolate the parts that are difficult to
recover (TCP) from from those we know how to restart, thus
improving overall dependability. The ability to recover most
of the network stack (even if we cannot recover all) is much
better than being able to recover none of it and vastly better
than a bug bringing the entire system to a grinding halt.
Note that not being able to recover the state of TCP means
only that existing connections break. Users can immediately
establish new ones.

NewtOS survives attacks similar to the famous ping of
death [14] without crashing the entire system. Also, it does
not become disconnected when the packet filter crashes,
neither does it become vulnerable to attacks after it restarts
since its configuration is preserved.

In addition, it is possible to update each component
independently without stopping the whole system as long as
the interface to the rest of the system remains unchanged. In
fact, shutting down a component gracefully makes restarting
much simpler as it can save its state and announce the restart
to other parts of the stack in advance. We are confident that
all servers of our network stack can converge to a consistent

state for an update since they satisfy the conditions presented
by Giuffrida et al. in [18].

In November 2011, Microsoft announced a critical vulner-
ability [4] in the UDP part of Windows networking stack.
The vulnerability allows an intruder to hijack the whole
system. In this respect, NewtOS is much more resilient. First,
hijacking an unprivileged component does not automatically
open doors to the rest of the system. Second, we are able
to replace the buggy UDP component without rebooting.
Given the fact that most Internet traffic is carried by the
TCP protocol, this traffic remains completely unaffected by
the replacement, which is especially important for server
installations. Incidentally, restartability of core components
proved very valuable during development of the system since
each reboot takes some time and it resets the development
environment.

A. The Internals

Nowadays, multigigabit networks present a challenge for
many software systems, therefore we want to demonstrate that
a multiserver system handles multigigabit rates. We replaced
the original Minix 3 stack by lwIP [13] because lwIP is easier
to split and modify. Although lwIP is primarily designed for
size rather than high performance (it targets mostly embedded
devices), it is a clean and portable implementation of the
TCP/IP protocol suite. We use the NetBSD packet filter (PF)
and we heavily modified the driver for the family of Intel
PRO/1000 gigabit network adapters.

To separate the IP part, we only had to change the
place where lwIP does the routing for outgoing packets.
Although virtually all gigabit network adapters provide
checksum offloading and TCP segmentation offloading (TSO
- NIC breaks one oversized TCP segment into small ones),
lwIP does not support it out of the box. We changed the
lwIP internals to support these optimizations. Although this
improves the performance of lwIP dramatically, the TCP
code requires a complete overhaul if we want it to be as
efficient as, say, the Linux network stack. Even so, we will
show that the performance of our design is competitive.

We did not port the network stack from Linux or any BSD
flavor because these depend on the monolithic environment
(memory management, etc.) and changing the stack to our
needs would likely severely compromise its performance.

Figure 3 shows the placement of PF within the stack.
Placing PF in a T junction makes it easier to support both
post and pre-routing rules, and to restart PF on a crash (see
Section V-D). In addition, in this design IP remains the only
component that communicates with drivers. Although this
setup puts more performance pressure on the IP server since
it must hand off each packet to another component three
times, IP is not the performance bottleneck of the stack, even
with the extra work.

SC

TCP

UDP

IP

PF
DRV

DRV

DRV

Proc

Proc

Proc

Synchronous
Asynchronous

Synchronous IPC
Asynchronous Channels

Figure 3. Asynchrony in the network stack

B. Combining Kernel IPC and Channels IPC

In our current implementation, the servers which interface
with user space and drivers need to combine channel IPC with
kernel IPC, as the kernel converts interrupts to messages to
the drivers. Similarly, the system calls from user applications
are also kernel IPC messages. Therefore we combine the
kernel call, which monitors memory writes, with a non-
blocking receive, that is, before we really block or after we
wake up, we check if there is a pending message. Whenever
there is one, we deliver it when we return from the kernel
call. Of course, we do not block at all if we find a message.
Because kernel IPC from other cores is accompanied by an
interprocessor interrupt (IPI) when the destination core is
idle, the IPI breaks the memory write monitoring even if no
write to the monitored location occurred. Note that unlike
in a monolithic design where system calls are kernel calls,
system calls in a multiserver system are implemented as
messages to servers.

To detach the synchronous POSIX system calls from the
asynchronous internals of NewtOS, the applications’ requests
are dispatched by a SYSCALL server. It is the only server
which frequently uses the kernel IPC. Phrased differently, it
pays the trapping toll for the rest of the system. Nonetheless,
the work done by the SYSCALL server is minimal, it merely
peeks into the messages and passes them to the servers
through the channels. The server has no internal state, and
restarting it in the case of a failure is trivial. We return errors
to the system calls and ignore old replies from the servers.
Figure 3 shows connections of the SYSCALL (SC) server to
the rest of the network stack. We use these connections only
for control messages. The actual data bypass the SYSCALL
as opening a socket also exports shared memory buffer to
the applications where the servers expect the data.

Our C library implements the synchronous calls as mes-
sages to the SYSCALL server, which blocks the user process
on receive until it gets a reply. Although this is a convenient
way to implement POSIX system calls, some applications
may prefer other arrangements. Extending the channels from
inside the system to the user space allows applications to
bypass the overhead of the synchronous calls by opening
channels directly to the servers.

C. Zero Copy

By using channels, shared pools and rich pointers, we can
pass data through the system without copying it from com-
ponent to components as is traditionally done in multiservers.
Any server that knows the pool described in the pointer, can
translate the rich pointer into a local one to access the data.

Because modern network interface cards (NICs) assemble
packets from chunks scattered in memory, monolithic systems
pass packets from one networking layer to another as a chain
of these chunks. Every protocol prepends its own header. The
payload is similarly scattered, especially when the packets are
large (for example, when the network allows jumbo frames
or TSO is enabled). In NewtOS, we pass such a chain as an
array allocated in a shared pool filled with rich pointers.

We emphasize that zero copy makes crash recovery much
more complicated. Unlike a monolithic system where we can
free the data as soon as we stop using them, in our case, the
component that allocated the data in a pool must free them.
This means that we must report back when it is safe to free
the data—almost doubling the amount of communication.
Worse, after a server recovers from a crash, the other servers
must find out what data are still in use and which should be
freed. To the best of our knowledge, ours is the first system
capable of restarting components in a multiserver system
stack with zero copy communication throughout.

To further improve reliability, we make the data in the
pools immutable (like in FBufs [12]). Phrased differently, we
export all pools read-only. Therefore each component which
needs to change data must create a new copy. For instance,
this is done by IP when it places a partial checksum in the
TCP and UDP headers of outgoing packets. As the headers
are tiny, we combine them with IP headers in one chunk.

D. Crash Recovery

Before we can recover from a crash, we must detect it.
In NewtOS, as in Minix 3, all system servers are children
of the same reincarnation server which receives a signal
when a server crashes, or resets it when it stops responding
to periodic heartbeats. More details on crash detection in
Minix 3 are presented in [20].

A transparent restart is not possible unless we can preserve
the server’s state and we therefore run a storage process
dedicated to storing interesting state of other components as
key and value pairs. We start each server either in fresh start
or in restart mode so the process knows whether it should
try to recover its state or not. It can request the original state
from the storage component. If the storage process itself
crashes and comes up, every other server has to store its
state again.

Recovering from a crash of other components is very
different. When a system component crashes and restarts, it
must tell everyone it wants to talk to that it is ready to set up
communication channels and to map whatever pools it needs.
At that point, its neighbors must take action to discover the

status of requests which have not completed yet. All the state
a component needs to restart should be in the storage server.

Drivers: State of the art self-healing OSs, like
Minix 3, previously demonstrated restarting of simple net-
work drivers [22], but it feeds only a single packet to a driver
at a time. In contrast, we asynchronously feed as much data
as possible to be able to saturate multigigabit links and use
more complex features of the hardware. In addition, our
drivers do not copy the packets to local buffers.

As a result, the IP server must wait for an acknowledgment
from the driver that a packet was transmitted before it is
allowed to free the data. IP knows which packets were not
yet accepted by the driver for processing from the state
of the queue. It is likely that all packets except the last
one were successfully transmitted, but the last one (as the
driver perhaps crashed while processing it). Although network
protocols are designed to deal with lost packets, we do not
want to drop more than necessary. In case of doubt, we prefer
to send a few duplicates which the receiver can decide to
drop. Therefore IP resubmits the packets which it thinks
were not yet transmitted.

A faulty driver may make the device operate incorrectly or
stop working at all. This can be also a result of differences
between specification and implementation of the hardware. It
is difficult to detect such situations. When we stop receiving
packets, it can either be because nobody is sending anything,
or because the device stopped receiving. As a remedy, we
can detect that a driver is not consuming packets for a while
or that we do not receive replies to echo packets and then
restart the driver pro-actively. However, these techniques are
out of the scope of this paper and unless a driver crashes,
we can not currently recover from such situations.

IP: To recover the IP server, it needs to store its
configuration, IP addresses of each device and routing like
the default gateway, etc. This information changes rarely on
the network edge. Because IP allocates a pool which the
drivers use to receive packets, the drivers must make sure
that they switch these pools safely, so the devices do not
DMA to freed memory. It turned out that we must reset the
network cards since the Intel gigabit adapters do not have
a knob to invalidate its shadow copies of the RX and TX
descriptors. Therefore a crash of IP means defacto restart
of the network drivers too. We believe that restart-aware
hardware would allow less disruptive recovery.

Similarly, TCP and UDP may have packets still allocated
in the old receive pool and they must keep a reference to it
until all the packets are delivered or discarded. On the other
hand, neither can free the transmitted packets until they know
that no other component holds a reference to the memory.
Our policy in both cases is that we resubmit the requests
to IP. We generate new identifiers so that we can ignore
replies to the original requests and only free the data once
we get replies to the new ones. This also means that we may
transmit some duplicates. However, in case of TCP, it is much

more important that we quickly retransmit (possibly) lost
packets to avoid the error detection and congestion avoidance.
This helps to recover quickly the original performance after
recovering the functionality.

UDP: The UDP server saves in the storage server which
sockets are currently open, to what local address and port
they are bound, and to which remote pair they are connected
(preset for send). It is easy to recreate the sockets after the
crash. However, UDP does not store whether a process was
blocked on a socket operation and if so, which one (and
doing so would result in significant overhead). On the other
hand, the SYSCALL server remembers the last unfinished
operation on each socket and can issue it again. This is
fine for select and recv variants as they do not trigger
any network traffic. In contrast, send variants will result
in packets sent. As mentioned previously, we tend to prefer
sending extra data. Of course, we can also return an error to
the application instead, for example, zero bytes were written.

TCP: Much like UDP, TCP also saves in the storage
server the sockets that are open. In addition, TCP saves
in what state the connection is (listening, connecting, es-
tablished, etc.) so the packet filter can restore connection
tracking after its crash. TCP can only restore listening sockets
since they do not have any frequently changing state and
returns error to any operation the SYSCALL server resubmits
except listen.

Packet filter: To restore the optional packet filter we
need to recover the configuration (much like restoring IP
configuration) and the open connections (much like restoring
TCP or UDP sockets) and it stores this information in the
storage server. Since IP must get a reply for each request
before it can pass a packet further the stack, it can safely
resubmit all unfinished requests without packet loss and
generating duplicate traffic.

VI. EVALUATION

We evaluate our multiserver design and present the benefits
of the principles we are advocating for. To demonstrate the
competitiveness of our design, we evaluate on a 12 core
AMD Opteron Processor 6168 (1.9GHz) 4GB RAM with 5
Intel PRO/1000 PCI Express gigabit network adapters. We
are limited by the number of PCIe slots in our test machine.
We use standard 1500 byte MTU in all configurations.

A. TCP Performance

Table II shows peak performance of our TCP implementa-
tion in various stages of our development along with original
Minix 3 and Linux performance. The table is ordered from
the least performing at the top to the best performing at
the bottom. The first line shows that a fully synchronous
stack of Minix 3 cannot efficiently use our gigabit hardware,
on the other hand, line 4 shows that a single server stack
which adopts our asynchronous channels can saturate 4 of our
network interfaces and more with additional optimizations

1 Minix 3, 1 CPU only, kernel IPC and copies 120Mbps

2 NewtOS, Split stack, dedicated cores 3.2Gbps

3 NewtOS, Split stack, dedicated cores + SYSCALL 3.6Gbps

4 NewtOS, 1 server stack, dedicated core + SYSCALL 3.9Gbps

5 NewtOS, 1 server stack, dedicated core + SYSCALL + TSO 5+Gbps

6 NewtOS, Split stack, dedicated cores + SYSCALL + TSO 5+Gbps

7 Linux, 10Gbe interface 8.4Gbps

Table II
PEAK PERFORMANCE OF OUTGOING TCP IN VARIOUS SETUPS

(line 5). Line 3 presents the advantage of using the SYSCALL
server, in contrast to line 2, to decouple synchronous calls
from asynchronous internals. Comparing lines 3 and 4, we
can see the effect of communication latency between the
extra servers in the split stack. Using TSO we remove a great
amount of the communication and we are able to saturate
all 5 network cards while allowing parts of the stack to
crash or be live-updated. It is important to mention that
Linux also cannot saturate all the devices without using
TSO which demonstrates that not only the architecture of the
stack but also its ability to offload work to network cards and
reduction of its internal request rate (TCP window scaling
option, jumbo frames, etc.) play the key role in delivering
the peak performance. To put the performance in perspective,
line 7 shows the maximum we obtained on Linux on the
same machines with standard offloading and scaling features
enabled using a 10Gbe adapter which neither Minix 3 or
NewtOS support.

We carried out our experiments with one driver per network
interface, however, to evaluate scalability of the design we
also used one driver for all interfaces, which is similar to
having one multi-gigabit interface. Since the work done by
the drivers is extremely small (filling descriptors and updating
tail pointers of the rings on the device, polling the device)
coalescing the drivers into one still does not lead to an
overload. In contrary, the busy driver reduces some latency
since it is often awake and ready to respond.

We believe that on a heavily threaded core like that of
Oracle Sparc T4, we would be able to run all the drivers on
a single core using the threads as the containers in which
the drivers can block without sacrificing more cores and still
delivering the same performance and isolation of drivers.

B. Fault Injection and Crash Recovery

To assess the fault tolerance of our networking stack we
have injected faults in the individual components. Therefore
we used a fault injection tool equal to that used by the
authors of Rio file cache [30], Nooks [42] and Minix 3 [22]
to evaluate their projects. We summarize the distribution of
the faults in Table III and effects the crashes have in Table IV.
During each test run we injected 100 faults into a randomly
selected component. When the component did not crash
within a minute we rebooted the machine and continued

Total TCP UDP IP PF Driver

100 25 10 24 25 16

Table III
DISTRIBUTIONS OF CRASHES IN THE STACK

Fully transparent crashes 70

Reachable from outside 90 (+ 6 manually fixed)

Crash broke TCP connections 30

Transparent to UDP 95

Reboot necessary 3

Table IV
CONSEQUENCES OF A CRASHES

with another run. We collected 100 runs that exhibited a
crash and we observed the damage to the system. While
injecting the faults we stressed the components with a TCP
connection and periodic DNS queries. The tool injects faults
randomly so the faults are unpredictable. Since some of the
code does not execute during a normal operation and because
of different fraction of active code, some components are
more likely to crash than the others.

The most serious damage happens when the TCP server
crashes. In these cases all established connections disappear.
On the other hand, since we recover sockets which listen for
incoming connections, we are able to immediately open new
ones to our system. We used OpenSSH as our test server.
After each crash we tested whether the active ssh connections
kept working, whether we were able to established new ones
and whether the name resolver was able to contact a remote
DNS server without reopening the UDP socket.

We were able to recover from vast majority of the faults,
mostly transparently. After the 25 TCP crashes, we where able
to directly reconnect to the SSH server in 19 of those cases. In
3 of the cases we had to manually restart the TCP component
to be able to reconnect to the machine. In two other cases
a faulty IP and a not fully responsive driver was the reason
why it was impossible to connect to the machine. Manually
restarting the driver respectively IP solved the problem. In
three cases we had to reboot the system due to hangs in the
synchronous part of the system which merges sockets and
file descriptors for select and has not been modified yet
to use the asynchronous channels we propose. This suggests
that reliability of other parts of the system would also greatly
benefit from our design changes. In two cases, faults injected
into a driver caused a significant slowdown but no crash. It
is very likely that the faults misconfigured the network cards
since the problem disappeared after we manually restarted
the driver, which reseted the device.

In contrast to a solid production quality systems like Linux
or Windows, NewtOS is a prototype and we do not have
an automated testing infrastructure and thus had to run the
fault injection tests manually. Therefore we were not able to
make statistically significant number of runs. However, the
results correlate with our expectations.

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8 9 10

B
itr

at
e

(M
bp

s)

Time (s)

Figure 4. IP crash

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16 18

B
itr

at
e

(M
bp

s)

Time (s)

Figure 5. Packet filter crash

C. High Bitrate Crashes

A random crash during a high frequency of operations
can cause a serious damage to the network traffic due to a
loss of many packets. Figure 4 presents a bitrate sample of
a connection between iperf on NewtOS and on Linux. We
used tcpdump to capture the trace and Wireshark to analyze
it. Using a single connection allows us to safely capture all
packets to see all lost segments and retransmission. The trace
shows a gap when we injected a fault in the IP server 4s
after the start of the connection. We did not observe any lost
segments and only one retransmission from the sender (due
to a missing ACK and a timeout) which has been already
seen by the receiver. The connection quickly recovered its
original bitrate. As we already mentioned before, due to the
hardware limitations, we have to reset the network card when
IP crashes. This causes the gap as it takes time for the link
to come up again and so the driver. Therefore, all the traces
we inspected after a driver crash look very similar.

A similar sample trace on Figure 5 shows that a packet
filter (PF) crash is almost not noticeable. Due to our design,
we never lose packets because IP must see a reply from
PF, otherwise it knows that the packet was not processed.
The trace shows two crashes and immediate recovery to the
original maximal bitrate while recovering a set of 1024 rules.

VII. RELATED WORK

Our work is based on previous research in operating
systems and it blends ideas from other projects with our
own into a new cocktail. Although the idea of microkernel-
based multiserver systems is old, historically they could not
match the performance of the monolithic ones because they
were not able to use the scarce resources efficiently to deliver
matching performance. The current multicore hardware helps
to revive the multiserver system idea. In a similar vein,
virtual machines (invented in the 1960s) have recently seen
a renaissance due to new hardware.

Monolithic systems, in their own way, are increasingly
adopting some of the multiserver design principles. Some
drivers and components like file systems can already run
mostly in user space with kernel support for privileged
execution. In addition, kernel threads are similar to the
independent servers. The scheduler is free to schedule these
threads, both in time and space, as it pleases. The kernel
threads have independent execution context in the privileged
mode and share the same address space to make data sharing
simple, although they require locks for synchronization. Parts
of the networking stack run synchronously when executing
system calls and partly asynchronously in kernel threads,
which may execute on different cores than the application
which uses it, depending on the number and usage of the
cores. Coarse grained locking has significant overhead; on
the other hand, fine grained locking is difficult to implement
correctly.

Interestingly, to use the hardware more efficiently, the
kernel threads are becoming even more distinct from the
core kernel code; they run on dedicated cores so as not to
collide with the execution of user applications and with each
other. An example is FlexSC’s [39], [40] modification of
Linux. It splits the available cores into ones dedicated to run
the kernel and ones to run the applications. In such a setup,
the multithreaded applications can pass requests to the kernel
asynchronously and exception free which reduces contention
on some, still very scarce, resources of each core.

Yet another step towards a true multiserver system is
the IsoStack [37], a modification of AIX. Instances of the
whole networking stack run isolated on dedicated cores. This
shows that monolithic systems get a performance boost by
dedicating cores to a particularly heavy task with which the
rest of the system communicates via shared memory queues.
Thus it is certainly a good choice for multiserver systems
which achieve the same merely by pinning a component to a
core without any fundamental design changes. The primary
motivation for these changes is performance and they do
not go as far as NewtOS, where we split the network stack
into multiple servers. In contrast, our primary motivation is
dependability and reliability while the techniques presented in
this paper allow us to also achieve competitive performance.

We are not the first to partition the OS in smaller compo-

nents. Variants less extreme than multi-server systems isolate
a smaller set of OS components in user-level processes—
typically the drivers [15], [25]. Barrelfish [5] is a so-called
multikernel, microkernel designed for scalability and diversity,
which can serve as a solid platform for a multiserver system.
We are planning to port our network stack on top or it.

Hypervisors are essentially microkernels which host mul-
tiple isolated systems. Colp et al. [8] show how to adopt
the multiserver design for enhanced security of Xen’s Dom0.
Periodic microreboots and isolation of components reduces
its attack surface.

It is worth mentioning that all the commercial systems
that target safety and security critical embedded systems
are microkernel/multiserver real-time operating systems like
QNX, Integrity or PikeOS. However, all of them are closed-
source proprietary platforms therefore we do not compare to
them. Unlike NewtOS, they target very constrained embedded
environments, whereas we show that the same basic design is
applicable to areas where commodity systems like Windows
or Linux dominate.

VIII. CONCLUSION AND FUTURE WORK

In this paper we present our view on future dependable
operating systems. Our design excludes the kernel from
IPC and promotes asynchronous user space communication
channels. We argue that multiserver systems must distribute
the operating system itself to many cores to eliminate its
overheads. Only such asynchronous multiserver systems, in
which each component can run whenever it needs to, will
perform well while preserving their unique properties of fault
resilience and live-updatability.

We describe the challenges of designing the system and
present an implementation of a networking stack built on
these principles. The amount of communication and data our
stack handles as a result of high networking load suggests
that our design is applicable to other parts of the system.

We admit that we loose many resources by dedicating big
cores of current mainstream processors to system components
and it must be addressed in our future work. We need
to investigate how to efficiently adapt the system to its
current workload, for instance by coalescing lightly utilized
components on a single core and dedicating cores to heavily
used ones. Equally importantly we are interested in how can
we change future chips to match our needs the best. For
example, can some of the big cores be replaced by many
simpler ones to run the system?

ACKNOWLEDGMENTS

This work has been supported by the European Research
Council Advanced Grant 227874. We would like to thank
Arun Thomas for his priceless comments on early versions
of this paper.

REFERENCES

[1] Minix 3, Official Website and Download. http://www.minix3.org.

[2] big.LITTLE Processing. http://www.arm.com/products/processors/
technologies/biglittleprocessing.php, 2011.

[3] Variable SMP - A Multi-Core CPU Architecture for Low Power and
High Performance. Whitepaper - http://www.nvidia.com/, 2011.

[4] Vulnerability in TCP/IP Could Allow Remote Code Execution. http:
//technet.microsoft.com/en-us/security/bulletin/ms11-083, Nov. 2011.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A New
OS Architecture for Scalable Multicore Systems. Proc. of Symp. on
Oper. Sys. Principles, 2009.

[6] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis.
Ffpf: Fairly fast packet filters. In Proc. of Symp. on Oper. Sys. Des.
and Impl., 2004.

[7] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proc. of Symp. on Oper. Sys. Des.
and Impl., 2010.

[8] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield. Breaking up is hard to do: security and
functionality in a commodity hypervisor. In Proc. of Symp. on Oper.
Sys. Principles, 2011.

[9] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. CuriOS:
improving reliability through operating system structure. In Proc. of
Symp. on Oper. Sys. Des. and Impl., 2008.

[10] W. de Bruijn, H. Bos, and H. Bal. Application-Tailored I/O with
Streamline. ACM Transacations on Computer Systems, 29, May 2011.

[11] L. Deri. Improving Passive Packet Capture: Beyond Device Polling.
In Proc. of Sys. Admin. and Net. Engin. Conf., 2004.

[12] P. Druschel and L. L. Peterson. Fbufs: A High-bandwidth Cross-
domain Transfer Facility. In Proc. of Symp. on Oper. Sys. Principles,
1993.

[13] A. Dunkels. Full TCP/IP for 8-bit architectures. In International
Conference on Mobile Systems, Applications, and Services, 2003.

[14] J. Erickson. Hacking: The Art of Exploitation. No Starch Press, 2003.

[15] V. Ganapathy, A. Balakrishnan, M. M. Swift, and S. Jha. Microdrivers:
A New Architecture for Device Drivers. In Workshop on Hot Top. in
Oper. Sys., 2007.

[16] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig,
J. E. Tidswell, L. Deller, and L. Reuther. The SawMill Multiserver
Approach. In Proc. of workshop on Beyond the PC: new challenges
for the oper. sys., 2000.

[17] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward for
Efficient Pipeline Parallelism: A Cache-optimized Concurrent Lock-
free Queue. In PPoPP, 2008.

[18] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum. We Crashed, Now
What? In HotDep, 2010.

[19] L. Hatton. Reexamining the Fault Density-Component Size Connection.
IEEE Softw., 14, March 1997.

[20] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
Failure Resilience for Device Drivers. In Proc. of Int. Conf. on Depend.
Sys. and Net., 2007.

[21] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
Countering IPC Threats in Multiserver Operating Systems (A Funda-
mental Requirement for Dependability). In Pacific Rim Int. Symp. on
Dep. Comp., 2008.

[22] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
Fault Isolation for Device Drivers. In Proc. of Int. Conf. on Depend.
Sys. and Net., 2009.

[23] Intel. Single-Chip Cloud Computer. http://techresearch.intel.com/
ProjectDetails.aspx?Id=1.

[24] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. RADBench: A
Concurrency Bug Benchmark Suite. In HotPar’11, May 2011.

[25] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Gtz, C. Gray, L. Macpherson,
D. Potts, Y. Shen, K. Elphinstone, and G. Heiser. User-level Device
Drivers: Achieved Performance. Computer Science and Technology,
20, 2005.

[26] J. Liedtke, K. Elphinstone, S. Schönberg, H. Hrtig, G. Heiser, N. Islam,
and T. Jaeger. Achieved ipc performance (still the foundation for
extensibility), 1997.

[27] J. Löser, H. Härtig, and L. Reuther. A Streaming Interface for Real-
Time Interprocess Communication. In Workshop on Hot Top. in Oper.
Sys., 2001.

[28] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
Muvi: automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. SIGOPS Oper. Syst.
Rev., 41:103–116, October 2007.

[29] T. Mattson. Intel: 1,000-core Processor Possible. http://www.pcworld.
com/article/211238/intel 1000core processor possible.html, Nov.
2010.

[30] W. T. Ng and P. M. Chen. The Systematic Improvement of Fault
Tolerance in the Rio File Cache. In Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing, 1999.

[31] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt.
Helios: Heterogeneous Multiprocessing with Satellite Kernels. In Proc.
of Symp. on Oper. Sys. Principles, 2009.

[32] M. Peloquin, L. Olson, and A. Coonce. Simultaneity safari: A study of
concurrency bugs in device drivers. University of WisconsinMadison
Report, pages.cs.wisc.edu/∼markus/736/concurrency.pdf, 2009.

[33] D. C. Sastry and M. Demirci. The QNX Operating System. Computer,
28, November 1995.

[34] M. Scondo. Concurrency and race conditions in kernel space (linux 2.6).
LinuxSupport.com (extract from ”Linux Device Drivers”), December
2009.

[35] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: A Many-core x86 Architecture
for Visual Computing. ACM Trans. Graph., 27, August 2008.

[36] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura,
R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Sana, D. Sheahan,
L. Spracklen, and A. Wynn. UltraSPARC T2: A Highly-treaded, Power-
efficient, SPARC SOC. In ASSCC’07 .

[37] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda. IsoStack: Highly
Efficient Network Processing on Dedicated Cores. In Proc. of USENIX
Annual Tech. Conf., 2010.

[38] J. S. Shapiro. Vulnerabilities in Synchronous IPC Designs. In Proc.
of IEEE Symp. on Sec. and Priv. IEEE Computer Society, 2003.

[39] L. Soares and M. Stumm. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In Proc. of Symp. on Oper. Sys.
Des. and Impl., 2010.

[40] L. Soares and M. Stumm. Exception-less System Calls for Event-
Driven Servers. In Proc. of USENIX Annual Tech. Conf., 2011.

[41] R. Strong, J. Mudigonda, J. C. Mogul, N. Binkert, and D. Tullsen.
Fast Switching of Threads Between Cores. SIGOPS Oper. Syst. Rev.,
43, April 2009.

[42] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability
of Commodity Operating Systems. In Proc. of Symp. on Oper. Sys.
Principles, pages 207–222, 2003.

[43] D. Wentzlaff, C. Gruenwald, III, N. Beckmann, K. Modzelewski,
A. Belay, L. Youseff, J. Miller, and A. Agarwal. An Operating System
for Multicore and Clouds: Mechanisms and Implementation. In Proc.
of Symp. on Cloud Computing, 2010.

