E.1
E.2
E.3
E4
E.5
E.6
E.7
E.8
E.9
E.10
E.11
E.12
E.13

Introduction

Interconnecting Two Devices

Connecting More than Two Devices

Network Topology

Network Routing, Arbitration, and Switching
Switch Microarchitecture

Practical Issues for Commercial Interconnection Networks
Examples of Interconnection Networks
Internetworking

Crosscutting Issues for Interconnection Networks
Fallacies and Pitfalls

Concluding Remarks

Historical Perspective and References

Exercises

E-2
E-5
E-20
E-29
E-45
E-55
E-62
E-70
E-80
E-85
E-88
E-96
E-97
E-107

Interconnection Networks

Revised by Timothy M. Pinkston, University of Southern California,
and José Duato, Universitat Politecnica de Valencia, and Simula

“The Medium is the Message”because it is the medium that shapes and
controls the search and form of human associations and actions.

Marshall McLuhan
Understanding Media (1964)

The marvels—of film, radio, and television—are marvels of one-way
communication, which is not communication at all.

Milton Mayer
On the Remote Possibility of
Communication (1967)

The interconnection network is the heart of parallel architecture.

Chuan-Lin Wu and Tse-Yun Feng
Interconnection Networks for Parallel
and Distributed Processing (1984)

Indeed, as system complexity and integration continues to increase,
many designers are finding it more efficient to route packets, not wires.

Bill Dally
Principles and Practices of
Interconnection Networks (2004)

E-2

Appendix E Interconnection Networks

E.1

Introduction

Previous chapters and appendices cover the components of a single computer but
give little consideration to the interconnection of those components and how mul-
tiple computer systems are interconnected. These aspects of computer architec-
ture have gained significant importance in recent years. In this appendix we see
how to connect individual devices together into a community of communicating
devices, where the term device is generically used to signify anything from a
component or set of components within a computer to a single computer to a sys-
tem of computers. Figure E.1 shows the various elements comprising this com-
munity: end nodes consisting of devices and their associated hardware and
software interfaces, links from end nodes to the interconnection network, and the
interconnection network. Interconnection networks are also called networks,
communication subnets, or communication subsystems. The interconnection of
multiple networks is called internetworking. This relies on communication stan-
dards to convert information from one kind of network to another, such as with
the Internet.

There are several reasons why computer architects should devote attention to
interconnection networks. In addition to providing external connectivity, net-
works are commonly used to interconnect the components within a single com-
puter at many levels, including the processor microarchitecture. Networks have
long been used in mainframes, but today such designs can be found in personal
computers as well, given the high demand on communication bandwidth needed
to enable increased computing power and storage capacity. Switched networks
are replacing buses as the normal means of communication between computers,
between 1/O devices, between boards, between chips, and even between modules
inside chips. Computer architects must understand interconnect problems and
solutions in order to more effectively design and evaluate computer systems.

Interconnection networks cover a wide range of application domains, very
much like memory hierarchy covers a wide range of speeds and sizes. Networks
implemented within processor chips and systems tend to share characteristics
much in common with processors and memory, relying more on high-speed hard-
ware solutions and less on a flexible software stack. Networks implemented
across systems tend to share much in common with storage and I/O, relying more
on the operating system and software protocols than high-speed hardware—
though we are seeing a convergence these days. Across the domains, performance
includes latency and effective bandwidth, and queuing theory is a valuable ana-
Iytical tool in evaluating performance, along with simulation techniques.

This topic is vast—portions of Figure E.1 are the subject of entire books and
college courses. The goal of this appendix is to provide for the computer architect
an overview of network problems and solutions. This appendix gives introduc-
tory explanations of key concepts and ideas, presents architectural implications
of interconnection network technology and techniques, and provides useful refer-
ences to more detailed descriptions. It also gives a common framework for evalu-
ating all types of interconnection networks, using a single set of terms to describe

E.1 Introduction E-3

End node End node End node End node
Device I Device I Device I Device
SW interface I SW interface I SW interface I SW interface
HW interface I HW interface I HW interface I HW interface
T T T T

Link Link Link .o Link

Interconnection network

Figure E.1 A conceptual illustration of an interconnected community of devices.

the basic alternatives. As we will see, many types of networks have common pre-
ferred alternatives, but for others the best solutions are quite different. These dif-
ferences become very apparent when crossing between the networking domains.

Interconnection Network Domains

Interconnection networks are designed for use at different levels within and
across computer systems to meet the operational demands of various application
areas—high-performance computing, storage I/O, cluster/workgroup/enterprise
systems, internetworking, and so on. Depending on the number of devices to be
connected and their proximity, we can group interconnection networks into four
major networking domains:

On-chip networks (OCNs)—Also referred to as network-on-chip (NoC), this
type of network is used for interconnecting microarchitecture functional
units, register files, caches, compute tiles, and processor and IP cores within
chips or multichip modules. Currently, OCNs support the connection of up to
only a few tens of such devices with a maximum interconnection distance on
the order of centimeters. Most OCNSs used in high-performance chips are cus-
tom designed to mitigate chip-crossing wire delay problems caused by
increased technology scaling and transistor integration, though some propri-
etary designs are gaining wider use (e.g., IBM’s CoreConnect, ARM’s
AMBA, and Sonic’s Smart Interconnect). An example custom OCN is the
Element Interconnect Bus used in the Cell Broadband Engine processor chip.
This network peaks at ~2400 Gbps (for a 3.2 GHz processor clock) for 12
elements on the chip.

System/storage area networks (SANs)—This type of network is used for
interprocessor and processor-memory interconnections within multiprocessor
and multicomputer systems, and also for the connection of storage and 1/O
components within server and data center environments. Typically, several

E-4

Appendix E Interconnection Networks

hundreds of such devices can be connected, although some supercomputer
SANSs support the interconnection of many thousands of devices, like the
IBM Blue Gene/L supercomputer. The maximum interconnection distance
covers a relatively small area—on the order of a few tens of meters usually—
but some SANs have distances spanning a few hundred meters. For example,
InfiniBand, a popular SAN standard introduced in late 2000, supports system
and storage 1/O interconnects at up to 120 Gbps over a distance of 300 m.

m Local area networks (LANs)—This type of network is used for interconnect-
ing autonomous computer systems distributed across a machine room or
throughout a building or campus environment. Interconnecting PCs in a clus-
ter is a prime example. Originally, LANs connected only up to a hundred
devices, but with bridging, LANs can now connect up to a few thousand
devices. The maximum interconnect distance covers an area of a few kilome-
ters usually, but some have distance spans of a few tens of kilometers. For
instance, the most popular and enduring LAN, Ethernet, has a 10 Gbps stan-
dard version that supports maximum performance over a distance of 40 km.

m Wide area networks (WANs)—Also called long-haul networks, WANs con-
nect computer systems distributed across the globe, which requires internet-
working support. WANs connect many millions of computers over distance
scales of many thousands of kilometers. ATM is an example of a WAN.

Figure E.2 roughly shows the relationship of these networking domains in
terms of the number of devices interconnected and their distance scales. Overlap
exists for some of these networks in one or both dimensions, which leads to prod-

5x 106 -
WAN

@
2 5x103
T
£
[0
Q
=
s
& 5x10°

5x 1073

1 10 100 1000 10,000 >100,000

Figure E.2 Relationship of the four interconnection network domains in terms of
number of devices connected and their distance scales: on-chip network (OCN), sys-
tem/storage area network (SAN), local area network (LAN), and wide area network
(WAN). Note that there are overlapping ranges where some of these networks com-
pete. Some supercomputer systems use proprietary custom networks to interconnect
several thousands of computers, while other systems, such as multicomputer clusters,
use standard commercial networks.

E.2

E.2 Interconnecting Two Devices E-5

uct competition. Some network solutions have become commercial standards
while others remain proprietary. Although the preferred solutions may signifi-
cantly differ from one interconnection network domain to another depending on
the design requirements, the problems and concepts used to address network
problems remain remarkably similar across the domains. No matter the target
domain, networks should be designed so as not to be the bottleneck to system
performance and cost efficiency. Hence, the ultimate goal of computer architects
is to design interconnection networks of the lowest possible cost that are capable
of transferring the maximum amount of available information in the shortest pos-
sible time.

Approach and Organization of This Appendix

Interconnection networks can be well understood by taking a top-down approach
to unveiling the concepts and complexities involved in designing them. We do
this by viewing the network initially as an opaque “black box” that simply and
ideally performs certain necessary functions. Then we systematically open vari-
ous layers of the black box, allowing more complex concepts and nonideal net-
work behavior to be revealed. We begin this discussion by first considering the
interconnection of just two devices in Section E.2, where the black box network
can be viewed as a simple dedicated link network—that is, wires or collections of
wires running bidirectionally between the devices. We then consider the intercon-
nection of more than two devices in Section E.3, where the black box network
can be viewed as a shared link network or as a switched point-to-point network
connecting the devices. We continue to peel away various other layers of the
black box by considering in more detail the network topology (Section E.4), rout-
ing, arbitration, and switching (Section E.5), and switch microarchitecture (Sec-
tion E.6). Practical issues for commercial networks are considered in Section E.7,
followed by examples illustrating the trade-offs for each type of network in Sec-
tion E.8. Internetworking is briefly discussed in Section E.9, and additional
crosscutting issues for interconnection networks are presented in Section E.10.
Section E.11 gives some common fallacies and pitfalls related to interconnection
networks, and Section E.12 presents some concluding remarks. Finally, we pro-
vide a brief historical perspective and some suggested reading in Section E.13.

Interconnecting Two Devices

This section introduces the basic concepts required to understand how communi-
cation between just two networked devices takes place. This includes concepts
that deal with situations in which the receiver may not be ready to process incom-
ing data from the sender and situations in which transport errors may occur. To
ease understanding, the black box network at this point can be conceptualized as
an ideal network that behaves as simple dedicated links between the two devices.

E-6

Appendix E Interconnection Networks

Machine A Machine B

Figure E.3 A simple dedicated link network bidirectionally interconnecting two
devices.

Figure E.3 illustrates this, where unidirectional wires run from device A to device
B and vice versa, and each end node contains a buffer to hold the data. Regardless
of the network complexity, whether dedicated link or not, a connection exists
from each end node device to the network to inject and receive information to/
from the network. We first describe the basic functions that must be performed at
the end nodes to commence and complete communication, and then we discuss
network media and the basic functions that must be performed by the network to
carry out communication. Later, a simple performance model is given, along with
several examples to highlight implications of key network parameters.

Network Interface Functions: Composing and Processing
Messages

Suppose we want two networked devices to read a word from each other’s mem-
ory. The unit of information sent or received is called a message. To acquire the
desired data, the two devices must first compose and send a certain type of mes-
sage in the form of a request containing the address of the data within the other
device. The address (i.e., memory or operand location) allows the receiver to
identify where to find the information being requested. After processing the
request, each device then composes and sends another type of message, a reply,
containing the data. The address and data information is typically referred to as
the message payload.

In addition to payload, every message contains some control bits needed by
the network to deliver the message and process it at the receiver. The most typical
are bits to distinguish between different types of messages (i.e., request, reply,
request acknowledge, reply acknowledge, etc.) and bits that allow the network to
transport the information properly to the destination. These additional control
bits are encoded in the header and/or trailer portions of the message, depending
on their location relative to the message payload. As an example, Figure E.4
shows the format of a message for the simple dedicated link network shown in
Figure E.3. This example shows a single-word payload, but messages in some
interconnection networks can include several thousands of words.

Before message transport over the network occurs, messages have to be com-
posed. Likewise, upon receipt from the network, they must be processed. These
and other functions described below are the role of the network interface (also

E.2 Interconnecting Two Devices E-7

Header

Destination port

Message ID
Sequence number Trailer
Type Payload Checksum
Data
00 = Request
01 = Reply

10 = Request acknowledge

Figure E.4 An example packet format with header, payload, and checksum in the
trailer.

referred to as the channel adapter) residing at the end nodes. Together with some
DMA engine and link drivers to transmit/receive messages to/from the network,
some dedicated memory or register(s) may be used to buffer outgoing and incom-
ing messages. Depending on the network domain and design specifications for
the network, the network interface hardware may consist of nothing more than
the communicating device itself (i.e., for OCNs and some SANs) or a separate
card that integrates several embedded processors and DMA engines with thou-
sands of megabytes of RAM (i.e., for many SANs and most LANs and WANSs).
In addition to hardware, network interfaces can include software or firmware
to perform the needed operations. Even the simple example shown in Figure E.3
may invoke messaging software to translate requests and replies into messages
with the appropriate headers. This way, user applications need not worry about
composing and processing messages as these tasks can be performed automati-
cally at a lower level. An application program usually cooperates with the operat-
ing or run time system to send and receive messages. As the network is likely to
be shared by the processes running on each device, the operating system cannot
allow messages intended for one process to be received by another. Thus, the
messaging software must include protection mechanisms that distinguish
between processes. This distinction could be made by expanding the header with
a port number that is known by both the sender and intended receiver processes.
In addition to composing and processing messages, additional functions
need to be performed by the end nodes to establish communication among the
communicating devices. Although hardware support can reduce the amount of
work, some can be done by software. For example, most networks specify a
maximum amount of information that can be transferred (i.e., maximum trans-
fer unit) so that network buffers can be dimensioned appropriately. Messages
longer than the maximum transfer unit are divided into smaller units, called

E-8

Appendix E [Interconnection Networks

packets (or datagrams), that are transported over the network. Packets are reas-
sembled into messages at the destination end node before delivery to the appli-
cation. Packets belonging to the same message can be distinguished from
others by including a message ID field in the packet header. If packets arrive
out of order at the destination, they are reordered when reassembled into a mes-
sage. Another field in the packet header containing a sequence number is usu-
ally used for this purpose.

The sequence of steps the end node follows to commence and complete com-
munication over the network is called a communication protocol. It generally has
symmetric but reversed steps between sending and receiving information. Com-
munication protocols are implemented by a combination of software and hard-
ware to accelerate execution. For instance, many network interface cards
implement hardware timers as well as hardware support to split messages into
packets and reassemble them, compute the cyclic redundancy check (CRC)
checksum, handle virtual memory addresses, and so on.

Some network interfaces include extra hardware to offload protocol process-
ing from the host computer, such as TCP offload engines for LANs and WANSs.
But for interconnection networks such as SANs that have low latency require-
ments, this may not be enough even when lighter-weight communication proto-
cols are used such as message passing interface (MPI). Communication
performance can be further improved by bypassing the operating system (OS).
OS-bypassing can be implemented by directly allocating message buffers in the
network interface memory so that applications directly write into and read from
those buffers. This avoids extra memory-to-memory copies. The corresponding
protocols are referred to as zero-copy protocols or user-level communication pro-
tocols. Protection can still be maintained by calling the OS to allocate those buft-
ers at initialization and preventing unauthorized memory accesses in hardware.

In general, some or all of the following are the steps needed to send a mes-
sage at end node devices over a network:

1. The application executes a system call, which copies data to be sent into an
operating system or network interface buffer, divides the message into pack-
ets (if needed), and composes the header and trailer for packets.

2. The checksum is calculated and included in the header or trailer of packets.

The timer is started, and the network interface hardware sends the packets.
Message reception is in the reverse order:

3. The network interface hardware receives the packets and puts them into its
buffer or the operating system buffer.

2. The checksum is calculated for each packet. If the checksum matches the
sender’s checksum, the receiver sends an acknowledgment back to the packet
sender. If not, it deletes the packet, assuming that the sender will resend the
packet when the associated timer expires.

1. Once all packets pass the test, the system reassembles the message, copies the
data to the user’s address space, and signals the corresponding application.

E.2 Interconnecting Two Devices E-9

The sender must still react to packet acknowledgments:

m When the sender gets an acknowledgment, it releases the copy of the corre-
sponding packet from the buffer.

m If the sender reaches the time-out instead of receiving an acknowledgment, it
resends the packet and restarts the timer.

Just as a protocol is implemented at network end nodes to support communi-
cation, protocols are also used across the network structure at the physical, data
link, and network layers responsible primarily for packet transport, flow control,
error handling, and other functions described next.

Basic Network Structure and Functions: Media and Form
Factor, Packet Transport, Flow Control, and Error Handling

Once a packet is ready for transmission at its source, it is injected into the net-
work using some dedicated hardware at the network interface. The hardware
includes some transceiver circuits to drive the physical network media—either
electrical or optical. The type of media and form factor depends largely on the
interconnect distances over which certain signaling rates (i.e., transmission
speed) should be sustainable. For centimeter or less distances on a chip or multi-
chip module, typically the middle to upper copper metal layers can be used for
interconnects at multi-Gbps signaling rates per line. A dozen or more layers of
copper traces or tracks imprinted on circuit boards, midplanes, and backplanes
can be used for Gbps differential-pair signaling rates at distances of about a meter
or so. Category SE unshielded twisted-pair copper wiring allows 0.25 Gbps trans-
mission speed over distances of 100 meters. Coaxial copper cables can deliver
10 Mbps over kilometer distances. In these conductor lines, distance can usually
be traded off for higher transmission speed, up to a certain point. Optical media
enable faster transmission speeds at distances of kilometers. Multimode fiber
supports 100 Mbps transmission rates over a few kilometers, and more expensive
single-mode fiber supports Gbps transmission speeds over distances of several
kilometers. Wavelength division multiplexing allows several times more band-
width to be achieved in fiber (i.e., by a factor of the number of wavelengths used).
The hardware used to drive network links may also include some encoders to
encode the signal in a format other than binary that is suitable for the given trans-
port distance. Encoding techniques can use multiple voltage levels, redundancy,
data and control rotation (e.g., 4b5b encoding), and/or a guaranteed minimum
number of signal transitions per unit time to allow for clock recovery at the
receiver. The signal is decoded at the receiver end, and the packet is stored in the
corresponding buffer. All of these operations are performed at the network physi-
cal layer, the details of which are beyond the scope of this appendix. Fortunately,
we do not need to worry about them. From the perspective of the data link and
higher layers, the physical layer can be viewed as a long linear pipeline without
staging in which signals propagate as waves through the network transmission
medium. All of the above functions are generally referred to as packet transport.

E-10

Appendix E Interconnection Networks

Besides packet transport, the network hardware and software are jointly
responsible at the data link and network protocol layers for ensuring reliable
delivery of packets. These responsibilities include (1) preventing the sender from
sending packets at a faster rate than they can be processed by the receiver and (2)
ensuring that the packet is neither garbled nor lost in transit. The first responsibil-
ity is met by either discarding packets at the receiver when its buffer is full and
later notifying the sender to retransmit them, or by notifying the sender to stop
sending packets when the buffer becomes full and to resume later once it has
room for more packets. The latter strategy is generally known as flow control.

There are several interesting techniques commonly used to implement flow
control beyond simple handshaking between the sender and receiver. The more
popular techniques are Xon/Xoff (also referred to as Stop & Go) and credit-based
flow control. Xon/Xoff consists of the receiver notifying the sender either to stop
or to resume sending packets once high and low buffer occupancy levels are
reached, respectively, with some hysteresis to reduce the number of notifications.
Notifications are sent as “stop”” and “go” signals using additional control wires or
encoded in control packets. Credit-based flow control typically uses a credit
counter at the sender that initially contains a number of credits equal to the num-
ber of buffers at the receiver. Every time a packet is transmitted, the sender decre-
ments the credit counter. When the receiver consumes a packet from its buffer, it
returns a credit to the sender in the form of a control packet that notifies the
sender to increment its counter upon receipt of the credit. These techniques
essentially control the flow of packets into the network by throttling packet injec-
tion at the sender when the receiver reaches a low watermark or when the sender
runs out of credits.

Xon/Xoff usually generates much less control traffic than credit-based flow
control because notifications are only sent when the high or low buffer occupancy
levels are crossed. On the other hand, credit-based flow control requires less than
half the buffer size required by Xon/Xoff. Buffers for Xon/Xoff must be large
enough to prevent overflow before the “stop” control signal reaches the sender.
Overflow cannot happen when using credit-based flow control because the sender
will run out of credits, thus stopping transmission. For both schemes, full link
bandwidth utilization is possible only if buffers are large enough for the distance
over which communication takes place.

Let’s compare the buffering requirements of the two flow control techniques
in a simple example covering the various interconnection network domains.

Example

Suppose we have a dedicated-link network with a raw data bandwidth of 8 Gbps
for each link in each direction interconnecting two devices. Packets of 100 bytes
(including the header) are continuously transmitted from one device to the other
to fully utilize network bandwidth. What is the minimum amount of credits and
buffer space required by credit-based flow control assuming interconnect dis-
tances of 1 cm, 1 m, 100 m, and 10 km if only link propagation delay is taken into
account? How does the minimum buffer space compare against Xon/Xoff?

Answer

E.2 Interconnecting Two Devices E-11

At the start, the receiver buffer is initially empty and the sender contains a num-
ber of credits equal to buffer capacity. The sender will consume a credit every
time a packet is transmitted. For the sender to continue transmitting packets at
network speed, the first returned credit must reach the sender before the sender
runs out of credits. After receiving the first credit, the sender will keep receiving
credits at the same rate it transmits packets. As we are considering only propaga-
tion delay over the link and no other sources of delay or overhead, null process-
ing time at the sender and receiver are assumed. The time required for the first
credit to reach the sender since it started transmission of the first packet is equal
to the round-trip propagation delay for the packet transmitted to the receiver and
the return credit transmitted back to the sender. This time must be less than or
equal to the packet transmission time multiplied by the initial credit count:
Packet propagation delay + Credit propagation delay < w X Credit count
Bandwidth

The speed of light is about 300,000 km/sec. Assume we can achieve 66% of that
in a conductor. Thus, the minimum number of credits for each distance is given by

X Credit count

(Distance) < 100 bytes
2/3 % 300,000 km/sec ~ 8 Ghbits/sec

As each credit represents one packet-sized buffer entry, the minimum amount of
credits (and, likewise, buffer space) needed by each device is one for the 1 cm
and 1 m distances, 10 for the 100 m distance, and 1000 packets for the 10 km dis-
tance. For Xon/Xoff, this minimum buffer size corresponds to the buffer frag-
ment from the high occupancy level to the top of the buffer and from the low
occupancy level to the bottom of the buffer. With the added hysteresis between
both occupancy levels to reduce notifications, the minimum buffer space for Xon/
Xoff turns out to be more than twice that for credit-based flow control.

Networks that implement flow control do not need to drop packets and are
sometimes referred to as lossless networks; networks that drop packets are some-
times referred to as lossy networks. This single difference in the way packets are
handled by the network drastically constrains the kinds of solutions that can be
implemented to address other related network problems, including packet rout-
ing, congestion, deadlock, and reliability, as we will see later in this appendix.
This difference also affects performance significantly as dropped packets need to
be retransmitted, thus consuming more link bandwidth and suffering extra delay.
These behavioral and performance differences ultimately restrict the interconnec-
tion network domains for which certain solutions are applicable. For instance,
most networks delivering packets over relatively short distances (e.g., OCNs and
SANs) tend to implement flow control; on the other hand, networks delivering
packets over relatively long distances (e.g., LANs and WANSs) tend to be
designed to drop packets. For the shorter distances, the delay in propagating flow
control information back to the sender can be negligible, but not so for longer
distance scales. The kinds of applications that are usually run also influence the

E-12

Appendix E Interconnection Networks

choice of lossless versus lossy networks. For instance, dropping packets sent by
an Internet client like a Web browser affects only the delay observed by the corre-
sponding user. However, dropping a packet sent by a process from a parallel
application may lead to a significant increase in the overall execution time of the
application if that packet’s delay is on the critical path.

The second responsibility of ensuring that packets are neither garbled nor lost
in transit can be met by implementing some mechanisms to detect and recover
from transport errors. Adding a checksum or some other error detection field to
the packet format, as shown in Figure E.4, allows the receiver to detect errors.
This redundant information is calculated when the packet is sent and checked
upon receipt. The receiver then sends an acknowledgment in the form of a control
packet if the packet passes the test. Note that this acknowledgment control packet
may simultaneously contain flow control information (e.g., a credit or stop sig-
nal), thus reducing control packet overhead. As described earlier, the most com-
mon way to recover from errors is to have a timer record the time each packet is
sent and to presume the packet is lost or erroneously transported if the timer
expires before an acknowledgment arrives. The packet is then resent.

The communication protocol across the network and network end nodes
must handle many more issues other than packet transport, flow control, and
reliability. For example, if two devices are from different manufacturers, they
might order bytes differently within a word (Big Endian versus Little Endian
byte ordering). The protocol must reverse the order of bytes in each word as
part of the delivery system. It must also guard against the possibility of dupli-
cate packets if a delayed packet were to become unstuck. Depending on the
system requirements, the protocol may have to implement pipelining among
operations to improve performance. Finally, the protocol may need to handle
network congestion to prevent performance degradation when more than two
devices are connected, as described later in Section E.7.

Characterizing Performance: Latency and Effective Bandwidth

Now that we have covered the basic steps for sending and receiving messages
between two devices, we can discuss performance. We start by discussing the
latency when transporting a single packet. Then we discuss the effective band-
width (also known as throughput) that can be achieved when the transmission of
multiple packets is pipelined over the network at the packet level.

Figure E.5 shows the basic components of latency for a single packet. Note
that some latency components will be broken down further in later sections as the
internals of the “black box” network are revealed. The timing parameters in Fig-
ure E.5 apply to many interconnection network domains: inside a chip, between
chips on a board, between boards in a chassis, between chassis within a com-
puter, between computers in a cluster, between clusters, and so on. The values
may change, but the components of latency remain the same.

The following terms are often used loosely, leading to confusion, so we
define them here more precisely:

E.2 Interconnecting Two Devices E-13

Transmission

Sender time
Sender overhead (bytes/bandwidth)
Transmission
Time of time Receiver
Receiver flight (bytes/bandwidth) overhead

Transport latency

Figure E.5 Components of packet latency. Depending on whether it is an OCN, SAN,
LAN, or WAN, the relative amounts of sending and receiving overhead, time of flight,
and transmission time are usually quite different from those illustrated here.

m Bandwidth—Strictly speaking, the bandwidth of a transmission medium
refers to the range of frequencies for which the attenuation per unit length
introduced by that medium is below a certain threshold. It must be distin-
guished from the transmission speed, which is the amount of information
transmitted over a medium per unit time. For example, modems successfully
increased transmission speed in the late 1990s for a fixed bandwidth (i.e., the
3 KHz bandwidth provided by voice channels over telephone lines) by encod-
ing more voltage levels and, hence, more bits per signal cycle. However, to be
consistent with its more widely understood meaning, we use the term band-
width to refer to the maximum rate at which information can be transferred,
where information includes packet header, payload, and trailer. The units are
traditionally bits per second although bytes per second is sometimes used.
The term bandwidth is also used to mean the measured speed of the medium
(i.e., network links). Aggregate bandwidth refers to the total data bandwidth
supplied by the network, and effective bandwidth or throughput is the fraction
of aggregate bandwidth delivered by the network to an application.

m Time of flight—This is the time for the first bit of the packet to arrive at the
receiver, including the propagation delay over the links and delays due to other
hardware in the network such as link repeaters and network switches. The unit
of measure for time of flight can be in milliseconds for WANs, microseconds
for LANs, nanoseconds for SANS, and picoseconds for OCNSs.

m Transmission time—This is the time for the packet to pass through the network,
not including time of flight. One way to measure it is the difference in time
between when the first bit of the packet arrives at the receiver and when the last
bit of that packet arrives at the receiver. By definition, transmission time is
equal to the size of the packet divided by the data bandwidth of network links.

E-14

Appendix E Interconnection Networks

This measure assumes there are no other packets contending for that bandwidth
(i.e., a zero-load or no-load network).

m Transport latency—This is the sum of time of flight and transmission time.
Transport latency is the time that the packet spends in the interconnection
network. Stated alternatively, it is the time between when the first bit of the
packet is injected into the network and when the last bit of that packet arrives
at the receiver. It does not include the overhead of preparing the packet at the
sender or processing it when it arrives at the receiver.

m Sending overhead—This is the time for the end node to prepare the packet (as
opposed to the message) for injection into the network, including both hard-
ware and software components. Note that the end node is busy for the entire
time, hence the use of the term overhead. Once the end node is free, any subse-
quent delays are considered part of the transport latency. We assume that over-
head consists of a constant term plus a variable term that depends on packet
size. The constant term includes memory allocation, packet header preparation,
setting up DMA devices, and so on. The variable term is mostly due to copies
from buffer to buffer and is usually negligible for very short packets.

m Receiving overhead—This is the time for the end node to process an incom-
ing packet, including both hardware and software components. We also
assume here that overhead consists of a constant term plus a variable term that
depends on packet size. In general, the receiving overhead is larger than the
sending overhead. For example, the receiver may pay the cost of an interrupt,
or may have to reorder and reassemble packets into messages.

The total latency of a packet can be expressed algebraically by the following:

Packet size

Lat = Sendi head + Ti f flight +
atency ending overhea ime of flig Bandwidth

+ Receiving overhead

Let’s see how the various components of transport latency and the sending and
receiving overheads change in importance as we go across the interconnection
network domains: from OCNs to SANs to LANs to WANS.

Example

Answer

Assume we have a dedicated link network with a data bandwidth of 8 Gbps for
each link in each direction interconnecting two devices within an OCN, SAN,
LAN, or WAN, and we wish to transmit packets of 100 bytes (including the
header) between the devices. The end nodes have a per-packet sending overhead
of x + 0.05 ns/byte and receiving overhead of 4/3(x) + 0.05 ns/byte, where x is
0 us for the OCN, 0.3 us for the SAN, 3 us for the LAN, and 30 us for the WAN,
which are typical for these network types. Calculate the total latency to send
packets from one device to the other for interconnection distances of 0.5 cm, 5 m,
5000 m, and 5000 km assuming that time of flight consists only of link propaga-
tion delay (i.e., no switching or other sources of delay).

Using the above expression and the calculation for propagation delay through a
conductor given in the previous example, we can plug in the parameters for each
of the networks to find their total packet latency. For the OCN:

E.2 Interconnecting Two Devices E-15

Packet size
Bandwidth

0.5 cm + 100 bytes
2/3 % 300,000 km/sec 8 Gbits/sec

Latency = Sending overhead + Time of flight + + Receiving overhead

= 5Sns+

Converting all terms into nanoseconds (ns) leads to the following for the OCN:

0.5cm 100 x 8
Total latency (OCN) = 5ns + 373 % 300,000 ki/sec + 3 ns+5 ns
= 5ns+ 0.025 ns + 100 ns + 5 ns

110.025 ns

Substituting in the appropriate values for the SAN gives the following latency:

Sm + 100 bytes
2/3 % 300,000 km/sec 8 Gbits/sec

0.305 ps + 0.025 ps + 0.1 ps +0.405 ps
0.835 us

Total latency (SAN) = 0.305 us + +0.405 ps

Substituting in the appropriate values for the LAN gives the following latency:

5 km + 100 bytes
2/3x%300,000 km/sec 8 Gbits/sec

3.005 ps + 25 ps + 0.1 ps +4.005 ps
32.11 ps

Total latency (LAN) = 3.005 ps +

+ 4.005 ps

Substituting in the appropriate values for the WAN gives the following latency:

5000 km 100 bytes
2/3 % 300,000 km/sec 8 Gbits/sec

30.005 ps + 25000 ps + 0.1 ps +40.005 ps
25.07 ms

Total latency (WAN) = 30.005 ps +

+40.005 ps

The increased fraction of the latency required by time of flight for the longer
distances along with the greater likelihood of errors over the longer distances are
among the reasons why WANs and LANs use more sophisticated and time-con-
suming communication protocols, which increase sending and receiving over-
heads. The need for standardization is another reason. Complexity also increases
due to the requirements imposed on the protocol by the typical applications that
run over the various interconnection network domains as we go from tens to hun-
dreds to thousands to many thousands of devices. We will consider this in later
sections when we discuss connecting more than two devices. The above example
shows that the propagation delay component of time of flight for WANs and
some LANS is so long that other latency components—including the sending and
receiving overheads—can practically be ignored. This is not so for SANs and
OCNs where the propagation delay pales in comparison to the overheads and
transmission delay. Remember that time of flight latency owing to switches and
other hardware in the network besides sheer propagation delay through the links
is neglected in the above example. For noncongested networks, switch latency

E-16

Appendix E Interconnection Networks

generally is small compared to the overheads and propagation delay through the
links in WANs and LANS, but this is not necessarily so for multiprocessor SANs
and multicore OCNs, as we will see in later sections.

So far, we have considered the transport of a single packet and computed the
associated end-to-end total packet latency. In order to compute the effective
bandwidth for two networked devices, we have to consider a continuous stream
of packets transported between them. We must keep in mind that, in addition to
minimizing packet latency, the goal of any network optimized for a given cost
and power consumption target is to transfer the maximum amount of available
information in the shortest possible time, as measured by the effective bandwidth
delivered by the network. For applications that do not require a response before
sending the next packet, the sender can overlap the sending overhead of later
packets with the transport latency and receiver overhead of prior packets. This
essentially pipelines the transmission of packets over the network, also known as
link pipelining. Fortunately, as discussed in prior chapters of this book, there are
many application areas where communication from either several applications or
several threads from the same application can run concurrently (e.g., a Web
server concurrently serving thousands of client requests or streaming media),
thus allowing a device to send a stream of packets without having to wait for an
acknowledgment or a reply. Also, as long messages are usually divided into pack-
ets of maximum size before transport, a number of packets are injected into the
network in succession for such cases. If such overlap were not possible, packets
would have to wait for prior packets to be acknowledged before being transmitted
and, thus, suffer significant performance degradation.

Packets transported in a pipelined fashion can be acknowledged quite
straightforwardly simply by keeping a copy at the source of all unacknowledged
packets that have been sent and keeping track of the correspondence between
returned acknowledgments and packets stored in the buffer. Packets will be
removed from the buffer when the corresponding acknowledgment is received by
the sender. This can be done by including the message ID and packet sequence
number associated with the packet in the packet’s acknowledgment. Furthermore,
a separate timer must be associated with each buffered packet, allowing the
packet to be resent if the associated time-out expires.

Pipelining packet transport over the network has many similarities with pipe-
lining computation within a processor. However, among some differences are that it
does not require any staging latches. Information is simply propagated through net-
work links as a sequence of signal waves. Thus, the network can be considered as a
logical pipeline consisting of as many stages as are required so that the time of
flight does not affect the effective bandwidth that can be achieved. Transmission of
a packet can start immediately after the transmission of the previous one, thus over-
lapping the sending overhead of a packet with the transport and receiver latency of
previous packets. If the sending overhead is smaller than the transmission time,
packets follow each other back-to-back, and the effective bandwidth approaches
the raw link bandwidth when continuously transmitting packets. On the other hand,
if the sending overhead is greater than the transmission time, the effective band-

Effective bandwidth =

E.2 Interconnecting Two Devices E-17

width at the injection point will remain well below the raw link bandwidth. The
resulting link injection bandwidth, BWy jiqpicciions for each link injecting a continu-
ous stream of packets into a network is calculated with the following expression:

BW _ Packet size
LinkInjection ™ max (Sending overhead, Transmission time)

We must also consider what happens if the receiver is unable to consume packets
at the same rate they arrive. This occurs if the receiving overhead is greater than
the sending overhead and the receiver cannot process incoming packets fast
enough. In this case, the link reception bandwidth, BWy iy receptions fOr each
reception link of the network is less than the link injection bandwidth and is
obtained with this expression:

Packet size
max (Receiving overhead, Transmission time)

B WLinkReception =

When communication takes place between two devices interconnected by
dedicated links, all the packets sent by one device will be received by the other. If
the receiver cannot process packets fast enough, the receiver buffer will become
full, and flow control will throttle transmission at the sender. As this situation is
produced by causes external to the network, we will not consider it further here.
Moreover, if the receiving overhead is greater than the sending overhead, the
receiver buffer will fill up and flow control will, likewise, throttle transmission at
the sender. In this case, the effect of flow control is, on average, the same as if we
replace sending overhead with receiving overhead. Assuming an ideal network
that behaves like two dedicated links running in opposite directions at the full
link bandwidth between the two devices—which is consistent with our black box
view of the network to this point—the resulting effective bandwidth is the small-
est among twice the injection bandwidth (to account for the two injection links,
one for each device) and twice the reception bandwidth. This results in the fol-
lowing expression for effective bandwidth:

2 x Packet size

in(2xBW
min(max(Overhead, Transmission time)

2xBW

LinkInjection’ LinkReception) =
where Overhead = max(Sending overhead, Receiving overhead). Taking into
account the expression for the transmission time, it is obvious that the effective
bandwidth delivered by the network is identical to the aggregate network band-
width when the transmission time is greater than the overhead. Therefore, full
network utilization is achieved regardless of the value for the time of flight and,
thus, regardless of the distance traveled by packets, assuming ideal network
behavior (i.e., enough credits and buffers are provided for credit-based and Xon/
Xoff flow control). This analysis assumes that the sender and receiver network
interfaces can process only one packet at a time. If multiple packets can be pro-
cessed in parallel (e.g., as is done in IBM’s Federation network interfaces), the

E-18

Appendix E Interconnection Networks

overheads for those packets can be overlapped, which increases effective band-
width by that overlap factor up to the amount bounded by the transmission time.
Let’s use the equation on page E-17 to explore the impact of packet size,
transmission time, and overhead on BWy i micciions BW LinkReceptions and effective
bandwidth for the various network domains: OCNs, SANs, LANs, and WANSs.

Example

Answer

As in the previous example, assume we have a dedicated link network with a data
bandwidth of 8 Gbps for each link in each direction interconnecting the two
devices within an OCN, SAN, LAN, or WAN. Plot effective bandwidth versus
packet size for each type of network for packets ranging in size from 4 bytes (i.e.,
a single 32-bit word) to 1500 bytes (i.e., the maximum transfer unit for Ethernet),
assuming that end nodes have the same per-packet sending and receiving over-
heads as before: x + 0.05 ns/byte and 4/3(x) + 0.05 ns/byte, respectively, where x
is 0 us for the OCN, 0.3 us for the SAN, 3 us for the LAN, and 30 us for the
WAN. What limits the effective bandwidth, and for what packet sizes is the effec-
tive bandwidth within 10% of the aggregate network bandwidth?

Figure E.6 plots effective bandwidth versus packet size for the four network
domains using the simple equation and parameters given above. For all packet
sizes in the OCN, transmission time is greater than overhead (sending or receiv-
ing), allowing full utilization of the aggregate bandwidth, which is 16 Gbps—that
is, injection link (alternatively, reception link) bandwidth times two to account
for both devices. For the SAN, overhead—specifically, receiving overhead—is
larger than transmission time for packets less than about 800 bytes; consequently,
packets of 655 bytes and larger are needed to utilize 90% or more of the aggre-
gate bandwidth. For LANs and WANs, most of the link bandwidth is not utilized
since overhead in this example is many times larger than transmission time for all
packet sizes.

This example highlights the importance of reducing the sending and receiv-
ing overheads relative to packet transmission time in order to maximize the effec-
tive bandwidth delivered by the network.

The analysis above suggests that it is possible to provide some upper bound
for the effective bandwidth by analyzing the path followed by packets and deter-
mining where the bottleneck occurs. We can extend this idea beyond the network
interfaces by defining a model that considers the entire network from end to end
as a pipe and identifying the narrowest section of that pipe. There are three areas
of interest in that pipe: the aggregate of all network injection links and the corre-
sponding network injection bandwidth (BW Networkinjection)> the aggregate of all
network reception links and the corresponding network reception bandwidth
(BWetworkReception): and the aggregate of all network links and the corresponding
network bandwidth (BW newor)- EXpressions for these will be given in later sec-
tions as various layers of the black box view of the network are peeled away.

E.2 Interconnecting Two Devices E-19

100

011

Effective bandwidth (Gbits/sec)

0.01 |

0.001 N
4 200 400 600 800 1000 1200 1400
Packet size (bytes)

Figure E.6 Effective bandwidth versus packet size plotted in semi-log form for the
four network domains. Overhead can be amortized by increasing the packet size, but
for too large of an overhead (e.g., for WANs and some LANSs) scaling the packet size is of
little help. Other considerations come into play that limit the maximum packet size.

To this point, we have assumed that for just two interconnected devices the
black box network behaves ideally and, thus, the network bandwidth is equal to
the aggregate raw network bandwidth. In reality, it can be much less than the
aggregate bandwidth as we will see in the following sections. In general, the
effective bandwidth delivered end-to-end by the network to an application is
upper bounded by the minimum across all three potential bottleneck areas:

Effective bandwidth = min (B WNetworkInjection’ B WNetwork’ B wNetworkReception)

We will expand upon this expression further in the following sections as we
reveal more about interconnection networks and consider the more general case
of interconnecting more than two devices.

In some sections of this appendix, we show how the concepts introduced in
the section take shape in example high-end commercial products. Figure E.7 lists
several commercial computers that, at one point in time in their existence, were
among the highest-performing systems in the world within their class. Although
these systems are capable of interconnecting more than two devices, they imple-
ment the basic functions needed for interconnecting only two devices. In addition
to being applicable to the SANSs used in those systems, the issues discussed in
this section also apply to other interconnect domains: from OCNs to WANS.

E-20

Appendix E Interconnection Networks

S e § N
@ 59 £3 = 2 58 g3
: o3 58 T ¢ 2 2 28,
£ _ Qo c oo s = g vEeE
- § Ez3 2% £¢ 53, §°% 552
g £ >~ £3§ £ o §ag €98 E3 ES?
E %% £ RE= 23 55 33%a £¢ XxE
O & s £ S8 & E £eEL E¢c= =9 S£8
Intel ASCIRed 2001 4510 [x 2] 2500 1984 400 few us handshaking;
Paragon sq. feet [4] [400] CRC + parity
IBM ASCIWhite 2001 512 [x 16] 10,000 1024 500 ~3us 25 m; credit-
SP Power3 sq. feet [6] [500] based; CRC
[Colony]
Intel Thunder 2004 1024 [x 4] 120 m? 2048 928 0.240 us 13 m; credit-
Itanium?2 [14] [928] based; CRC
Tiger4 for link, dest.
[QsNet!]
Cray XT3 2004 30,508 [x 1] 263.8 m? 80 3200 few us 7 m; credit-
[SeaStar] [16] [3200] based; CRC
Cray XIE 2004 1024 [x 1] 27 m? 32 1600 0 (direct LDST 5 m; credit-
[16] [1600] accesses) based; CRC
IBM ASCPurple 2005 >1280[x8] 6720 2048 2000 ~1uswithup 25 m; credit-
pSeries 575 sq. feet [7] [2000] to 4 packets based; CRC
[Federation] processed in ||
IBM Blue Gene/L. 2005 65,536 [x2] 2500 sq. feet 256 612.5 ~3us 8.6 m; credit-
eServer Sol. (O9%x.9%x19 [8] [1050] (2300 cycles) based; CRC
[Torus Net.] m*/1K node (header/pkt)
rack)

Figure E.7 Basic characteristics of interconnection networks in commercial high-performance computer systems.

E.3

Connecting More than Two Devices

To this point, we have considered the connection of only two devices communi-
cating over a network viewed as a black box, but what makes interconnection net-
works interesting is the ability to connect hundreds or even many thousands of
devices together. Consequently, what makes them interesting also makes them
more challenging to build. In order to connect more than two devices, a suitable
structure and more functionality must be supported by the network. This section
continues with our black box approach by introducing, at a conceptual level,
additional network structure and functions that must be supported when intercon-
necting more than two devices. More details on these individual subjects are
given in Sections E.4 through E.7. Where applicable, we relate the additional
structure and functions to network media, flow control, and other basics pre-
sented in the previous section. In this section, we also classify networks into two

E.3 Connecting More than Two Devices E-21

broad categories based on their connection structure—shared-media versus
switched-media networks—and we compare them. Finally, expanded expressions
for characterizing network performance are given, followed by an example.

Additional Network Structure and Functions: Topology,
Routing, Arbitration, and Switching

Networks interconnecting more than two devices require mechanisms to physi-
cally connect the packet source to its destination in order to transport the packet
and deliver it to the correct destination. These mechanisms can be implemented
in different ways and significantly vary across interconnection network domains.
However, the types of network structure and functions performed by those mech-
anisms are very much the same, regardless of the domain.

When multiple devices are interconnected by a network, the connections
between them oftentimes cannot be permanently established with dedicated
links. This could either be too restrictive as all the packets from a given source
would go to the same one destination (and not to others) or prohibitively expen-
sive as a dedicated link would be needed from every source to every destination
(we will evaluate this further in the next section). Therefore, networks usually
share paths among different pairs of devices, but how those paths are shared is
determined by the network connection structure, commonly referred to as the
network fopology. Topology addresses the important issue of “What paths are
possible for packets?” in order for packets to reach their intended destination.

Every network that interconnects more than two devices also requires some
mechanism to deliver each packet to the correct destination. The associated
function is referred to as routing, which can be defined as the set of operations
that need to be performed to compute a valid path from the packet source to its
destination. Routing addresses the important issue of “Which of the possible
paths are allowable (valid) for packets?” in order for packets to reach their
intended destination. Depending on the network, this function may be executed
at the packet source to compute the entire path, at some intermediate devices to
compute fragments of the path on-the-fly, or even at every possible destination
device to verify whether that device is the intended destination for the packet.
Usually the packet header shown in Figure E.4 is extended to include the neces-
sary routing information.

In general, as networks usually contain shared paths or parts thereof among
different pairs of devices, packets may request some shared resources. When sev-
eral packets request the same resources at the same time, an arbitration function
is required to resolve the conflict. Arbitration, along with flow control, addresses
the important issue of “When are paths available for packets?” Every time arbi-
tration is performed, there is a winner and, possibly, several losers. The losers are
not granted access to the requested resources and are typically buffered. As indi-
cated in the previous section, flow control may be implemented to prevent buffer
overflow. The winner proceeds toward its destination once the granted resources
are switched in, providing a path for the packet to advance. This function is

E-22

Appendix E Interconnection Networks

referred to as switching. Switching addresses the important issue of “How are
paths allocated to packets?” To achieve better utilization of existing communica-
tion resources, most networks do not establish an entire end-to-end path at once.
Instead, as explained in Section E.5, paths are usually established one fragment at
a time.

These three network functions—routing, arbitration, and switching—must be
implemented in every network connecting more than two devices, no matter what
form the network topology takes. This is in addition to the basic functions men-
tioned in the previous section. However, the complexity of these functions and
the order in which they are performed depends on the category of network topol-
ogy, as discussed below. In general, routing, arbitration, and switching are
required to establish a valid path from source to destination from among the pos-
sible paths provided by the network topology. Once the path has been estab-
lished, the packet transport functions previously described are used to reliably
transmit packets and receive them at the corresponding destination. Flow control,
if implemented, prevents buffer overflow by throttling the sender. It can be imple-
mented at the end-to-end level, the link-level within the network, or both.

Shared-Media Networks

The simplest way to connect multiple devices is to have them share the network
media, as shown for the bus in Figure E.8 (a). This has been the traditional way of
interconnecting devices. The shared media can operate in half-duplex mode,
where data can be carried in either direction over the media but simultaneous
transmission and reception of data by the same device is not allowed, or in full-
duplex, where the data can be carried in both directions and simultaneously trans-
mitted and received by the same device. Until very recently, I/O devices in most

Switched-media network

Shared-media network Node Node
Node Node Node \ /
l T Switch fabric
/ N
Node Node
(a) (b)

Figure E.8 (a) A shared-media network versus (b) a switched-media network.
Ethernet was originally a shared media network, but switched Ethernet is now avail-
able. All nodes on the shared-media must dynamically share the raw bandwidth of one
link, but switched-media networks can support multiple links, providing higher raw
aggregate bandwidth.

E.3 Connecting More than Two Devices E-23

systems typically shared a single I/O bus, and early system-on-chip (SoC)
designs made use of a shared bus to interconnect on-chip components. The most
popular LAN, Ethernet, was originally implemented as a half-duplex bus shared
by up to a hundred computers, although now switched-media versions also exist.

Given that network media are shared, there must be a mechanism to coordi-
nate and arbitrate the use of the shared media so that only one packet is sent at a
time. If the physical distance between network devices is small, it may be possi-
ble to have a central arbiter to grant permission to send packets. In this case, the
network nodes may use dedicated control lines to interface with the arbiter. Cen-
tralized arbitration is impractical, however, for networks with a large number of
nodes spread over large distances, so distributed forms of arbitration are also
used. This is the case for the original Ethernet shared-media LAN.

A first step toward distributed arbitration of shared media is “looking before
you leap.” A node first checks the network to avoid trying to send a packet while
another packet is already in the network. Listening before transmission to avoid
collisions is called carrier sensing. If the interconnection is idle, the node tries to
send. Looking first is not a guarantee of success, of course, as some other node
may also decide to send at the same instant. When two nodes send at the same
time, a collision occurs. Let’s assume that the network interface can detect any
resulting collisions by listening to hear if the data becomes garbled by other data
appearing on the line. Listening to detect collisions is called collision detection.
This is the second step of distributed arbitration.

The problem is not solved yet. If, after detecting a collision, every node on
the network waited exactly the same amount of time, listened to be sure there was
no traffic, and then tried to send again, we could still have synchronized nodes
that would repeatedly bump heads. To avoid repeated head-on collisions, each
node whose packet gets garbled waits (or backs off) a random amount of time
before resending. Randomization breaks the synchronization. Subsequent colli-
sions result in exponentially increasing time between attempts to retransmit, so as
not to tax the network.

Although this approach controls congestion on the shared media, it is not
guaranteed to be fair—some subsequent node may transmit while those that col-
lided are waiting. If the network does not have high demand from many nodes,
this simple approach works well. Under high utilization, however, performance
degrades since the media are shared and fairness is not ensured. Another distrib-
uted approach to arbitration of shared media that can support fairness is to pass a
token between nodes. The function of the token is to grant the acquiring node the
right to use the network. If the token circulates in a cyclic fashion between the
nodes, a certain amount of fairness is ensured in the arbitration process.

Once arbitration has been performed and a device has been granted access to
the shared media, the function of switching is straightforward. The granted
device simply needs to connect itself to the shared media, thus establishing a path
to every possible destination. Also, routing is very simple to implement. Given
that the media are shared and attached to all the devices, every device will see
every packet. Therefore, each device just needs to check whether or not a given

E-24

Appendix E Interconnection Networks

packet is intended for that device. A beneficial side effect of this strategy is that a
device can send a packet to all the devices attached to the shared media through a
single transmission. This style of communication is called broadcasting, in con-
trast to unicasting, in which each packet is intended for only one device. The
shared media make it easy to broadcast a packet to every device or, alternatively,
to a subset of devices, called multicasting.

Switched-Media Networks

The alternative to sharing the entire network media at once across all attached
nodes is to switch between disjoint portions of it shared by the nodes. Those por-
tions consist of passive point-to-point links between active switch components
that dynamically establish communication between sets of source-destination
pairs. These passive and active components make up what is referred to as the
network switch fabric or network fabric, to which end nodes are connected. This
approach is shown conceptually in Figure E.8 (b). The switch fabric is described
in greater detail in Sections E.4 through E.7, where various black box layers for
switched-media networks are further revealed. Nevertheless, the high-level view
shown in Figure E.8 (b) illustrates the potential bandwidth improvement of
switched-media networks over shared-media networks: aggregate bandwidth can
be many times higher than that of shared-media networks, allowing the possibil-
ity of greater effective bandwidth to be achieved. At best, only one node at a time
can transmit packets over the shared media, whereas it is possible for all attached
nodes to do so over the switched-media network.

Like their shared-media counterparts, switched-media networks must imple-
ment the three additional functions previously mentioned: routing, arbitration,
and switching. Every time a packet enters the network, it is routed in order to
select a path toward its destination provided by the topology. The path requested
by the packet must be granted by some centralized or distributed arbiter, which
resolves conflicts among concurrent requests for resources along the same path.
Once the requested resources are granted, the network “switches in” the required
connections to establish the path and allow the packet to be forwarded toward its
destination. If the requested resources are not granted, the packet is usually buff-
ered, as mentioned previously. Routing, arbitration, and switching functions are
usually performed within switched networks in this order, whereas in shared-
media networks routing typically is the last function performed.

Comparison of Shared- and Switched-Media Networks

In general, the advantage of shared-media networks is their low cost, but, conse-
quently, their aggregate network bandwidth does not scale at all with the number
of interconnected devices. Also, a global arbitration scheme is required to resolve
conflicting demands, possibly introducing another type of bottleneck and again
limiting scalability. Moreover, every device attached to the shared media
increases the parasitic capacitance of the electrical conductors, thus increasing

E.3 Connecting More than Two Devices E-25

the time of flight propagation delay accordingly and, possibly, clock cycle time.
In addition, it is more difficult to pipeline packet transmission over the network
as the shared media are continuously granted to different requesting devices.

The main advantage of switched-media networks is that the amount of net-
work resources implemented scales with the number of connected devices,
increasing the aggregate network bandwidth. These networks allow multiple
pairs of nodes to communicate simultaneously, allowing much higher effective
network bandwidth than that provided by shared-media networks. Also,
switched-media networks allow the system to scale to very large numbers of
nodes, which is not feasible when using shared media. Consequently, this scaling
advantage can, at the same time, be a disadvantage if network resources grow
superlinearly. Networks of superlinear cost that provide an effective network
bandwidth that grows only sublinearly with the number of interconnected devices
are inefficient designs for many applications and interconnection network
domains.

Characterizing Performance: Latency and Effective Bandwidth

The routing, switching, and arbitration functionality described above introduces
some additional components of packet transport latency that must be taken into
account in the expression for total packet latency. Assuming there is no conten-
tion for network resources—as would be the case in an unloaded network—total
packet latency is given by the following:

Packet size

Latency = Sending overhead + (TTOmlPrOp +TR+Tp+Tg)+ Bandwidh

+ Receiving overhead

Here T, Ty, and T are the total routing time, arbitration time, and switching
time experienced by the packet, respectively, and are either measured quantities
or calculated quantities derived from more detailed analyses. These components
are added to the total propagation delay through the network links, Trpyiprop, O
give the overall time of flight of the packet.

The expression above gives only a lower bound for the total packet latency as
it does not account for additional delays due to contention for resources that may
occur. When the network is heavily loaded, several packets may request the same
network resources concurrently, thus causing contention that degrades perfor-
mance. Packets that lose arbitration have to be buffered, which increases packet
latency by some contention delay amount of waiting time. This additional delay
is not included in the above expression. When the network or part of it
approaches saturation, contention delay may be several orders of magnitude
greater than the total packet latency suffered by a packet under zero load or even
under slightly loaded network conditions. Unfortunately, it is not easy to compute
analytically the total packet latency when the network is more than moderately
loaded. Measurement of these quantities using cycle-accurate simulation of a
detailed network model is a better and more precise way of estimating packet
latency under such circumstances. Nevertheless, the expression given above is
useful in calculating best-case lower bounds for packet latency.

E-26

Appendix E Interconnection Networks

For similar reasons, effective bandwidth is not easy to compute exactly, but we
can estimate best-case upper bounds for it by appropriately extending the model
presented at the end of the previous section. What we need to do is to find the nar-
rowest section of the end-to-end network pipe by finding the network injection
bandwidth (BWeiworkinjection)> the network reception bandwidth (BWiyorkRrecep-
tion)> and the network bandwidth (BWyyori) across the entire network interconnect-
ing the devices.

The BWeworkinjection €t be calculated simply by multiplying the expression
for link injection bandwidth, BWy i nicciions DY the total number of network injec-
tion links. The BWeqyorkReception 1S calculated similarly using BWy iy receptions DUt
it must also be scaled by a factor that reflects application traffic and other character-
istics. For more than two interconnected devices, it is no longer valid to assume a
one-to-one relationship among sources and destinations when analyzing the effect
of flow control on link reception bandwidth. It could happen, for example, that sev-
eral packets from different injection links arrive concurrently at the same reception
link for applications that have many-to-one traffic characteristics, which causes
contention at the reception links. This effect can be taken into account by an aver-
age reception factor parameter, 6, which is either a measured quantity or a calcu-
lated quantity derived from detailed analysis. It is defined as the average fraction or
percentage of packets arriving at reception links that can be accepted. Only those
packets can be immediately delivered, thus reducing network reception bandwidth
by that factor. This reduction occurs as a result of application behavior regardless of
internal network characteristics. Finally, BW .ok takes into account the internal
characteristics of the network, including contention. We will progressively derive
expressions in the following sections that will enable us to calculate this as more
details are revealed about the internals of our black box interconnection network.

Overall, the effective bandwidth delivered by the network end-to-end to an
application is determined by the minimum across the three sections, as described
by the following:

Effective bandwidth = mm(BwNetworkInjection’ BWyetwork» O X BWNetworkReception)
= min(N x BWLinkInjection’ BWetwork» O X N X BWLinkReception)

Let’s use the above expressions to compare the latency and effective bandwidth
of shared-media networks against switched-media networks for the four intercon-
nection network domains: OCNs, SANs, LANs, and WANSs.

Example

Plot the total packet latency and effective bandwidth as the number of intercon-
nected nodes, N, scales from 4 to 1024 for shared-media and switched-media
OCNs, SANs, LANs, and WANs. Assume that all network links, including the
injection and reception links at the nodes, each have a data bandwidth of 8 Gbps,
and unicast packets of 100 bytes are transmitted. Shared-media networks share
one link, and switched-media networks have at least as many network links as

Answer

E.3 Connecting More than Two Devices E-27

there are nodes. For both, ignore latency and bandwidth effects due to contention
within the network. End nodes have per-packet sending and receiving overheads
of x + 0.05 ns/byte and 4/3(x) + 0.05 ns/byte, respectively, where x is O [s for the
OCN, 0.3 us for the SAN, 3 us for the LAN, and 30 us for the WAN, and inter-
connection distances are 0.5 cm, 5 m, 5000 m, and 5000 km, respectively. Also
assume that the total routing, arbitration, and switching times are constants or
functions of the number of interconnected nodes: T = 2.5 ns, T, = 2.5(N) ns, and
Ts = 2.5 ns for shared-media networks and Ty = T, = T = 2.5(log, N) ns for
switched-media networks. Finally, taking into account application traffic charac-
teristics for the network structure, the average reception factor, G, is assumed to
be N'! for shared media and polylogarithmic (lo