

PRAISE FOR
PRINCIPLES AND PRACTICES OF INTERCONNECTION NETWORKS

The scholarship of this book is unparalleled in its area. This text is for inter-
connection networks what Hennessy and Patterson’s text is for computer architec-
ture — an authoritative, one-stop source that clearly and methodically explains the
more significant concepts. Treatment of the material both in breadth and in depth is
very well done . . . a must read and a slam dunk! — Timothy Mark Pinkston, Univer-
sity of Southern California

[This book is] the most comprehensive and coherent work on modern intercon-
nection networks. As leaders in the field, Dally and Towles capitalize on their vast
experience as researchers and engineers to present both the theory behind such net-
works and the practice of building them. This book is a necessity for anyone studying,
analyzing, or designing interconnection networks. — Stephen W. Keckler, The Uni-
versity of Texas at Austin

This book will serve as excellent teaching material, an invaluable research refer-
ence, and a very handy supplement for system designers. In addition to documenting
and clearly presenting the key research findings, the book’s incisive practical treat-
ment is unique. By presenting how actual design constraints impact each facet of
interconnection network design, the book deftly ties theoretical findings of the past
decades to real systems design. This perspective is critically needed in engineering
education. — Li-Shiuan Peh, Princeton University

Principles and Practices of Interconnection Networks is a triple threat: compre-
hensive, well written and authoritative. The need for this book has grown with the
increasing impact of interconnects on computer system performance and cost. It
will be a great tool for students and teachers alike, and will clearly help practicing
engineers build better networks. — Steve Scott, Cray, Inc.

Dally and Towles use their combined three decades of experience to create a
book that elucidates the theory and practice of computer interconnection networks.
On one hand, they derive fundamentals and enumerate design alternatives. On the
other, they present numerous case studies and are not afraid to give their experi-
enced opinions on current choices and future trends. This book is a "must buy" for
those interested in or designing interconnection networks. — Mark Hill, University
of Wisconsin, Madison

This book will instantly become a canonical reference in the field of interconnec-
tion networks. Professor Dally’s pioneering research dramatically and permanently
changed this field by introducing rigorous evaluation techniques and creative solu-
tions to the challenge of high-performance computer system communication. This
well-organized textbook will benefit both students and experienced practitioners.
The presentation and exercises are a result of years of classroom experience in cre-
ating this material. All in all, this is a must-have source of information. — Craig
Stunkel, IBM

.
This Page Intentionally Left Blank

Principles and Practices of
Interconnection Networks

.
This Page Intentionally Left Blank

Principles and Practices of
Interconnection Networks

William James Dally

Brian Towles

Publishing Director: Diane D. Cerra
Senior Editor: Denise E. M. Penrose
Publishing Services Manager: Simon Crump
Project Manager: Marcy Barnes-Henrie
Editorial Coordinator: Alyson Day
Editorial Assistant: Summer Block
Cover Design: Hannus Design Associates
Cover Image: Frank Stella, Takht-i-Sulayan-I (1967)
Text Design: Rebecca Evans & Associates
Composition: Integra Software Services Pvt., Ltd.
Copyeditor: Catherine Albano
Proofreader: Deborah Prato
Indexer: Sharon Hilgenberg
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

c©2004 by Elsevier, Inc. All rights reserved.

Figure 3.10 c© 2003 Silicon Graphics, Inc. Used by permission. All rights reserved.

Figure 3.13 courtesy of the Association for Computing Machinery (ACM), from James Laudon and
Daniel Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” Proceedings of the International
Symposium on Computer Architecture (ISCA), pp. 241-251, 1997. (ISBN: 0897919017) Figure 10.

Figure 10.7 from Thinking Machines Corp.

Figure 11.5 courtesy of Ray Mains, Ray Mains Photography,
http://www.mauigateway.com/∼raymains/.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, or otherwise—without written permission of
the publishers.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier homepage
(http://elsevier.com) by selecting "Customer Support" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Dally, William J.
Principles and practices of interconnection networks / William
Dally, Brian Towles.

p. cm.
Includes bibliographical references and index.
ISBN 0-12-200751-4 (alk. paper)

1. Computer networks-Design and construction.
2. Multiprocessors. I. Towles, Brian. II. Title.

TK5105.5.D3272003
004.6’5–dc22

ISBN: 0-12-200751-4 2003058915

For information on all Morgan Kaufmann publications,
visit our Web Site at www.mkp.com

Printed in the United States of America

04 05 06 07 08 5 4 3 2 1

Contents

Acknowledgments xvii

Preface xix

About the Authors xxv

Chapter 1 Introduction to Interconnection Networks 1

1.1 Three Questions About Interconnection Networks 2
1.2 Uses of Interconnection Networks 4

1.2.1 Processor-Memory Interconnect 5
1.2.2 I/O Interconnect 8
1.2.3 Packet Switching Fabric 11

1.3 Network Basics 13
1.3.1 Topology 13
1.3.2 Routing 16
1.3.3 Flow Control 17
1.3.4 Router Architecture 19
1.3.5 Performance of Interconnection Networks 19

1.4 History 21
1.5 Organization of this Book 23

Chapter 2 A Simple Interconnection Network 25

2.1 Network Specifications and Constraints 25
2.2 Topology 27
2.3 Routing 31
2.4 Flow Control 32
2.5 Router Design 33
2.6 Performance Analysis 36
2.7 Exercises 42

vii

viii Contents

Chapter 3 Topology Basics 45

3.1 Nomenclature 46
3.1.1 Channels and Nodes 46
3.1.2 Direct and Indirect Networks 47
3.1.3 Cuts and Bisections 48
3.1.4 Paths 48
3.1.5 Symmetry 49

3.2 Traffic Patterns 50
3.3 Performance 51

3.3.1 Throughput and Maximum Channel Load 51
3.3.2 Latency 55
3.3.3 Path Diversity 57

3.4 Packaging Cost 60
3.5 Case Study: The SGI Origin 2000 64
3.6 Bibliographic Notes 69
3.7 Exercises 69

Chapter 4 Butterfly Networks 75

4.1 The Structure of Butterfly Networks 75
4.2 Isomorphic Butterflies 77
4.3 Performance and Packaging Cost 78
4.4 Path Diversity and Extra Stages 81
4.5 Case Study: The BBN Butterfly 84
4.6 Bibliographic Notes 86
4.7 Exercises 86

Chapter 5 Torus Networks 89

5.1 The Structure of Torus Networks 90
5.2 Performance 92

5.2.1 Throughput 92
5.2.2 Latency 95
5.2.3 Path Diversity 96

5.3 Building Mesh and Torus Networks 98
5.4 Express Cubes 100
5.5 Case Study: The MIT J-Machine 102
5.6 Bibliographic Notes 106
5.7 Exercises 107

Contents ix

Chapter 6 Non-Blocking Networks 111

6.1 Non-Blocking vs. Non-Interfering Networks 112
6.2 Crossbar Networks 112
6.3 Clos Networks 116

6.3.1 Structure and Properties of Clos Networks 116
6.3.2 Unicast Routing on Strictly Non-Blocking

Clos Networks 118
6.3.3 Unicast Routing on Rearrangeable Clos Networks 122
6.3.4 Routing Clos Networks Using Matrix

Decomposition 126
6.3.5 Multicast Routing on Clos Networks 128
6.3.6 Clos Networks with More Than Three Stages 133

6.4 Beneš Networks 134
6.5 Sorting Networks 135
6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch 137
6.7 Bibliographic Notes 142
6.8 Exercises 142

Chapter 7 Slicing and Dicing 145

7.1 Concentrators and Distributors 146
7.1.1 Concentrators 146
7.1.2 Distributors 148

7.2 Slicing and Dicing 149
7.2.1 Bit Slicing 149
7.2.2 Dimension Slicing 151
7.2.3 Channel Slicing 152

7.3 Slicing Multistage Networks 153
7.4 Case Study: Bit Slicing in the Tiny Tera 155
7.5 Bibliographic Notes 157
7.6 Exercises 157

Chapter 8 Routing Basics 159

8.1 A Routing Example 160
8.2 Taxonomy of Routing Algorithms 162
8.3 The Routing Relation 163
8.4 Deterministic Routing 164

8.4.1 Destination-Tag Routing in Butterfly Networks 165
8.4.2 Dimension-Order Routing in Cube Networks 166

x Contents

8.5 Case Study: Dimension-Order Routing in the Cray T3D 168
8.6 Bibliographic Notes 170
8.7 Exercises 171

Chapter 9 Oblivious Routing 173

9.1 Valiant’s Randomized Routing Algorithm 174
9.1.1 Valiant’s Algorithm on Torus Topologies 174
9.1.2 Valiant’s Algorithm on Indirect Networks 175

9.2 Minimal Oblivious Routing 176
9.2.1 Minimal Oblivious Routing on a

Folded Clos (Fat Tree) 176
9.2.2 Minimal Oblivious Routing on a Torus 178

9.3 Load-Balanced Oblivious Routing 180
9.4 Analysis of Oblivious Routing 180
9.5 Case Study: Oblivious Routing in the

Avici Terabit Switch Router(TSR) 183
9.6 Bibliographic Notes 186
9.7 Exercises 187

Chapter 10 Adaptive Routing 189

10.1 Adaptive Routing Basics 189
10.2 Minimal Adaptive Routing 192
10.3 Fully Adaptive Routing 193
10.4 Load-Balanced Adaptive Routing 195
10.5 Search-Based Routing 196
10.6 Case Study: Adaptive Routing in the

Thinking Machines CM-5 196
10.7 Bibliographic Notes 201
10.8 Exercises 201

Chapter 11 Routing Mechanics 203

11.1 Table-Based Routing 203
11.1.1 Source Routing 204
11.1.2 Node-Table Routing 208

11.2 Algorithmic Routing 211
11.3 Case Study: Oblivious Source Routing in the

IBM Vulcan Network 212

Contents xi

11.4 Bibliographic Notes 217
11.5 Exercises 217

Chapter 12 Flow Control Basics 221

12.1 Resources and Allocation Units 222
12.2 Bufferless Flow Control 225
12.3 Circuit Switching 228
12.4 Bibliographic Notes 230
12.5 Exercises 230

Chapter 13 Buffered Flow Control 233

13.1 Packet-Buffer Flow Control 234
13.2 Flit-Buffer Flow Control 237

13.2.1 Wormhole Flow Control 237
13.2.2 Virtual-Channel Flow Control 239

13.3 Buffer Management and Backpressure 245
13.3.1 Credit-Based Flow Control 245
13.3.2 On/Off Flow Control 247
13.3.3 Ack/Nack Flow Control 249

13.4 Flit-Reservation Flow Control 251

13.4.1 A Flit-Reservation Router 252
13.4.2 Output Scheduling 253
13.4.3 Input Scheduling 255

13.5 Bibliographic Notes 256
13.6 Exercises 256

Chapter 14 Deadlock and Livelock 257

14.1 Deadlock 258
14.1.1 Agents and Resources 258
14.1.2 Wait-For and Holds Relations 259
14.1.3 Resource Dependences 260
14.1.4 Some Examples 260
14.1.5 High-Level (Protocol) Deadlock 262

14.2 Deadlock Avoidance 263
14.2.1 Resource Classes 263
14.2.2 Restricted Physical Routes 267
14.2.3 Hybrid Deadlock Avoidance 270

xii Contents

14.3 Adaptive Routing 272
14.3.1 Routing Subfunctions and

Extended Dependences 272
14.3.2 Duato’s Protocol for Deadlock-Free Adaptive

Algorithms 276
14.4 Deadlock Recovery 277

14.4.1 Regressive Recovery 278
14.4.2 Progressive Recovery 278

14.5 Livelock 279
14.6 Case Study: Deadlock Avoidance in the Cray T3E 279
14.7 Bibliographic Notes 281
14.8 Exercises 282

Chapter 15 Quality of Service 285

15.1 Service Classes and Service Contracts 285
15.2 Burstiness and Network Delays 287

15.2.1 (σ, ρ) Regulated Flows 287
15.2.2 Calculating Delays 288

15.3 Implementation of Guaranteed Services 290
15.3.1 Aggregate Resource Allocation 291
15.3.2 Resource Reservation 292

15.4 Implementation of Best-Effort Services 294
15.4.1 Latency Fairness 294
15.4.2 Throughput Fairness 296

15.5 Separation of Resources 297
15.5.1 Tree Saturation 297
15.5.2 Non-interfering Networks 299

15.6 Case Study: ATM Service Classes 299
15.7 Case Study: Virtual Networks in the Avici TSR 300
15.8 Bibliographic Notes 302
15.9 Exercises 303

Chapter 16 Router Architecture 305

16.1 Basic Router Architecture 305
16.1.1 Block Diagram 305
16.1.2 The Router Pipeline 308

16.2 Stalls 310
16.3 Closing the Loop with Credits 312
16.4 Reallocating a Channel 313
16.5 Speculation and Lookahead 316

Contents xiii

16.6 Flit and Credit Encoding 319
16.7 Case Study: The Alpha 21364 Router 321
16.8 Bibliographic Notes 324
16.9 Exercises 324

Chapter 17 Router Datapath Components 325

17.1 Input Buffer Organization 325
17.1.1 Buffer Partitioning 326
17.1.2 Input Buffer Data Structures 328
17.1.3 Input Buffer Allocation 333

17.2 Switches 334
17.2.1 Bus Switches 335
17.2.2 Crossbar Switches 338
17.2.3 Network Switches 342

17.3 Output Organization 343
17.4 Case Study: The Datapath of the IBM Colony

Router 344
17.5 Bibliographic Notes 347
17.6 Exercises 348

Chapter 18 Arbitration 349

18.1 Arbitration Timing 349
18.2 Fairness 351
18.3 Fixed Priority Arbiter 352
18.4 Variable Priority Iterative Arbiters 354

18.4.1 Oblivious Arbiters 354
18.4.2 Round-Robin Arbiter 355
18.4.3 Grant-Hold Circuit 355
18.4.4 Weighted Round-Robin Arbiter 357

18.5 Matrix Arbiter 358
18.6 Queuing Arbiter 360
18.7 Exercises 362

Chapter 19 Allocation 363

19.1 Representations 363
19.2 Exact Algorithms 366
19.3 Separable Allocators 367

19.3.1 Parallel Iterative Matching 371
19.3.2 iSLIP 371
19.3.3 Lonely Output Allocator 372

xiv Contents

19.4 Wavefront Allocator 373
19.5 Incremental vs. Batch Allocation 376
19.6 Multistage Allocation 378
19.7 Performance of Allocators 380
19.8 Case Study: The Tiny Tera Allocator 383
19.9 Bibliographic Notes 385
19.10 Exercises 386

Chapter 20 Network Interfaces 389

20.1 Processor-Network Interface 390
20.1.1 Two-Register Interface 391
20.1.2 Register-Mapped Interface 392
20.1.3 Descriptor-Based Interface 393
20.1.4 Message Reception 393

20.2 Shared-Memory Interface 394
20.2.1 Processor-Network Interface 395
20.2.2 Cache Coherence 397
20.2.3 Memory-Network Interface 398

20.3 Line-Fabric Interface 400
20.4 Case Study: The MIT M-Machine Network Interface 403
20.5 Bibliographic Notes 407
20.6 Exercises 408

Chapter 21 Error Control 411

21.1 Know Thy Enemy: Failure Modes and Fault Models 411
21.2 The Error Control Process: Detection, Containment,

and Recovery 414
21.3 Link Level Error Control 415

21.3.1 Link Monitoring 415
21.3.2 Link-Level Retransmission 416
21.3.3 Channel Reconfiguration, Degradation,

and Shutdown 419
21.4 Router Error Control 421
21.5 Network-Level Error Control 422
21.6 End-to-end Error Control 423
21.7 Bibliographic Notes 423
21.8 Exercises 424

Contents xv

Chapter 22 Buses 427

22.1 Bus Basics 428
22.2 Bus Arbitration 432
22.3 High Performance Bus Protocol 436

22.3.1 Bus Pipelining 436
22.3.2 Split-Transaction Buses 438
22.3.3 Burst Messages 439

22.4 From Buses to Networks 441
22.5 Case Study: The PCI Bus 443
22.6 Bibliographic Notes 446
22.7 Exercises 446

Chapter 23 Performance Analysis 449

23.1 Measures of Interconnection Network Performance 449
23.1.1 Throughput 452
23.1.2 Latency 455
23.1.3 Fault Tolerance 456
23.1.4 Common Measurement Pitfalls 456

23.2 Analysis 460
23.2.1 Queuing Theory 461
23.2.2 Probabilistic Analysis 465

23.3 Validation 467
23.4 Case Study: Efficiency and Loss in the

BBN Monarch Network 468
23.5 Bibliographic Notes 470
23.6 Exercises 471

Chapter 24 Simulation 473

24.1 Levels of Detail 473
24.2 Network Workloads 475

24.2.1 Application-Driven Workloads 475
24.2.2 Synthetic Workloads 476

24.3 Simulation Measurements 478
24.3.1 Simulator Warm-Up 479
24.3.2 Steady-State Sampling 481
24.3.3 Confidence Intervals 482

24.4 Simulator Design 484
24.4.1 Simulation Approaches 485
24.4.2 Modeling Source Queues 488

xvi Contents

24.4.3 Random Number Generation 490
24.4.4 Troubleshooting 491

24.5 Bibliographic Notes 491
24.6 Exercises 492

Chapter 25 Simulation Examples 495

25.1 Routing 495
25.1.1 Latency 496
25.1.2 Throughput Distributions 499

25.2 Flow Control Performance 500
25.2.1 Virtual Channels 500
25.2.2 Network Size 502
25.2.3 Injection Processes 503
25.2.4 Prioritization 505
25.2.5 Stability 507

25.3 Fault Tolerance 508

Appendix A Nomenclature 511

Appendix B Glossary 515

Appendix C Network Simulator 521

Bibliography 523

Index 539

Acknowledgments

We are deeply indebted to a large number of people who have contributed to the
creation of this book. Timothy Pinkston at USC and Li-Shiuan Peh at Princeton
were the first brave souls (other than the authors) to teach courses using drafts of
this text. Their comments have greatly improved the quality of the finished book.
Mitchell Gusat, Mark Hill, Li-Shiuan Peh, Timothy Pinkston, and Craig Stunkel
carefully reviewed drafts of this manuscript and provided invaluable comments that
led to numerous improvements.

Many people (mostly designers of the original networks) contributed informa-
tion to the case studies and verfied their accuracy. Randy Rettberg provided informa-
tion on the BBN Butterfly and Monarch. Charles Leiserson and Bradley Kuszmaul
filled in the details of the Thinking Machines CM-5 network. Craig Stunkel and Bu-
lent Abali provided information on the IBM SP1 and SP2. Information on the Alpha
21364 was provided by Shubu Mukherjee. Steve Scott provided information on the
Cray T3E. Greg Thorson provided the pictures of the T3E.

Much of the development of this material has been influenced by the students
and staff that have worked with us on interconnection network research projects at
Stanford and MIT, including Andrew Chien, Scott Wills, Peter Nuth, Larry Dennison,
Mike Noakes, Andrew Chang, Hiromichi Aoki, Rich Lethin, Whay Lee, Li-Shiuan
Peh, Jin Namkoong, Arjun Singh, and Amit Gupta.

This material has been developed over the years teaching courses on intercon-
nection networks: 6.845 at MIT and EE482B at Stanford. The students in these
classes helped us hone our understanding and presentation of the material. Past TAs
for EE482B Li-Shiuan Peh and Kelly Shaw deserve particular thanks.

We have learned much from discussions with colleagues over the years, includ-
ing Jose Duato (Valencia), Timothy Pinkston (USC), Sudha Yalamanchili (Georgia
Tech),AnantAgarwal (MIT),Tom Knight (MIT),Gill Pratt (MIT),SteveWard (MIT),
Chuck Seitz (Myricom), and Shubu Mukherjee (Intel). Our practical understanding
of interconnection networks has benefited from industrial collaborations with Justin
Rattner (Intel), Dave Dunning (Intel), Steve Oberlin (Cray), Greg Thorson (Cray),
Steve Scott (Cray), Burton Smith (Cray), Phil Carvey (BBN and Avici), Larry Den-
nison (Avici), Allen King (Avici), Derek Chiou (Avici), Gopalkrishna Ramamurthy
(Velio), and Ephrem Wu (Velio).

xvii

xviii Acknowledgments

Denise Penrose, Summer Block, and Alyson Day have helped us throughout the
project.

We also thank both Catherine Albano and Deborah Prato for careful editing, and
our production manager, Marcy Barnes-Henrie, who shepherded the book through
the sometimes difficult passage from manuscript through finished product.

Finally, our families: Sharon, Jenny, Katie, and Liza Dally and Herman and Dana
Towles offered tremendous support and made significant sacrifices so we could have
time to devote to writing.

Preface

Digital electronic systems of all types are rapidly becoming commmunication lim-
ited. Movement of data, not arithmetic or control logic, is the factor limiting cost,
performance, size, and power in these systems. At the same time, buses, long the
mainstay of system interconnect, are unable to keep up with increasing performance
requirements.

Interconnection networks offer an attractive solution to this communication cri-
sis and are becoming pervasive in digital systems. A well-designed interconnection
network makes efficient use of scarce communication resources — providing high-
bandwidth, low-latency communication between clients with a minimum of cost
and energy.

Historically used only in high-end supercomputers and telecom switches, in-
terconnection networks are now found in digital systems of all sizes and all types.
They are used in systems ranging from large supercomputers to small embedded
systems-on-a-chip (SoC) and in applications including inter-processor communi-
cation, processor-memory interconnect, input/output and storage switches, router
fabrics, and to replace dedicated wiring.

Indeed, as system complexity and integration continues to increase, many design-
ers are finding it more efficient to route packets, not wires. Using an interconnection
network rather than dedicated wiring allows scarce bandwidth to be shared so it can
be used efficiently with a high duty factor. In contrast, dedicated wiring is idle much
of the time. Using a network also enforces regular, structured use of communication
resources, making systems easier to design, debug, and optimize.

The basic principles of interconnection networks are relatively simple and it is
easy to design an interconnection network that efficiently meets all of the require-
ments of a given application. Unfortunately, if the basic principles are not under-
stood it is also easy to design an interconnection network that works poorly if at all.
Experienced engineers have designed networks that have deadlocked, that have per-
formance bottlenecks due to a poor topology choice or routing algorithm, and that
realize only a tiny fraction of their peak performance because of poor flow control.
These mistakes would have been easy to avoid if the designers had understood a few
simple principles.

This book draws on the experience of the authors in designing interconnection
networks over a period of more than twenty years.We have designed tens of networks
that today form the backbone of high-performance computers (both message-passing

xix

xx Preface

and shared-memory), Internet routers, telecom circuit switches, and I/O intercon-
nect. These systems have been designed around a variety of topologies including
crossbars, tori, Clos networks, and butterflies. We developed wormhole routing and
virtual-channel flow control. In designing these systems and developing these meth-
ods we learned many lessons about what works and what doesn’t. In this book, we
share with you, the reader, the benefit of this experience in the form of a set of sim-
ple principles for interconnection network design based on topology, routing, flow
control, and router architecture.

Organization

The book starts with two introductory chapters and is then divided into five parts
that deal with topology, routing, flow control, router architecture, and performance.
A graphical outline of the book showing dependences between sections and chap-
ters is shown in Figure 1. We start in Chapter 1 by describing what interconnection
networks are, how they are used, the performance requirements of their different
applications, and how design choices of topology, routing, and flow control are made
to satisfy these requirements. To make these concepts concrete and to motivate the
remainder of the book, Chapter 2 describes a simple interconnection network in de-
tail: from the topology down to the Verilog for each router. The detail of this example
demystifies the abstract topics of routing and flow control, and the performance is-
sues with this simple network motivate the more sophisticated methods and design
approaches described in the remainder of the book.

The first step in designing an interconnection network is to select a topology
that meets the throughput, latency, and cost requirements of the application given
a set of packaging constraints. Chapters 3 through 7 explore the topology design
space. We start in Chapter 3 by developing topology metrics. A topology’s bisection
bandwidth and diameter bound its achievable throughput and latency, respectively,
and its path diversity determines both performance under adversarial traffic and fault
tolerance. Topology is constrained by the available packaging technology and cost
requirements with both module pin limitations and system wire bisection governing
achievable channel width. In Chapters 4 through 6, we address the performance
metrics and packaging constraints of several common topologies: butterflies, tori, and
non-blocking networks. Our discussion of topology ends at Chapter 7 with coverage
of concentration and toplogy slicing, methods used to handle bursty traffic and to
map topologies to packaging modules.

Once a topology is selected, a routing algorithm determines how much of the bi-
section bandwidth can be converted to system throughput and how closely latency
approaches the diameter limit. Chapters 4 through 11 describe the routing prob-
lem and a range of solutions. A good routing algorithm load-balances traffic across
the channels of a topology to handle adversarial traffic patterns while simultane-
ously exploiting the locality of benign traffic patterns. We introduce the problem in
Chapter 8 by considering routing on a ring network and show that the naive greedy al-
gorithm gives poor performance on adversarial traffic. We go on to describe oblivious

Preface xxi

Topology
Q:3-5
S:3-7

Introduction
Q: 1,2
S: 1,2

1. Introduction

2. Simple
Network

3. Topology
Basics

4. Butterflies

5. Tori 6. Non-
blocking

7. Slicing

Routing
Q:8-11
S:8-11

8. Routing
Basics

9. Oblivious
Routing

10. Adaptive
Routing

11. Routing
Mechanics

A

Flow Control
Q:12,13,14

S:12,13,14,15

A

12. Flow
Control Basics

13. Buffered
Flow Control

14. Deadlock
& Livelock 15. Quality of

Service

Router Architecture
Q:16-19

S:16-19,20
16. Router

Architecture

17. Datapath
Components

18. Arbitration

19. Allocation

21. Error
Control

22. Buses

Performance
Q:23

S:23-25
23. Perf.
Analysis

24. Simulation

25. Simulation
Examples

20. Network
Interfaces

Figure 1 Outline of this book showing dependencies between chapters. Major sections are denoted as
shaded areas. Chapters that should be covered in any course on the subject are placed along
the left side of the shaded areas. Optional chapters are placed to the right. Dependences are
indicated by arrows. A solid arrow implies that the chapter at the tail of the arrow must be
understood to understand the chapter at the head of the arrow. A dotted arrow indicates that
it is helpful, but not required, to understand the chapter at the tail of the arrow before the
chapter at the head. The notation in each shaded area recommends which chapters to cover in
a quarter course (Q) and a semester course (S).

xxii Preface

routing algorithms in Chapter 9 and adaptive routing algorithms in Chapter 10. The
routing portion of the book then concludes with a discussion of routing mechanics
in Chapter 11.

A flow-control mechanism sequences packets along the path from source to des-
tination by allocating channel bandwidth and buffer capacity along the way. A good
flow-control mechanism avoids idling resources or blocking packets on resource con-
straints, allowing it to realize a large fraction of the potential throughput and minimiz-
ing latency respectively. A bad flow-control mechanism may squander throughput
by idling resources, increase latency by unnecessarily blocking packets, and may even
result in deadlock or livelock. These topics are explored in Chapters 12 through 15.

The policies embedded in a routing algorithm and flow-control method are re-
alized in a router. Chapters 16 through 22 describe the microarchitecture of routers
and network interfaces. In these chapters, we introduce the building blocks of routers
and show how they are composed. We then show how a router can be pipelined to
handle a flit or packet each cycle. Special attention is given to problems of arbitration
and allocation in Chapters 18 and 19 because these functions are critical to router
performance.

To bring all of these topics together, the book closes with a discussion of net-
work performance in Chapters 23 through 25. In Chapter 23 we start by defining
the basic performance measures and point out a number of common pitfalls that
can result in misleading measurements. We go on to introduce the use of queueing
theory and probablistic analysis in predicting the performance of interconnection
networks. In Chapter 24 we describe how simulation is used to predict network
performance covering workloads, measurement methodology, and simulator design.
Finally, Chapter 25 gives a number of example performance results.

Teaching Interconnection Networks

The authors have used the material in this book to teach graduate courses on inter-
connection networks for over 10 years at MIT (6.845) and Stanford (EE482b). Over
the years the class notes for these courses have evolved and been refined. The result
is this book.

A one quarter or one semester course on interconnection networks can follow
the outline of this book, as indicated in Figure 1. An individual instructor can add
or delete the optional chapters (shown to the right side of the shaded area) to tailor
the course to their own needs.

One schedule for a one-quarter course using this book is shown in Table 1 . Each
lecture corresponds roughly to one chapter of the book. A semester course can start
with this same basic outline and add additional material from the optional chapters.

In teaching a graduate interconnections network course using this book, we typ-
ically assign a research or design project (in addition to assigning selected exercises
from each chapter). A typical project involves designing an interconnection network
(or a component of a network) given a set of constraints, and comparing the perfor-
mance of alternative designs. The design project brings the course material together

Preface xxiii

Table 1 One schedule for a ten-week quarter course on interconnection networks. Each chapter covered
corresponds roughly to one lecture. In week 3, Chapter 6 through Section 6.3.1 is covered.

Week Topic Chapters

1 Introduction 1, 2

2 Topology 3, 4

3 Topology 5, (6)

4 Routing 8, 9

5 Routing 10, 11

6 Flow Control 12, 13, 14

7 Router Architecture 16, 17

8 Arbitration & Allocation 18, 19

9 Performance 23

10 Review

for students. They see the interplay of the different aspects of interconnection net-
work design and get to apply the principles they have learned first hand.

Teaching materials for a one quarter course using this book (Stanford EE482b)
are available on-line at http://cva.stanford.edu/ee482b. This page also in-
cludes example projects and student papers from the last several offerings of this
course.

.
This Page Intentionally Left Blank

About the Authors

Bill Dally received his B.S. in electrical engineering from Virginia Polytechnic In-
stitute, an M.S. in electrical engineering from Stanford University, and a Ph.D. in
computer science from Caltech. Bill and his group have developed system architec-
ture, network architecture, signaling, routing, and synchronization technology that
can be found in most large parallel computers today. While at Bell Telephone Lab-
oratories, Bill contributed to the design of the BELLMAC32 microprocessor and
designed the MARS hardware accelerator. At Caltech he designed the MOSSIM
Simulation Engine and the Torus Routing Chip, which pioneered wormhole routing
and virtual-channel flow control. While a Professor of Electrical Engineering and
Computer Science at the Massachusetts Institute of Technology, his group built the
J-Machine and the M-Machine, experimental parallel computer systems that pio-
neered the separation of mechanisms from programming models and demonstrated
very low overhead synchronization and communication mechanisms. Bill is currently
a professor of electrical engineering and computer science at Stanford University. His
group at Stanford has developed the Imagine processor, which introduced the con-
cepts of stream processing and partitioned register organizations. Bill has worked
with Cray Research and Intel to incorporate many of these innovations in commer-
cial parallel computers. He has also worked with Avici Systems to incorporate this
technology into Internet routers, and co-founded Velio Communications to com-
mercialize high-speed signaling technology. He is a fellow of the IEEE, a fellow of
the ACM, and has received numerous honors including the ACM Maurice Wilkes
award. He currently leads projects on high-speed signaling, computer architecture,
and network architecture. He has published more than 150 papers in these areas and
is an author of the textbook Digital Systems Engineering (Cambridge University Press,
1998).

Brian Towles received a B.CmpE in computer engineering from the Georgia
Institute of Technology in 1999 and an M.S. in electrical engineering from Stanford
University in 2002. He is currently working toward a Ph.D. in electrical engineer-
ing at Stanford University. His research interests include interconnection networks,
network algorithms, and parallel computer architecture.

xxv

.
This Page Intentionally Left Blank

C H A P T E R 1

Introduction to
Interconnection Networks

Digital systems are pervasive in modern society. Digital computers are used for tasks
ranging from simulating physical systems to managing large databases to preparing
documents. Digital communication systems relay telephone calls, video signals, and
Internet data. Audio and video entertainment is increasingly being delivered and
processed in digital form. Finally, almost all products from automobiles to home
appliances are digitally controlled.

A digital system is composed of three basic building blocks: logic, memory, and
communication. Logic transforms and combines data — for example, by performing
arithmetic operations or making decisions. Memory stores data for later retrieval,
moving it in time. Communication moves data from one location to another. This
book deals with the communication component of digital systems. Specifically, it
explores interconnection networks that are used to transport data between the subsys-
tems of a digital system.

The performance of most digital systems today is limited by their communication
or interconnection, not by their logic or memory. In a high-end system, most of the
power is used to drive wires and most of the clock cycle is spent on wire delay, not
gate delay. As technology improves, memories and processors become small, fast,
and inexpensive. The speed of light, however, remains unchanged. The pin density
and wiring density that govern interconnections between system components are
scaling at a slower rate than the components themselves. Also, the frequency of
communication between components is lagging far beyond the clock rates of modern
processors. These factors combine to make interconnection the key factor in the
success of future digital systems.

As designers strive to make more efficient use of scarce interconnection
bandwidth, interconnection networks are emerging as a nearly universal solution
to the system-level communication problems for modern digital systems. Originally

1

2 C H A P T E R 1 Introduction to Interconnection Networks

developed for the demanding communication requirements of multicomputers,
interconnection networks are beginning to replace buses as the standard system-level
interconnection. They are also replacing dedicated wiring in special-purpose systems
as designers discover that routing packets is both faster and more economical than
routing wires.

1.1 Three Questions About Interconnection Networks

Before going any further, we will answer some basic questions about interconnection
networks: What is an interconnection network? Where do you find them? Why are
they important?

What is an interconnection network?As illustrated in Figure 1.1, an interconnec-
tion network is a programmable system that transports data between terminals. The
figure shows six terminals, T1 through T6, connected to a network. When terminal
T3 wishes to communicate some data with terminal T5, it sends a message containing
the data into the network and the network delivers the message to T5. The network
is programmable in the sense that it makes different connections at different points
in time. The network in the figure may deliver a message from T3 to T5 in one cycle
and then use the same resources to deliver a message from T3 to T1 in the next
cycle. The network is a system because it is composed of many components: buffers,
channels, switches, and controls that work together to deliver data.

Networks meeting this broad definition occur at many scales. On-chip networks
may deliver data between memory arrays, registers, and arithmetic units within a
single processor. Board-level and system-level networks tie processors to memories
or input ports to output ports. Finally, local-area and wide-area networks connect
disparate systems together within an enterprise or across the globe. In this book, we
restrict our attention to the smaller scales: from chip-level to system level. Many ex-
cellent texts already exist addressing the larger-scale networks. However, the issues
at the system level and below, where channels are short and the data rates very

Interconnection network

T1 T2 T3 T4 T5 T6

Figure 1.1 Functional view of an interconnection network. Terminals (labeled T1 through T6) are connected
to the network using channels. The arrowheads on each end of the channel indicate it is
bidirectional, supporting movement of data both into and out of the interconnection network.

1.1 Three Questions About Interconnection Networks 3

high, are fundamentally different than at the large scales and demand different
solutions

Where do you find interconnection networks? They are used in almost all
digital systems that are large enough to have two components to connect. The most
common applications of interconnection networks are in computer systems and
communication switches. In computer systems, they connect processors to mem-
ories and input/output (I/O) devices to I/O controllers. They connect input ports
to output ports in communication switches and network routers. They also connect
sensors and actuators to processors in control systems. Anywhere that bits are trans-
ported between two components of a system, an interconnection network is likely
to be found.

As recently as the late 1980s, most of these applications were served by a very
simple interconnection network: the multi-drop bus. If this book had been written
then, it would probably be a book on bus design. We devote Chapter 22 to buses, as
they are still important in many applications. Today, however, all high-performance
interconnections are performed by point-to-point interconnection networks rather
than buses, and more systems that have historically been bus-based switch to net-
works every year. This trend is due to non-uniform performance scaling. The demand
for interconnection performance is increasing with processor performance (at a rate
of 50% per year) and network bandwidth.Wires, on the other hand, aren’t getting any
faster. The speed of light and the attenuation of a 24-gauge copper wire do not im-
prove with better semiconductor technology. As a result, buses have been unable to
keep up with the bandwidth demand, and point-to-point interconnection networks,
which both operate faster than buses and offer concurrency, are rapidly taking over.

Why are interconnection networks important? Because they are a limiting factor
in the performance of many systems. The interconnection network between proces-
sor and memory largely determines the memory latency and memory bandwidth,
two key performance factors, in a computer system.1 The performance of the inter-
connection network (sometimes called the fabric in this context) in a communication
switch largely determines the capacity (data rate and number of ports) of the switch.
Because the demand for interconnection has grown more rapidly than the capability
of the underlying wires, interconnection has become a critical bottleneck in most
systems.

Interconnection networks are an attractive alternative to dedicated wiring be-
cause they allow scarce wiring resources to be shared by several low-duty-factor
signals. In Figure 1.1, suppose each terminal needs to communicate one word with
each other terminal once every 100 cycles. We could provide a dedicated word-wide
channel between each pair of terminals, requiring a total of 30 unidirectional chan-
nels. However, each channel would be idle 99% of the time. If, instead, we connect
the 6 terminals in a ring, only 6 channels are needed. (T1 connects to T2, T2 to
T3, and so on, ending with a connection from T6 to T1.) With the ring network,

1. This is particularly true when one takes into account that most of the access time of a modern memory
chip is communication delay.

4 C H A P T E R 1 Introduction to Interconnection Networks

the number of channels is reduced by a factor of five and the channel duty factor is
increased from 1% to 12.5%.

1.2 Uses of Interconnection Networks

To understand the requirements placed on the design of interconnection networks, it
is useful to examine how they are used in digital systems. In this section we examine
three common uses of interconnection networks and see how these applications drive
network requirements. Specifically, for each application, we will examine how the
application determines the following network parameters:

1. The number of terminals

2. The peak bandwidth of each terminal

3. The average bandwidth of each terminal

4. The required latency

5. The message size or a distribution of message sizes

6. The traffic pattern(s) expected

7. The required quality of service

8. The required reliability and availability of the interconnection network

We have already seen that the number of terminals, or ports, in a network corresponds
to the number of components that must be connected to the network. In addition to
knowing the number of terminals, the designer also needs to know how the terminals
will interact with the network.

Each terminal will require a certain amount of bandwidth from the network,
usually expressed in bits per second (bit/s). Unless stated otherwise, we assume the
terminal bandwidths are symmetric — that is, the input and output bandwidths of the
terminal are equal. The peak bandwidth is the maximum data rate that a terminal
will request from the network over a short period of time, whereas the average
bandwidth is the average date rate that a terminal will require. As illustrated in the
following section on the design of processor-memory interconnects, knowing both
the peak and average bandwidths becomes important when trying to minimize the
implementation cost of the interconnection network.

In addition to the rate at which messages must be accepted and delivered by
the network, the time required to deliver an individual message, the message latency,
is also specified for the network. While an ideal network supports both high band-
width and low latency, there often exists a tradeoff between these two parameters.
For example, a network that supports high bandwidth tends to keep the network
resources busy, often causing contention for the resources. Contention occurs when
two or more messages want to use the same shared resource in the network. All but
one of the these messages will have to wait for that resource to become free, thus
increasing the latency of the messages. If, instead, resource utilization was decreased
by reducing the bandwidth demands, latency would be also lowered.

1.2 Uses of Interconnection Networks 5

Message size, the length of a message in bits, is another important design consid-
eration. If messages are small, overheads in the network can have a larger impact on
performance than in the case where overheads can be amortized over the length of
a larger message. In many systems, there are several possible message sizes.

How the messages from each terminal are distributed across all the possible
destination terminals defines a network’s traffic pattern. For example, each terminal
might send messages to all other terminals with equal probability. This is the random
traffic pattern. If, instead, terminals tend to send messages only to other nearby
terminals, the underlying network can exploit this spatial locality to reduce cost. In
other networks, however, it is important that the specifications hold for arbitrary
traffic patterns.

Some networks will also require quality of service (QoS). Roughly speaking, QoS
involves the fair allocation of resources under some service policy. For example,
when multiple messages are contending for the same resource in the network, this
contention can be resolved in many ways. Messages could be served in a first-come,
first-served order based on how long they have been waiting for the resource in
question.Another approach gives priority to the message that has been in the network
the longest. The choice of between these and other allocation policies is based on
the services required from the network.

Finally, the reliability and availability required from an interconnection network
influence design decisions. Reliability is a measure of how often the network correctly
performs the task of delivering messages. In most situations, messages need to be
delivered 100% of time without loss. Realizing a 100% reliable network can be done
by adding specialized hardware to detect and correct errors, a higher-level software
protocol, or using a mix of these approaches. It may also be possible for a small
fraction of messages to be dropped by the network as we will see in the following
section on packet switching fabrics. The availability of a network is the fraction of
time it is available and operating correctly. In an Internet router, an availability of
99.999% is typically specified — less than five minutes of total downtime per year.
The challenge of providing this level availability of is that the components used to
implement the network will often fail several times a minute. As a result, the network
must be designed to detect and quickly recover from these failures while continuing
to operate.

1.2.1 Processor-Memory Interconnect

Figure 1.2 illustrates two approaches of using an interconnection network to connect
processors to memories. Figure 1.2(a) shows a dance-hall architecture2 in which P

processors are connected to M memory banks by an interconnection network. Most
modern machines use the integrated-node configuration shown in Figure 1.2(b),

2. This arrangement is called a dance-hall architecture because the arrangement of processors lined up on
one side of the network and memory banks on the other resembles men and women lined up on either
side of an old-time dance hall.

6 C H A P T E R 1 Introduction to Interconnection Networks

(a)

Interconnection network

P

M

P

M

P

M

Interconnection network

P M

C

P M

C

P M

C

(b)

Figure 1.2 Use of an interconnection network to connect processor and memory. (a) Dance-hall architec-
ture with separate processor (P) and memory (M) ports. (b) Integrated-node architecture with
combined processor and memory ports and local access to one memory bank.

Table 1.1 Parameters of processor-memory interconnection networks.

Parameter Value

Processor ports 1–2,048
Memory ports 0–4,096
Peak bandwidth 8 Gbytes/s
Average bandwidth 400 Mbytes/s
Message latency 100 ns
Message size 64 or 576 bits
Traffic patterns arbitrary
Quality of service none
Reliability no message loss
Availability 0.999 to 0.99999

where processors and memories are combined in an integrated node. With this ar-
rangement, each processor can access its local memory via a communication switch
C without use of the network.

The requirements placed on the network by either configuration are listed in
Table 1.1. The number of processor ports may be in the thousands, such as the
2,176 processor ports in a maximally configured Cray T3E, or as small as 1 for
a single processor. Configurations with 64 to 128 processors are common today
in high-end servers, and this number is increasing with time. For the combined
node configuration, each of these processor ports is also a memory port. With a
dance-hall configuration, on the other hand, the number of memory ports is typi-
cally much larger than the number of processor ports. For example, one high-end

1.2 Uses of Interconnection Networks 7

vector processor has 32 processor ports making requests of 4,096 memory banks.
This large ratio maximizes memory bandwidth and reduces the probability of bank
conflicts in which two processors simultaneously require access to the same mem-
ory bank.

A modern microprocessor executes about 109 instructions per second and each
instruction can require two 64-bit words from memory (one for the instruction
itself and one for data). If one of these references misses in the caches, a block of 8
words is usually fetched from memory. If we really needed to fetch 2 words from
memory each cycle, this would demand a bandwidth of 16 Gbytes/s. Fortunately,
only about one third of all instructions reference data in memory, and caches work
well to reduce the number of references that must actually reference a memory
bank. With typical cache-miss ratios, the average bandwidth is more than an order
of magnitude lower — about 400 Mbytes/s.3 However, to avoid increasing memory
latency due to serialization, most processors still need to be able to fetch at a peak
rate of one word per instruction from the memory system. If we overly restricted
this peak bandwidth, a sudden burst of memory requests would quickly clog the
processor’s network port. The process of squeezing this high-bandwidth burst of
requests through a lower bandwidth network port, analogous to a clogged sink slowly
draining, is called serialization and increases message latency. To avoid serialization
during bursts of requests, we need a peak bandwidth of 8 Gbytes/s.

Processor performance is very sensitive to memory latency, and hence to the
latency of the interconnection network over which memory requests and replies
are transported. In Table 1.1, we list a latency requirement of 100 ns because this
is the basic latency of a typical memory system without the network. If our net-
work adds an additional 100 ns of latency, we have doubled the effective memory
latency.

When the load and store instructions miss in the processor’s cache (and are not
addressed to the local memory in the integrated-node configuration) they are con-
verted into read-request and write-request packets and forwarded over the network
to the appropriate memory bank. Each read-request packet contains the memory
address to be read, and each write-request packet contains both the memory address
and a word or cache line to be written. After the appropriate memory bank receives
a request packet, it performs the requested operation and sends a corresponding
read-reply or write-reply packet.4

Notice that we have begun to distinguish between messages and packets in our
network. A message is the unit of transfer from the network’s clients — in this case,
processors and memories — to the network. At the interface to the network, a single
message can create one or more packets. This distinction allows for simplification
of the underlying network, as large messages can be broken into several smaller
packets, or unequal length messages can be split into fixed length packets. Because

3. However, this average demand is very sensitive to the application. Some applications have very poor
locality, resulting in high cache-miss ratios and demands of 2 Gbytes/s or more bandwidth from memory.

4. A machine that runs a cache-coherence protocol over the interconnection network requires several addi-
tional packet types. However, the basic constraints are the same.

8 C H A P T E R 1 Introduction to Interconnection Networks

Read request /
write reply

header addr

header addr
Read reply/

write request data

0

63 575640

63

Figure 1.3 The two packet formats required for the processor-memory interconnect.

of the relatively small messages created in this processor-memory interconnect, we
assume a one-to-one correspondence between messages and packets.

Read-request and write-reply packets do not contain any data, but do store an
address. This address plus some header and packet type information used by the net-
work fits comfortably within 64 bits. Read-reply and write-request packets contain
the same 64 bits of header and address information plus the contents of a 512-bit
cache line, resulting in 576-bit packets. These two packet formats are illustrated in
Figure 1.3.

As is typical with processor-memory interconnect, we do not require any specific
QoS. This is because the network is inherently self-throttling. That is, if the network
becomes congested, memory requests will take longer to be fulfilled. Since the pro-
cessors can have only a limited number of requests outstanding, they will begin idle,
waiting for the replies. Because the processors are not creating new requests while
they are idling, the congestion of the network is reduced. This stabilizing behavior is
called self-throttling. Most QoS guarantees affect the network only when it is con-
gested, but self-throttling tends to avoid congestion, thus making QoS less useful in
processor-memory interconnects.

This application requires an inherently reliable network with no packet loss.
Memory request and reply packets cannot be dropped. A dropped request packet
will cause a memory operation to hang forever. At the least, this will cause a user
program to crash due to a timeout. At the worst, it can bring down the whole system.
Reliability can be layered on an unreliable network — for example, by having each
network interface retain a copy of every packet transmitted until it is acknowledged
and retransmitting when a packet is dropped. (See Chapter 21.) However, this ap-
proach often leads to unacceptable latency for a processor-memory interconnect.
Depending on the application, a processor-memory interconnect needs availability
ranging from three nines (99.9%) to five nines (99.999%).

1.2.2 I/O Interconnect

Interconnection networks are also used in computer systems to connect I/O devices,
such as disk drives, displays, and network interfaces, to processors and/or memories.
Figure 1.4 shows an example of a typical I/O network used to attach an array of disk
drives (along the bottom of the figure) to a set of host adapters. The network oper-
ates in a manner identical to the processor-memory interconnect, but with different

1.2 Uses of Interconnection Networks 9

Interconnection network

HA HA HA

Figure 1.4 A typical I/O network connects a number of host adapters to a larger number of I/O devices —
in this case, disk drives.

granularity and timing. These differences, particularly an increased latency tolerance,
drive the network design in very different directions.

Disk operations are performed by transferring sectors of 4 Kbytes or more. Due to
the rotational latency of the disk plus the time needed to reposition the head, the
latency of a sector access may be many milliseconds. A disk read is performed by
sending a control packet from a host adapter specifying the disk address (device
and sector) to be read and the memory block that is the target of the read. When
the disk receives the request, it schedules a head movement to read the requested
sector. Once the disk reads the requested sector, it sends a response packet to the
appropriate host adapter containing the sector and specifying the target memory
block.

The parameters of a high-performance I/O interconnection network are listed
in Table 1.2. This network connects up to 64 host adapters and for each host adapter
there could be many physical devices, such as hard drives. In this example, there
are up to 64 I/O devices per host adapter, for a total of 4,096 devices. More typical
systems might connect a few host adapters to a hundred or so devices.

The disk ports have a high ratio of peak-to-average bandwidth. When a disk
is transferring consecutive sectors, it can read data at rates of up to 200 Mbytes/s.
This number determines the peak bandwidth shown in the table. More typically, the
disk must perform a head movement between sectors taking an average of 5 ms (or
more), resulting in an average data rate of one 4-Kbyte sector every 5 ms, or less than
1 Mbyte/s. Since the host ports each handle the aggregate traffic from 64 disk ports,
they have a lower ratio of peak-to-average bandwidth.

This enormous difference between peak and average bandwidth at the device
ports calls for a network topology with concentration. While it is certainly sufficient
to design a network to support the peak bandwidth of all devices simultaneously,
the resulting network will be very expensive. Alternatively, we could design the
network to support only the average bandwidth, but as discussed in the processor-
memory interconnect example, this introduces serialization latency. With the high
ratio of peak-to-average bandwidth, this serialization latency would be quite large.
A more efficient approach is to concentrate the requests of many devices onto an

10 C H A P T E R 1 Introduction to Interconnection Networks

Table 1.2 Parameters of I/O interconnection networks.

Parameter Value

Device ports 1–4,096
Host ports 1–64
Peak bandwidth 200 Mbytes/s
Average bandwidth 1 Mbytes/s (devices)

64 Mbytes/s (hosts)
Message latency 10 μs
Message size 32 bytes or 4 Kbytes
Traffic patterns arbitrary
Reliability no message lossa

Availability 0.999 to 0.99999

aA small amount of loss is acceptable, as the error recovery for
a failed I/O operation is much more graceful than for a failed
memory reference.

“aggregate” port. The average bandwidth of this aggregated port is proportional to
the number of devices sharing it. However, because the individual devices infre-
quently request their peak bandwidth from the network, it is very unlikely that
more than a couple of the many devices are demanding their peak bandwidth from
the aggregated port. By concentrating, we have effectively reduced the ratio between
the peak and average bandwidth demand, allowing a less expensive implementation
without excessive serialization latency.

Like the processor-memory network, the message payload size is bimodal, but
with a greater spread between the two modes. The network carries short (32-byte)
messages to request read operations, acknowledge write operations, and perform disk
control. Read replies and write request messages, on the other hand, require very long
(8-Kbyte) messages.

Because the intrinsic latency of disk operations is large (milliseconds) and be-
cause the quanta of data transferred as a unit is large (4 Kbyte), the network is not
very latency sensitive. Increasing latency to 10 μs would cause negligible degradation
in performance. This relaxed latency specification makes it much simpler to build
an efficient I/O network than to build an otherwise equivalent processor-memory
network where latency is at a premium.

Inter-processor communication networks used for fast message passing in cluster-
based parallel computers are actually quite similar to I/O networks in terms of their
bandwidth and granularity and will not be discussed separately. These networks are
often referred to as system-area networks (SANs) and their main difference from
I/O networks is more sensitivity to message latency, generally requiring a network
with latency less than a few microseconds.

In applications where disk storage is used to hold critical data for an enterprise,
extremely high availability is required. If the storage network goes down, the business

1.2 Uses of Interconnection Networks 11

In
te

rc
on

ne
ct

io
n

ne
tw

or
k

Line
card

Line
card

Line
card

Figure 1.5 Some network routers use interconnection networks as a switching fabric, passing packets
between line cards that transmit and receive packets over network channels.

goes down. It is not unusual for storage systems to have availability of 0.99999
(five nines) — no more than five minutes of downtime per year.

1.2.3 Packet Switching Fabric

Interconnection networks have been replacing buses and crossbars as the switch-
ing fabric for communication network switches and routers. In this application, an
interconnection network is acting as an element of a router for a larger-scale net-
work (local-area or wide-area). Figure 1.5 shows an example of this application. An
array of line cards terminates the large-scale network channels (usually optical fibers
with 2.5 Gbits/s or 10 Gbits/s of bandwidth).5 The line cards process each packet
or cell to determine its destination, verify that it is in compliance with its service
agreement, rewrite certain fields of the packet, and update statistics counters. The
line card then forwards each packet to the fabric. The fabric is then responsible for
forwarding each packet from its source line card to its destination line card. At the
destination side, the packet is queued and scheduled for transmission on the output
network channel.

Table 1.3 shows the characteristics of a typical interconnection network used as a
switching fabric. The biggest differences between the switch fabric requirements and
the processor-memory and I/O network requirements are its high average bandwidth
and the need for quality of service.

The large packet size of a switch fabric, along with its latency insensitivity, sim-
plifies the network design because latency and message overhead do not have to
be highly optimized. The exact packet sizes depend on the protocol used by the

5. A typical high-end IP router today terminates 8 to 40 10 Gbits/s channels with at least one vendor scaling
to 512 channels. These numbers are expected to increase as the aggregate bandwidth of routers doubles
roughly every eighteen months.

12 C H A P T E R 1 Introduction to Interconnection Networks

Table 1.3 Parameters of a packet switching fabric.

Parameter Value

Ports 4–512
Peak Bandwidth 10 Gbits/s
Average Bandwidth 7 Gbits/s
Message Latency 10 μs
Packet Payload Size 40–64 Kbytes
Traffic Patterns arbitrary
Reliability < 10−15 loss rate
Quality of Service needed
Availability 0.999 to 0.99999

router. For Internet protocol (IP), packets range from 40 bytes to 64 Kbytes,6 with
most packets either 40, 100, or 1,500 bytes in length. Like our other two examples,
packets are divided between short control messages and large data transfers.

A network switch fabric is not self-throttling like the processor-memory or I/O
interconnect. Each line card continues to send a steady stream of packets regardless of
the congestion in the fabric and, at the same time, the fabric must provide guaranteed
bandwidth to certain classes of packets. To meet this service guarantee, the fabric
must be non-interfering. That is, an excess in traffic destined for line-card a, perhaps
due to a momentary overload, should not interfere with or “steal” bandwidth from
traffic destined for a different line card b, even if messages destined to a and messages
destined to b share resources throughout the fabric. This need for non-interference
places unique demands on the underlying implementation of the network switch
fabric.

An interesting aspect of a switch fabric that can potentially simplify its design is
that in some applications it may be acceptable to drop a very small fraction of pack-
ets — say, one in every 1015. This would be allowed in cases where packet dropping is
already being performed for other reasons ranging from bit-errors on the input fibers
(which typically have an error rate in the 10−12 to 10−15 range) to overflows in the
line card queues. In these cases, a higher-level protocol generally handles dropped
packets, so it is acceptable for the router to handle very unlikely circumstances (such
as an internal bit error) by dropping the packet in question, as long as the rate of
these drops is well below the rate of packet drops due to other reasons. This is in
contrast to a processor-memory interconnect, where a single lost packet can lock up
the machine.

6. The Ethernet protocol restricts maximum packet length to be less than or equal to 1,500 bytes.

1.3 Network Basics 13

1.3 Network Basics

To meet the performance specifications of a particular application, such as those
described above, the network designer must work within technology constraints to
implement the topology, routing, and flow control of the network.As we have said in the
previous sections, a key to the efficiency of interconnection networks comes from the
fact that communication resources are shared. Instead of creating a dedicated channel
between each terminal pair, the interconnection network is implemented with a
collection of shared router nodes connected by shared channels. The connection
pattern of these nodes defines the network’s topology. A message is then delivered
between terminals by making several hops across the shared channels and nodes
from its source terminal to its destination terminal. A good topology exploits the
properties of the network’s packaging technology, such as the number of pins on
a chip’s package or the number of cables that can be connected between separate
cabinets, to maximize the bandwidth of the network.

Once a topology has been chosen, there can be many possible paths (sequences
of nodes and channels) that a message could take through the network to reach its
destination. Routing determines which of these possible paths a message actually
takes. A good choice of paths minimizes their length, usually measured as the num-
ber of nodes or channels visited, while balancing the demand placed on the shared
resources of the network. The length of a path obviously influences latency of a
message through the network, and the demand or load on a resource is a measure
of how often that resource is being utilized. If one resource becomes over-utilized
while another sits idle, known as a load imbalance, the total bandwidth of messages
being delivered by the network is reduced.

Flow control dictates which messages get access to particular network resources
over time. This influence of flow control becomes more critical as the utilization of
resource increases and good flow control forwards packets with minimum delay and
avoids idling resources under high loads.

1.3.1 Topology

Interconnection networks are composed of a set of shared router nodes and chan-
nels, and the topology of the network refers to the arrangement of these nodes and
channels.The topology of an interconnection network is analogous to a roadmap.The
channels (like roads) carry packets (like cars) from one router node (intersection) to
another. For example, the network shown in Figure 1.6 consists of 16 nodes, each
of which is connected to 8 channels, 1 to each neighbor and 1 from each neighbor.
This particular network has a torus topology. In the figure, the nodes are denoted by
circles and each pair of channels, one in each direction, is denoted by a line joining
two nodes. This topology is also a direct network, where a terminal is associated with
each of the 16 nodes of the topology.

A good topology exploits the characteristics of the available packaging technol-
ogy to meet the bandwidth and latency requirements of the application at minimum

14 C H A P T E R 1 Introduction to Interconnection Networks

00

01

02

10

11

12

20

21

22

03 13 23

30

31

32

33

Figure 1.6 A network topology is the arrangements of nodes, denoted by circles numbered 00 to 33 and
channels connecting the nodes. A pair of channels, one in each direction, is denoted by each
line in the figure. In this 4 × 4, 2-D torus, or 4-ary 2-cube, topology, each node is connected to
8 channels: 1 channel to and 1 channel from each of its 4 neighbors.

cost. To maximize bandwidth, a topology should saturate the bisection bandwidth, the
bandwidth across the midpoint of the system, provided by the underlying packaging
technology.

For example, Figure 1.7 shows how the network from Figure 1.6 might be pack-
aged. Groups of four nodes are placed on vertical printed circuit boards. Four of
the circuit boards are then connected using a backplane circuit board, just as PCI
cards might be plugged into the motherboard of a PC. For this system, the bisection
bandwidth is the maximum bandwidth that can be transferred across this backplane.
Assuming the backplane is wide enough to contain 256 signals, each operating at a
data rate of 1 Gbit/s, the total bisection bandwidth is 256 Gbits/s.

Referring back to Figure 1.6, exactly 16 unidirectional channels cross the mid-
point of our topology — remember that the lines in the figure represent two
channels, one in each direction. To saturate the bisection of 256 signals, each chan-
nel crossing the bisection should be 256/16 = 16 signals wide. However, we must
also take into account the fact that each node will be packaged on a single IC chip.
For this example, each chip has only enough pins to support 128 signals. Since our
topology requires a total of 8 channels per node, each chip’s pin constraint limits the
channel width to 128/8 = 16 signals. Fortunately, the channel width given by pin
limitations exactly matches the number of signals required to saturate the bisection
bandwidth.

In contrast, consider the 16-node ring network shown in Figure 1.8. There are
4 channels connected to each node, so pin constraints limit the channel width to
128/4 = 32 signals. Four channels cross the bisection, so we would like to design
these channels to be 256/4 = 64 signals wide to saturate our bisection, but the

1.3 Network Basics 15

00 10 20 33

00 10 20 32

00 10 20 31

Backplane

00 10 20 30

PC boards

256 signals

Figure 1.7 A packaging of a 16-node torus topology. Groups of 4 nodes are packaged on single printed
circuit boards, four of which are connected to a single backplane board. The backplane channels
for the third column are shown along the right edge of the backplane. The number of signals
across the width of the backplane (256) defines the bisection bandwidth of this particular
package.

0 1 2 3 4 5 6 7

15 14 13 12 11 10 9 8

Figure 1.8 For the constraints of our example, a 16-node ring network has lower latency than the 16-node,
2-D torus of Figure 1.6. This latency is achieved at the expense of lower throughput.

pins limit the channel width to only half of this. Thus, with identical technology
constraints, the ring topology provides only half the bandwidth of the torus topology.
In terms of bandwidth, the torus is obviously a superior choice, providing the full
32 Gbits/s of bandwidth per node across the midpoint of the system.

However, high bandwidth is not the only measure of a topology’s performance.
Suppose we have a different application that requires only 16 Gbits/s of bandwidth
under identical technology constraints, but also requires the minimum possible
latency. Moreover, suppose this application uses rather long 4,096-bit packets. To
achieve a low latency, the topology must balance the desire for a small average dis-
tance between nodes against a low serialization latency.

The distance between nodes, referred to as the hop count, is measured as the
number of channels and nodes a message must traverse on average to reach its des-
tination. Reducing this distance calls for increasing the node degree (the number of
channels entering and leaving each node). However, because each node is subject
to a fixed pin limitation, increasing the number of channels leads to narrower chan-
nel widths. Squeezing a large packet through a narrow channel induces serialization

16 C H A P T E R 1 Introduction to Interconnection Networks

latency. To see how this tradeoff affects topology choice, we revisit our two 16-node
topologies, but now we focus on message latency.

First, to quantify latency due to hop count, a traffic pattern needs to be assumed.
For simplicity, we use random traffic, where each node sends to every other node with
equal probability. The average hop count under random traffic is just the average
distance between nodes. For our torus topology, the average distance is 2 and for
the ring the average distance is 4. In a typical network, the latency per hop might
be 20 ns, corresponding to a total hop latency of 40 ns for the torus and 80 ns for
the ring.

However, the wide channels of the ring give it a much lower serialization latency.
To send a 4,096-bit packet across a 32-signal channel requires 4,096/32 = 128 cycles
of the channel. Our signaling rate of 1 GHz corresponds to a period of 1 ns, so the
serialization latency of the ring is 128 ns. We have to pay this serialization time
only once if our network is designed efficiently, which gives an average delay of
80 + 128 = 208 ns per packet through the ring. Similar calculations for the torus
yield a serialization latency of 256 ns and a total delay of 296 ns. Even though the
ring has a greater average hop count, the constraints of physical packaging give it a
lower latency for these long packets.

As we have seen here, no one topology is optimal for all applications. Different
topologies are appropriate for different constraints and requirements. Topology is
discussed in more detail in Chapters 3 through 7.

1.3.2 Routing

The routing method employed by a network determines the path taken by a packet
from a source terminal node to a destination terminal node. A route or path is an
ordered set of channels P = {c1, c2, . . . , ck}, where the output node of channel ci

equals the input node of channel ci+1, the source is the input to channel c1, and
the destination is the output of channel ck. In some networks there is only a single
route from each source to each destination, whereas in others, such as the torus
network in Figure 1.6, there are many possible paths. When there are many paths,
a good routing algorithm balances the load uniformly across channels regardless
of the offered traffic pattern. Continuing our roadmap analogy, while the topology
provides the roadmap, the roads and intersections, the routing method steers the car,
making the decision on which way to turn at each intersection. Just as in routing
cars on a road, it is important to distribute the traffic — to balance the load across
different roads rather than having one road become congested while parallel roads
are empty.

Figure 1.9 shows two different routes from node 01 to node 22 in the network of
Figure 1.6. In Figure 1.9(a) the packet employs dimension-order routing, routing first
in the x-dimension to reach node 21 and then in the y-dimension to reach destination
node 22. This route is a minimal route in that it is one of the shortest paths from 01
to 22. (There are six.) Figure 1.9(b) shows an alternate route from 00 to 22. This
route is non-minimal, taking 5 hops rather than the minimum of 3.

1.3 Network Basics 17

While dimension-order routing is simple and minimal, it can produce signifi-
cant load imbalance for some traffic patterns. For example, consider adding another
dimension-order route from node 11 to node 20 in Figure 1.9(a). This route also uses
the channel from node 11 to node 21,doubling its load.A channel’s load is the average
amount of bandwidth that terminal nodes are trying to send across it. Normalizing
the load to the maximum rate at which the terminals can inject data into the network,
this channel has a load of 2. A better routing algorithm could reduce the normalized
channel load to 1 in this case. Because dimension-order routing is placing twice the
necessary load on this single channel, the resulting bandwidth of the network under
this traffic pattern will be only half of its maximum. More generally, all routing algo-
rithms that choose a single, fixed path between each source-destination pair, called
deterministic routing algorithms, are especially subject to low bandwidth due to load
imbalance. These and other issues for routing algorithm design are described in more
detail in Chapters 8 to 10.

1.3.3 Flow Control

Flow control manages the allocation of resources to packets as they progress along
their route. The key resources in most interconnection networks are the channels
and the buffers. We have already seen the role of channels in transporting packets
between nodes. Buffers are storage implemented within the nodes, such as registers
or memories, and allow packets to be held temporarily at the nodes. Continuing our
analogy: the topology determines the roadmap, the routing method steers the car,
and the flow control controls the traffic lights, determining when a car can advance
over the next stretch of road (channels) or when it must pull off into a parking lot
(buffer) to allow other cars to pass.

00

01

02

10

11

12

20

21

22

03 13 23

30

31

32

33

00

01

02

10

11

12

20

21

22

03 13 23

30

31

32

33

(a) (b)

Figure 1.9 Two ways of routing from 01 to 22 in the 2-D torus of Figure 1.6. (a) Dimension-order routing
moves the packet first in the x dimension, then in the y dimension. (b) A non-minimal route
requires more than the minimum path length.

18 C H A P T E R 1 Introduction to Interconnection Networks

To realize the performance potential of the topology and routing method, the
flow-control strategy must avoid resource conflicts that can hold a channel idle. For
example, it should not block a packet that can use an idle channel because it is
waiting on a buffer held by a packet that is blocked on a busy channel. This situation
is analogous to blocking a car that wants to continue straight behind a car that is
waiting for a break in traffic to make a left turn. The solution, in flow control as well
as on the highway, is to add a (left turn) lane to decouple the resource dependencies,
allowing the blocked packet or car to make progress without waiting.

A good flow control strategy is fair and avoids deadlock. An unfair flow control
strategy can cause a packet to wait indefinitely, much like a car trying to make a left
turn from a busy street without a light. Deadlock is a situation that occurs when
a cycle of packets are waiting for one another to release resources, and hence are
blocked indefinitely — a situation not unlike gridlock in our roadmap analogy.

We often describe a flow control method by using a time-space diagram such as
the ones shown in Figure 1.10. The figure shows time-space diagrams for (a) store-
and-forward flow control and (b) cut-through flow control. In both diagrams, time
is shown on the horizontal axis and space is shown on the vertical axis. Time is
expressed in cycles. Space is shown by listing the channels used to send the packet.
Each packet is divided into five fixed-size flits. A flit, or flow control digit, is the
smallest unit of information recognized by the flow control method. Picking a small,
fixed size simplifies router design without incurring a large overhead for packets
whose length are not a multiple of the flit size. Each flit of a single packet, denoted
by labeled boxes, is being sent across four channels of a network. A box is shown in
the diagram during the cycle that a particular flit is using the bandwidth of a channel.
As seen in Figure 1.10, the choice of flow control techniques can significantly affect
the latency of a packet through the network.

Flow control is described in more detail in Chapters 12 and 13. The problems
of deadlock, livelock, tree saturation, and quality of service that arise in conjunction
with flow control and routing are dealt with in Chapters 14 and 15.

a b c d e

C
ha

nn
el

0
1
2

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3

a b c d e
a b c d e

a b c d e

17 18 19

a b c d e

C
ha

nn
el

0
1
2

Cycle
0 1 2 3 4 5 6 7

3

a b c d e
a b c d e

a b c d e

(A) (B)

Figure 1.10 Time-space diagrams showing two flow control methods. The vertical axis shows space (chan-
nels) and the horizontal axis shows time (cycles). (a) With store-and-forward flow control, a
packet, in this case containing 5 flits, is completely transmitted across one channel before
transmission across the next channel is started. (b) With cut-through flow control, packet trans-
mission over the channels is pipelined, with each flit being transmitted across the next channel
as soon as it arrives.

1.3 Network Basics 19

1.3.4 Router Architecture

Figure 1.11 shows a simplified view of the internals of one of the 16 nodes in the
network of Figure 1.6. A buffer is associated with each of the four input chan-
nels and these buffers hold arriving flits until they can be allocated the resources
necessary for departure. Once a flit can be ensured buffer space in the next router
along its path, the downstream router, it can begin to vie for access to the cross-
bar switch. The crossbar switch can be configured to connect any input buffer of
the router to any output channel, but under the constraints that each input is con-
nected to at most one output, and each output is connected to at most one input.
The tasks of resolving all the potential requests to the crossbar and other shared re-
sources of the router fall onto the allocators. To advance to the next router, a flit in
one of the input buffers must be allocated space in a buffer on the next node of its
route, bandwidth on the next channel of the route, and it must win the allocation to
traverse the crossbar switch. Router architecture is covered in detail in Chapters 16
through 21.

1.3.5 Performance of Interconnection Networks

Performance of an interconnection network is described primarily by a latency vs.
offered traffic curve like the one shown in Figure 1.12. The figure shows the average
latency of a packet, the time from when the first bit of the packet arrives at the
source terminal to when the last bit of the packet arrives at the destination terminal,
as a function of offered traffic, the average amount of traffic (bits/s) generated by each

Buffer

Buffer

Buffer

Buffer

Crossbar
switch

Allocators

Figure 1.11 Simplified block diagram of a router. Flits arriving over the input channels are stored in buffers
associated with each input. A set of allocators assigns buffers on the next node and channel
bandwidth to pending flits. When a flit has been allocated the resources it needs, it is forwarded
by the crossbar switch to an output channel.

20 C H A P T E R 1 Introduction to Interconnection Networks

source terminal of the network. To draw a particular latency vs. offered traffic curve,
the traffic pattern (for example, random traffic) must also be specified.

Although latency vs. offered traffic curves give the most accurate view of the
ultimate performance of an interconnection network, they do not have simple,closed-
form expressions and are generally found by discrete-event simulation. To guide our
understanding of the tradeoff in the early design stages of an interconnection net-
work, we take an incremental approach to network performance that follows our
exploration of topology, routing, and flow control.

Zero-load latency gives a lower bound on the average latency of a packet through
the network. The zero-load assumption is that a packet never contends for network
resources with other packets. Under this assumption, the average latency of a packet
is its serialization latency plus its hop latency. For example,consider the torus network
shown in Figure 1.6, with packets of length L = 512 bits, channels with a bandwidth
of b = 16 Gbits/s, and random traffic. In this case, the serialization latency is L/b =
32 ns.The lowest possible hop latency for random traffic occurs with minimal routing
and gives an average hop count of Hmin = 2. For a router latency of tr = 10 ns, the
minimum hop latency is Hmintr = 20 ns. This gives a lower bound of 32+20 = 52 ns
on the average latency of a packet through the network, based solely on the topology,
packaging, and traffic pattern of the network.

Incorporating the average hop count Havg of the actual routing algorithm used in
the network gives a tighter bound on packet latency because Havg ≥ Hmin. Finally, the
flow control employed by the network can further reduce the performance over the
bounds given by the topology and the routing. For example, if our network employs
store and forward flow control (Figure 1.10[a]) the zero-load latency will be Havgtr ×

Offered Traffic (bits/s)

L
at

en
cy

 (
s)

T0

λS ΘR 2Bc /N

Havgtr + L /b
Hmintr + L /b

Figure 1.12 Latency vs. offered traffic curve for an interconnection network. At low offered traffic, latency
approaches the zero-load latency T0. Latency goes to infinity at the saturation throughput λs .
Saturation throughput is bounded by a topology limit 2Bc/N and a routing limit �R .

1.4 History 21

L/b rather than Havgtr + L/b. The actual zero-load latency, T0, incorporates the
constraints of topology along with the actual performance, routing, and flow control.
These successively tighter bounds on latency are shown as horizontal asymptotes to
the curve in Figure 1.12.

A similar approach gives a set of upper bounds on the throughput of the network.
While each source offers a particular amount of traffic to the network, the through-
put, or accepted traffic, is the rate that traffic (bits/s) is delivered to the destination
terminals. For our example with random traffic, half of the traffic must cross the
bisection of the network.The bisection consists of 16 channels with a total bandwidth
of Bc = 256 Gbits/s. Hence, the traffic per node cannot exceed 2Bc/N or 32 Gbits/s.
This bound assumes traffic is perfectly balanced across the bisection. Therefore, a
particular routing algorithm R cannot exceed this bound and the throughput tak-
ing into account the routing algorithm �R may actually be lower if load imbalance
occurs (�R ≤ 2Bc/N). Finally, if our flow control results in idle channels due to re-
source dependencies, the saturation throughput of the network λs can be significantly
less than the bound of �R. These three bounds on throughput are shown as vertical
asymptotes in Figure 1.12.

Taking this incremental approach to performance — deriving successively tighter
bounds due to topology, routing, and flow control — enables us to explore how each
of the design decisions we consider affects performance without complicating our
analysis with unnecessary details. For example, we can see how a topology choice
affects latency independent of routing and flow control. In contrast, trying to deal
with performance all at once makes it difficult to see the effects of any one design
choice.

After developing our incremental model of performance, we will consider per-
formance in its entirety in Chapters 23 through 25. In these chapters we discuss
some subtle points of performance measurement, introduce analytic methods of
estimating performance (based on queueing theory and probability theory), dis-
cuss simulation methods for measuring performance, and give a number of example
measurements.

1.4 History

Interconnection networks have a rich history that spans many decades. Networks
developed along at least three parallel threads: telephone switching networks, inter-
processor communication, and processor-memory interconnect.

Telephone switching networks have been around as long as the telephone.
Early telephone networks were built from electro-mechanical crossbars or electro-
mechanical step-by-step switches.As late as the 1980s, most local telephone switches
were still built from electro-mechanical relays, although toll (long-distance) switches
were completely electronic and digital by that time. Key developments in telephone
switching include the non-blocking, multistage Clos network in 1953 [37] and the
Beneš network in 1962 [17]. Many large telephone switches today are still built from
Clos or Clos-like networks.

22 C H A P T E R 1 Introduction to Interconnection Networks

The first inter-processor interconnection networks were connections between
the registers of neighboring processors connected in 2-D arrays. The 1962 Solomon
machine [172] is an example of a processor array of this type. These early networks
performed no routing. Thus, the processors had to explicitly relay communications
to non-neighbors, making for poor performance and considerable programming com-
plexity. By the mid-1980s, router chips, such as the torus routing chip [56], were
developed to forward messages through intermediate nodes without processor inter-
vention.

Inter-processor interconnection networks have gone through a series of topology
fads over the years — largely motivated by packaging and other technology con-
straints. The early machines, like Solomon [172], Illiac [13], and MPP, were based on
simple 2-D mesh or torus networks because of their physical regularity. Starting in
the late 1970s, binary n-cube or hypercube networks became popular because of their
low diameter. Many machines designed around the hypercube networks emerged,
such as the Ametek S14, Cosmic Cube [163], the nCUBE computers [134, 140], and
the Intel iPSC series [38, 155]. In the mid-1980s, it was shown that under realistic
packaging constraints low-dimensional networks outperformed hypercubes [2, 46]
and most machines returned to 2-D or 3-D mesh or torus networks. Consequently,
most machines built over the last decade have returned to these networks, including
the J-machine [138], Cray T3D [95] and T3E [162], Intel DELTA [117], and Alpha
21364 [131], to mention a few. Today, the high pin bandwidth of router chips rela-
tive to message length motivates the use of networks with much higher node degree,
such as butterfly and Clos networks. We can expect a switch to such networks over
the next decade.

Processor-memory interconnection networks emerged in the late 1960s when
parallel processor systems incorporated alignment networks to allow any processor to
access any memory bank without burdening the other processors [110]. The smallest
machines employed crossbar switches for this purpose, whereas larger machines used
networks with a butterfly (or equivalent) topology, in a dance-hall arrangement.
Variations on this theme were used through the 1980s for many shared-memory
parallel processors.

The three threads of interconnection network evolution recently merged. Since
the early 1990s, there has been little difference in the design of processor-memory
and inter-processor interconnection networks. In fact, the same router chips have
been used for both. A variant of the Clos and Beneš networks of telephony has also
emerged in multiprocessor networks in the form of the fat tree topology [113].

Our discussion of history has focused on topology because it is the most visi-
ble attribute of a network. Of course, routing and flow control methods evolved in
parallel with topology. Early routing chips employed simple deterministic routing
and either circuit-switching or store-and-forward packet switching. Later routers
employed adaptive routing with sophisticated deadlock avoidance schemes and
virtual-channel flow control.

1.5 Organization of this Book 23

1.5 Organization of this Book

We start in the next chapter with a complete description of a simple interconnection
network from the topology down to the logic gates to give the reader the "big picture"
view of interconnection networks before diving into details. The remaining chapters
cover the details. They are organized into five main sections: topology, routing, flow
control, router architecture,and performance. Each section is organized into chapters,
with the first chapter of each section covering the basics and the later chapters
covering more involved topics.

.
This Page Intentionally Left Blank

C H A P T E R 2

A Simple Interconnection
Network

In this chapter, we examine the architecture and design of a simple interconnection
network to provide a global view. We will examine the simplest possible network:
a butterfly network with dropping flow control. Although the resulting network is
costly, it emphasizes many of the key aspects of interconnection network design. In
later chapters, we will learn how to produce more efficient and practical networks.

2.1 Network Specifications and Constraints

Like all engineering design problems, network design starts with a set of specifications
that describe what we wish to build and a set of constraints that limit the range
of potential solutions. The specifications for the example network in this chapter
are summarized in Table 2.1. These specifications include the size of the network
(64 ports) and the bandwidth required per port. As shown in the table, the peak and
average bandwidths are equal, implying that inputs inject messages continuously at
a rate of 0.25 Gbyte/s. Random traffic, where each input sends to each output with
equal probability, and message sizes from 4 to 64 bytes are expected. Also, the quality
of service and reliability specifications allow for dropped packets. That is, not every
packet needs to be successfully delivered to its destination. As we will see, the ability
to drop packets will simplify our flow control implementation. Of course, an actual
set of specifications would be quite a bit longer and more specific. For example, a QoS
specification would indicate what fraction of packets could be dropped and under
what circumstances. However, this set suffices to illustrate many points of our design.

The constraints on our example network design are illustrated in Table 2.2. These
constraints specify the capacity and cost of each level of packaging. Our network is
composed of chips that are assembled on circuit boards that are in turn connected

25

26 C H A P T E R 2 A Simple Interconnection Network

Table 2.1 Specifications for our example network. Only a portion
of the possible design parameters is given to simplify the
design.

Parameter Value

Input ports 64
Output ports 64
Peak bandwidth 0.25 Gbyte/s
Average bandwidth 0.25 Gbyte/s
Message latency 100 ns
Message size 4–64 bytes
Traffic pattern random
Quality of service dropping acceptable
Reliability dropping acceptable

Table 2.2 Constraints for our example network.

Parameter Value

Port width 2 bits
Signaling rate 1 GHz
Signals per chip 150
Chip cost $200
Chip pin bandwidth 1 Gbit/s
Signals per circuit board 750
Circuit board cost $200
Signals per cable 80
Cable cost $50
Cable length 4 m at 1 Gbit/s

via cables. The constraints specify the number of signals1 that can be passed across
a module interface at each level, and the cost of each module. For the cable, the
constraints also specify the longest distance that can be traversed without reducing
cable bandwidth.2

1. Note that signals does not necessarily imply pins. For example, it is quite common to use differential
signaling that requires two pins per signal.

2. As bandwidth times distance squared, Bd2, is a constant for a given type of cable, the bandwidth must
be reduced by a factor of four, to 250 Mbits/s, to run the cable twice as far.

2.2 Topology 27

2.2 Topology

For simplicity our example network has a butterfly topology. From the point of
view of a single input port, the butterfly looks like a tree. (See Figure 2.1.) Each
level of the tree contains switching nodes, which, unlike the terminal nodes, do
not send or receive packets, but only pass packets along. Also, each of the channels
is unidirectional, as indicated by the arrows, flowing from the input to the output
nodes (left to right in the figure). Choosing the butterfly, however, does not complete
the job of topology design. We must also decide on the speedup of our network,
determine the radix of our butterfly, and determine how the topology is mapped
onto the packaging levels.

The speedup of a network is the ratio of the total input bandwidth of the net-
work to the network’s ideal capacity. The capacity is defined as the best possible
throughput, assuming perfect routing and flow control, that could be achieved by
the network under the given traffic pattern. Designing with a speedup of 1 means
the demands of the inputs are exactly matched to the ideal ability of the network to
deliver traffic. Providing more speedup increases the design’s margin and allows for
non-idealities in the implementation. In some sense, speedup is analogous to a civil
engineer’s notion of a structure’s safety factor. A building with a safety factor of 4,
for example, is designed to handle stresses 4 times greater than its specifications.

For the butterfly, sizing each of the network’s channels to have the same band-
width as a single input port gives a speedup of 1. To see this, consider the demand
placed on any particular channel under random traffic — summing the fraction of

0

1

2

3

4

5

6

7

0.1

0.2

0.3

1.1

1.3

0

1

2

3

4

5

6

7

0.0 1.0

1.2 2.2

2.1

2.0

2.3

Figure 2.1 An 8-node butterfly network. Data flows from the input nodes on the left (circles) through three
stages of switch nodes (rectangles) to the output nodes on the right (circles). The switch nodes
are labeled with their stage and address. All channels are unidirectional, as indicated by the
arrows.

28 C H A P T E R 2 A Simple Interconnection Network

traffic that each input sends over this channel always gives a demand equal to the
input port bandwidth. In our simple network, this corresponds to designing our
channels with a bandwidth of 0.25 Gbyte/s. However, based on the fact that we will
be opting for simplicity rather than efficiency in our subsequent design choices, we
choose a speedup of 8. While this speedup is quite large (the Brooklyn Bridge was
designed with a safety factor of only 6!), we will quickly learn how to reduce our
speedup requirements over the course of the book.

Our choice of speedup, along with our packaging constraints, determines the
number of inputs and outputs of each switching node, referred to as the radix of
the butterfly. For example, the butterfly in Figure 2.1 is designed with a radix of 2.
Each of the switching nodes is implemented on a single chip, so the total number
of channels (inputs and outputs) times the channel width must not exceed the limit
of 150 signals per chip. To give a speedup of 8, we need a network channel band-
width of 8 × 0.25 = 2 Gbytes/s, which takes 16 signals operating at 1 Gbit/s each.
Allowing for 2 additional overhead signals, the channels are 18 signals wide and we
can fit only 150/18 ≈ 8 channels on a chip. We therefore choose a radix-4 butterfly,
which has 4 input channels and 4 output channels per switching node, for a total of
8 channels.

To connect each input port to all 64 output ports, our butterfly requires log4 64
= 3 levels or stages of switching nodes. Thus, our network will be a radix-4, 3-stage
butterfly, or a 4-ary 3-fly for short. The full topology of this network is illustrated in
Figure 2.2. While this diagram may seem daunting at first, it is an extension of the
smaller butterfly we introduced in Figure 2.1. The channels that connect input 1 to
each of the 64 outputs again form a tree (shown in bold), but now the degree of the
tree is 4 — the radix of our network.

The last step in designing our topology is packaging it. We have already made one
packaging decision by placing one switching node per chip. By choosing the radix of
the network to meet the per chip constraints, we know that the switching nodes are
packaged within our design constraints. These chips must be mounted on a circuit
board, and, in order to minimize cost, we would like to mount as many switching
chips on a circuit board as possible. We are constrained, however, not to exceed the
maximum pinout of 750 signals entering or leaving a circuit board.3 This constraint
is driven by the maximum number of signals that can be routed through a connector
on one edge of the board — the connector density (signals/m) times the length of
the connector (m).

A valid partitioning of switch nodes between circuit boards is shown in Figure 2.2.
The boundary of each of the 8 boards is denoted by a dashed box. As shown,
the network is packaged by placing the first stage of switches on 4 circuit boards
with 4 chips per board. The next 2 stages are packaged on 4 boards, each con-
taining 8 chips connected as a 16-port butterfly network. We verify that each cir-
cuit board’s pinout constraint is met by observing that 32 channels each containing
18 signals enter and leave each board. This gives us a total pinout of 32 × 18 = 576

3. In a real system there would also be a constraint on the signal density on the circuit board.

2.2 Topology 29

i0
i1
i2
i3

i4
i5
i6
i7

i8
i9
i10
i11

i12
i13
i14
i15

i16
i17
i18
i19

i20
i21
i22
i23

i24
i25
i26
i27

i28
i29
i30
i31

o0
o1
o2
o3

o4
o5
o6
o7

o8
o9

o10
o11

o12
o13
o14
o15

i32
i33
i34
i35

i36
i37
i38
i39

i40
i41
i42
i43

i44
i45
i46
i47

i48
i49
i50
i51

i52
i53
i54
i55

i56
i57
i58
i59

i60
i61
i62
i63

o16
o17
o18
o19

o20
o21
o22
o23

o24
o25
o26
o27

o28
o29
o30
o31

o32
o33
o34
o35

o36
o37
o38
o39

o40
o41
o42
o43

o44
o45
o46
o47

o48
o49
o50
o51

o52
o53
o54
o55

o56
o57
o58
o59

o60
o61
o62
o63

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10

0.11

0.12

0.13

0.14

0.15

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

2.0

2.3

2.1

2.2

2.4

2.7

2.5

2.6

2.8

2.11

2.9

2.10

2.12

2.15

2.13

2.14

Figure 2.2 Topology and packaging of our radix-4 3-stage butterfly network. Channels are unidirectional
and data flows from left (inputs) to right (outputs).

30 C H A P T E R 2 A Simple Interconnection Network

i0
i1
i2
i3

i4
i5
i6
i7

i8
i9
i10
i11

i12
i13
i14
i15

i16
i17
i18
i19

i20
i21
i22
i23

i24
i25
i26
i27

i28
i29
i30
i31

o0
o1
o2
o3

o4
o5
o6
o7

o8
o9

o10
o11

o12
o13
o14
o15

i32
i33
i34
i35

i36
i37
i38
i39

i40
i41
i42
i43

i44
i45
i46
i47

i48
i49
i50
i51

i52
i53
i54
i55

i56
i57
i58
i59

i60
i61
i62
i63

o16
o17
o18
o19

o20
o21
o22
o23

o24
o25
o26
o27

o28
o29
o30
o31

o32
o33
o34
o35

o36
o37
o38
o39

o40
o41
o42
o43

o44
o45
o46
o47

o48
o49
o50
o51

o52
o53
o54
o55

o56
o57
o58
o59

o60
o61
o62
o63

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10

0.11

0.12

0.13

0.14

0.15

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

2.0

2.3

2.1

2.2

2.4

2.7

2.5

2.6

2.8

2.11

2.9

2.10

2.12

2.15

2.13

2.14

Figure 2.3 Cabling of the board-to-board connections four our radix-4 3-stage butterfly network.

2.3 Routing 31

signals, which comfortably fits within our constraint of 750 signals. The astute reader
will notice that we could put 5 router chips on the first stage boards (40 chan-
nels or 720 signals total), but this would not be efficient because we would still
need 4 first-stage boards. Also, we cannot put 10 router chips on the second-stage
boards because the 46 channels (828 signals) required would exceed the pinout of
our board.

Finally, the connections between boards are carried on cables, as illustrated in
Figure 2.3. Each thick gray line in the figure corresponds to a single cable carrying
four 18-bit channels from one circuit board to another. The 8 circuit boards are
cabled together with 16 of these cables: one from each board in the first stage to
each board in the second and third stages. With the 8 circuit boards arranged in a
single chassis, these cables are all well within the maximum length.

Taking a step back, we see how the switching nodes in our topology can connect
any input to any output. The first stage of switches selects between the 4 circuit
boards holding the remaining stages. The second stage of switches selects 1 of 4
chips making up the third stage on the selected circuit board. Finally, the last stage of
switches selects the desired output port. We exploit this divide-and-conquer structure
when routing packets through the network.

2.3 Routing

Our simple butterfly network employs destination-tag routing4 in which the bits of the
destination address are used to select the output port at each stage of the network.
In our 64-node network, the destination address is 6 bits. Each stage of switches uses
2 address bits to select 1 of the 4 switch outputs, directing the packet to the proper
quarter of the remaining nodes. For example, consider routing a packet from input
12 to output node 35 = 1000112. The most significant dibit of the destination (10)
selects the third output port of switch 0.3, taking the packet to switch 1.11. Then,
the middle dibit (00) selects the first output port of switch 1.11. From switch 2.8,
the least-significant dibit (11) selects the last output port, delivering the packet to
output port 35.

Notice that this sequence of switch output selections was completely indepen-
dent of the input port of the packet. For example, routing from node 51 to output
35 follows the same sequence of selections: the third switch port in the first stage,
the first port in the second stage, and the last port in the third stage. So, we can
implement the routing algorithm by storing just the destination address with each
packet.

For uniformity, all of our switch nodes operate on the most significant dibit of
the destination address field. Then, before the packet leaves the node, the address
field is shifted two bits to the left, discarding the bits that have just been used and
exposing the next dibit in the most significant position. After the first stage of routing

4. See Section 8.4.1 for a more complete description of destination-tag routing.

32 C H A P T E R 2 A Simple Interconnection Network

to node 35, for example, the original address 1000112 is shifted to 0011002. This
convention allows us to use the same switching node at each position in the network
without the need for special configuration. It also facilitates expanding the network
to larger numbers of nodes, limited only by the size of the address field.

2.4 Flow Control

The channels of our network transport 16-bit-wide physical digits, or phits, of data
per cycle. However, we have specified that the network must deliver entire packets
of data that contain from 32 to 512 bits of data. Thus, we use a simple protocol,
illustrated in Figure 2.4, to assemble phits into packets. As shown in the figure, each
packet consists of a header phit followed by zero or more payload phits. The header
phit signifies the beginning of a new packet and also contains the destination address
used by our routing algorithm. Payload phits hold the actual data of the packet,
split into 16-bit chunks. The phits of a given packet must be contiguous, without
interruption. However, any number of null phits may be transported on the channel
between packets. To distinguish header words from payload words and to denote the
end of a packet, we append a 2-bit type field to each channel. This field describes
each 16-bit word as a header (H), payload (P), or null (N) word. Packets may be of
any length but always consist of a single H word followed by zero or more P words,
followed in turn by zero or more N words. Using regular expression notation, the
zero or more packets flowing on a link may be described as (HP ∗N∗)∗.

Now that we have assembled our phits into packets, we can get to the main
business of flow control: allocating resources to packets. For simplicity, our butterfly
network uses dropping flow control. If the output port needed by a packet is in use
when the packet arrives at a switch, the packet is dropped (discarded). The flow con-
trol assumes that some higher-level, end-to-end error control protocol will eventually

destH unused

P data

N unused

2 10

P data

destH unused

destH unused

P data

3-word packet
(2 payload words)

Idle

1-word packet (no payload)

2 word packet
(1 payload word)

Cycle
1

2

3

4

5

6

7

Type Data

6

Figure 2.4 Packet format for our simple network. Time, in cycles, is shown in the vertical direction, while
the 18 signals of a channel are shown in the horizontal direction. The leftmost signals contain
the phit type, while the 16 remaining signals contain either a destination address or data, or
are unused in the case of a null phit.

2.5 Router Design 33

Table 2.3 Phit type encoding for our example network.

Type Code

H 11
P 10
N 00

resend the dropped packet. Dropping packets is among the worst of flow-control
methods because it has a high rate of packet loss and it wastes channel bandwidth
on packets that are ultimately dropped. As we shall see in Chapter 12, there are
much better flow-control mechanisms. Dropping flow-control is ideal for our pre-
sent purposes, however, because it is extremely simple both conceptually and in
implementation.

2.5 Router Design

Each of the switching nodes in our butterfly network is a router, capable of receiving
packets on its inputs, determining their destination based on the routing algorithm,
and then forwarding packets to the appropriate output. The design decisions we have
made up to this point result in a very simple router. The block diagram of a single
router is shown in Figure 2.5. The datapath of the router consists of four 18-bit
input registers, four 18-bit 4:1 multiplexers, four shifters (for shifting the route field
of header phits), and four 18-bit output registers. The datapath consists of 144 bits
of register and about 650 gates (2-input NAND-equivalent).

Phits arrive each clock cycle in the input register and are routed to all four
multiplexers. At each multiplexer, the associated allocator examines the type of each
phit and the next hop field of each head phit, and sets the switch accordingly. Phits
from the selected input are next routed to a shifter. Under control of the allocator,
the shifter shifts all head phits left by two bits to discard the current route field and
expose the next route field. Payload phits are passed unchanged.

The control of the router resides entirely in the four allocators associated with
each output that control the multiplexers and shifters. Each allocator, as the name
suggests, allocates an output port to one of the four input ports. A schematic
diagram of one of the allocators is shown in Figure 2.6. The allocator consists of
four nearly identical bit slices, each divided into three sections: decode, arbitrate,
and hold. In the decode section, the upper four bits of each input phit is decoded.
Each decoder generates two signals. Signal requesti is true if the phit on
input i is a head phit and the upper two bits of the route field match the output
port number. This signal indicates that the input phit requests use of the output port
to route the packet starting with this head phit. The decoder also generates signal
payloadi which is true if the phit on input i is a payload phit. The hold logic of
the allocator uses this signal to hold a channel for the duration of a packet (as long
as payload phits are on the selected input port).

34 C H A P T E R 2 A Simple Interconnection Network

i0 18

i1 18

i2 18

i3 18

18

Allocator

Shift

Allocator

Shift

Allocator

Shift

Allocator

Shift

18

18

18

18

18

18 18

18 18

18 18

18 18 18

18

4

3

2

4

1

4

0

4

o0

o1

o2

o3

Figure 2.5 Block diagram of router for simple network.

The second stage of the allocator is a four-input fixed-priority5 arbiter.The arbiter
accepts four request signals and generates four grant signals. If the output port is
available (as indicated by signal avail), the arbiter grants the port to the first (upper-
most) input port making a request.Asserting agrant signal causes the corresponding
select signal to be asserted, selecting the corresponding input of the multiplexer
to be passed to the output. If any of the grant signals is asserted, it indicates that a
header is being passed through the multiplexer and the shift signal is asserted to
cause the shifter to shift the routing field.

The final stage of the allocator holds the assignment of the output port to an
input port for the duration of a packet. Signal lasti indicates that input port i

was selected on the last cycle. If the port carries a payload phit this cycle, then that
payload is part of the same packet and the channel is held by asserting signal holdi .
This signal causes selecti to be asserted and avail to be cleared, preventing the
arbiter from assigning the port to a new header.

5. In practice, one would never use a fixed-priority arbiter in an application like this, as it results in an
extremely unfair router that can lead to livelock or starvation problems when used in a network. In
Chapters 18 and 19 we will examine better methods of arbitration and allocation.

2.5 Router Design 35

=3

r0 4

head0

=2
payload0

2

ty
pe

0

=

2

route0

thisPort

match0

request0
grant0

select0

last0
hold0

=3

r1 4

head1

=2
payload1

2

ty
pe

1

=

2

route1
match1

request1
grant1

select1

last1
hold1

=3

r2 4

head2

=2
payload2

2

ty
pe

2

=

2

route2
match2

request2
grant2

select2

last2
hold2

=3

r3 4

head3

=2
payload3

2

ty
pe

3

=

2

route3 match3

request3
grant3

select3

last3
hold3

hold3

avail

hold0

hold1

hold2

decode hold logic

grant3

shift

grant0

grant1

grant2

arbiter

Figure 2.6 Allocator for the router of Figure 2.5.

In this book, we will often describe hardware by using Verilog register-transfer
language (RTL) models. A Verilog model is a textual description of a module that
describes its inputs, outputs, and internal functions. A Verilog description of the
allocator of Figure 2.6 is given in Figure 2.7. The module declaration begins, after
a comment, with the module declaration that gives the module name, alloc, and
declares its eight inputs and outputs. The next five lines declare these inputs and
outputs in terms of dimension and width. Next, internal wires and registers are
declared. The real logic starts with the ten assign statements. These describe the
combinational logic of the allocator and correspond exactly to the schematic of

36 C H A P T E R 2 A Simple Interconnection Network

// allocator: assigns output port to input port based on type
// of input phit and current field of routing header
// once assigned, holds a port for the duration of a packet
// (as long as payload phits are on input).
// uses fixed priority arbitration (r0 is highest).
module alloc(clk, thisPort, r0, r1, r2, r3, select, shift) ;

input clk ; // chip clock
input [1:0] thisPort ; // identifies this output port
input [3:0] r0,r1,r2,r3 ; // top four bits of each input phit
output [3:0] select ; // radial select to multiplexer
output shift ; // directs shifter to discard upper two bits
wire [3:0] grant, select, head, payload, match, request, hold ;
wire [2:0] pass ;
reg [3:0] last ;
wire avail ;

assign head = {r3[3:2]==3,r2[3:2]==3,r1[3:2]==3,r0[3:2]==3} ;
assign payload = {r3[3:2]==2,r2[3:2]==2,r1[3:2]==2,r0[3:2]==2} ;
assign match = {r3[1:0]==thisPort,r2[1:0]==thisPort,

r1[1:0]==thisPort,r0[1:0]==thisPort} ;
assign request = head&match ;
assign pass = {pass[1:0],avail}&˜request[2:0] ;
assign grant = request&{pass,avail} ;
assign hold = last&payload ;
assign select = grant|hold ;
assign avail = ˜(|hold) ;
assign shift = |grant ;

always @(posedge clk) last = select ;
endmodule

Figure 2.7 Verilog code for the allocator.

Figure 2.6. Finally, the always statement defines the flip-flops that hold the state
last[3:0].

In addition to being a convenient textual way to describe a particular piece of
hardware, Verilog also serves as a simulation input language and as a synthesis input
language. Thus, after describing our hardware in this manner, we can simulate it to
verify proper operation, and then synthesize a gate-level design for implementation
on an ASIC or FPGA. For your reference, a Verilog description of the entire router
is given in Figure 2.8. The descriptions of the multiplexer and shifter modules are
omitted for brevity.

2.6 Performance Analysis

We judge an interconnection network by three measures: cost, latency, and through-
put. Both latency and throughput are performance metrics: latency is the time it
takes a packet to traverse the network and throughput is the number of bits per
second the network can transport from input to output. For our example network

2.6 Performance Analysis 37

// simple four-input four output router with dropping flow control
module simple_router(clk,i0,i1,i2,i3,o0,o1,o2,o3) ;

input clk ; // chip clock
input [17:0] i0,i1,i2,i3 ; // input phits
output [17:0] o0,o1,o2,o3 ; // output phits

reg [17:0] r0,r1,r2,r3 ; // outputs of input registers
reg [17:0] o0,o1,o2,o3 ; // output registers
wire [17:0] s0,s1,s2,s3 ; // output of shifters
wire [17:0] m0,m1,m2,m3 ; // output of multiplexers
wire [3:0] sel0, sel1, sel2, sel3 ; // multiplexer control
wire shift0, shift1, shift2, shift3 ; // shifter control

// the four allocators
alloc a0(clk, 2’b00, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel0, shift0) ;
alloc a1(clk, 2’b01, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel1, shift1) ;
alloc a2(clk, 2’b10, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel2, shift2) ;
alloc a3(clk, 2’b11, r0[17:14], r1[17:14], r2[17:14], r3[17:14], sel3, shift3) ;

// multiplexers
mux4_18 mx0(sel0, r0, r1, r2, r3, m0) ;
mux4_18 mx1(sel1, r0, r1, r2, r3, m1) ;
mux4_18 mx2(sel2, r0, r1, r2, r3, m2) ;
mux4_18 mx3(sel3, r0, r1, r2, r3, m3) ;

// shifters
shiftp sh0(shift0, m0, s0) ;
shiftp sh1(shift1, m1, s1) ;
shiftp sh2(shift2, m2, s2) ;
shiftp sh3(shift3, m3, s3) ;

// flip flops
always @(posedge clk)
begin
r0=i0 ; r1=i1 ; r2=i2 ; r3=i3 ;
o0=s0 ; o1=s1 ; o2=s2 ; o3=s3 ;

end
endmodule

Figure 2.8 Verilog code for the router.

with dropping flow control, these performance metrics are heavily influenced by the
probability that a packet will be dropped.

Our analysis begins with a simple model of the network for the case where
dropped packets are resent by the network. (See Figure 2.9.) First, because of sym-
metry between the inputs and outputs of the network and the random traffic pat-
tern, it is sufficient to consider the packets from a single input of the network. As
shown in Figure 2.9, packets are injected into the network at a rate of λ. Instead of
expressing λ in bits per second, it is normalized to the channel bandwidth of
2 Gbytes/s, so that λ = 1 corresponds to injecting packets at the maximum rate
allowed by the channel. Before packets enter the network, they are merged with
packets that are being resent through the network. The sum of these two rates p0 is

38 C H A P T E R 2 A Simple Interconnection Network

λ 1st

stage
2nd

stage
3rd

stage
p0 p1 p2 p3

p0–p1 p1–p2

p2–p3p1–p3p0–p3

Dropped packet path

Figure 2.9 A simple analytical model of a 3-stage butterfly network with dropping flow control and rein-
jection of dropped packets.

the total rate of packets injected into the first stage of the network. In the first stage,
some collisions of packets may occur and a smaller fraction of packets p1 will pass
through without being dropped. The difference in rates p0 −p1 represents the pack-
ets that have been dropped. If dropped packets are to be resent, these packets flow
back to the input and are reinjected. Similarly, the output rates of the second stage
p2 and third stage p3 will continue to decrease due to more collisions and dropped
packets.

These output rates can be calculated iteratively by starting at the input of the
network and working toward the output. A single stage of our butterfly network is
built from 4 × 4 crossbar switches and, by symmetry, the rate of incoming packets
at each input of the switch is equal. So, for stage i + 1 of the network, the input
rate at each port of the crossbar is pi . Because the rates have been normalized, they
can also be interpreted as the probability of a packet arriving at an input during any
particular cycle. Then, the probability that a packet leaves a particular output pi+1 is
one minus the probability that no packet wants that output. Since the traffic pattern
is random, each input will want an output with probability pi/4, and therefore the
probability that no input wants a particular output is just

(
1 − pi

4

)4
. (2.1)

Therefore, the output rate pi+1 at stage i + 1 is

pi+1 = 1 −
(
1 − pi

4

)4
. (2.2)

Applying Equation 2.2 n = 3 times, once for each stage of the network, and
momentarily ignoring resent packets (p0 = λ), we calculate that with an input
duty factor of λ = 0.125 (corresponding to a speedup of 8), the duty factors at
the outputs of the three switch stages are 0.119, 0.114, and 0.109, respectively.
That is, with an offered traffic of 0.125 of link capacity at the input of the net-
work, the accepted traffic or throughput of the network is only 0.109. The remaining
0.016 (12.6% of the packets) was dropped due to collisions in the network. Once

2.6 Performance Analysis 39

dropped packets are reinjected into the network, an interesting dynamic occurs. Re-
sending dropped packets increases the effective input rate to the network p0. This
in turn increases the amount of dropped packets, and so on. If this feedback loop
stabilizes such that the network can support the resulting input rate (p0 ≤ 1),
then the amount of traffic injected into the network will equal the amount
ejected (p3 = λ).

Figure 2.10 plots the relationship between offered traffic and throughput
for our example network. Both axes are normalized to the ideal capacity of the
network. We see that at very low loads almost all of the traffic gets through the
network, and throughput is equal to offered traffic. As the offered traffic is
increased, however, dropping quickly becomes a major factor and if packets are not
resent, the throughput of the network drops well below the offered traffic. Eventu-
ally throughput saturates, reaching an asymptote at 43.2%. No matter how much
traffic is offered to the network, we cannot achieve a throughput greater than 43.2%
of the channel capacity whether packets are resent or not. Note that we could
operate this network with a speedup as low as 2.5, effectively limiting the maxi-
mum injection rate to 0.4. However, the original choice of a speedup of 8 will have
benefits in terms of latency, as we will see. Also, the fact our network is achieving
less than half its capacity is the main reason dropping flow control is almost never
used in practice. In Chapter 12, we shall see how to construct flow control mech-
anisms that allow us to operate networks above 90% of channel capacity without
saturating.

Throughout this discussion of throughput, we have expressed both offered traffic
and throughput as a fraction of channel capacity. We follow this convention through-

0.0 0.4 0.8 1.0
Offered Traffic (fraction of capacity)

0.0

0.1

0.2

0.3

0.4

0.5

T
h

ro
u

g
h

p
u

t
(f

ra
ct

io
n

 o
f

ca
p

ac
it

y)

Drop
Reinject

0.60.2

Figure 2.10 Throughput as a function of offered traffic (injection rate) for our simple network. Both the
throughput for when packets are dropped and not reinjected (drop) and when they are rein-
jected (reinject) are shown.

40 C H A P T E R 2 A Simple Interconnection Network

out the book because it lends considerably more insight than expressing these figures
in terms of bits per second. For example, we get far more insight into the relative
performance of the flow control method by stating that the network saturates at 24%
capacity than stating that it saturates at 480 Mbytes/s. In the discussion below, we
normalize latency in a similar manner.

The latency of a packet is determined by the number of times it must be retrans-
mitted before it successfully traverses the network. With no other packets in the
network, the header of a packet traverses the network in 6 clock cycles. The packet
is clocked through two flip-flop registers in each of the three stages. For clarity, we
will refer to this 6-cycle delay as a relative latency of 1.0 and express network latency
at higher loads relative to this number. In this section we are concerned only with
header latency. The overall latency of the packet also includes a serialization term
equal to the length of the packet divided by the bandwidth of the channel, L/b, that
reflects the time required for the tail of the packet to catch up with the head.

As the load is increased, a fraction of packets pD is dropped and must be retrans-
mitted.

PD = p0 − p3

p0

The same fraction of these retransmitted packets is dropped again and must be
retransmitted a second time, and so on. We calculate the average latency of a packet
by summing the latencies for each of these cases weighted by the probability of the
case. Assuming, unrealistically, that the source discovers immediately that a packet is
dropped and retransmits it after 6 cycles, then the latency of a packet that is dropped
i times is i+1. The probability that a packet is dropped exactly i times is P i

D(1−PD).
Summing the weighted latencies, we calculate the average latency as

T =
∞∑

i=0

(i + 1)P i
D(1 − PD) = 1

1 − PD

= p0

p3
. (2.3)

This latency is plotted as a function of offered traffic in Figure 2.11. With no load on
the network, latency starts at unity (6 clock cycles). As the throughput is increased,
some packets are dropped and the average latency increases,doubling at a throughput
of about 0.39. Finally, the network reaches saturation at a throughput of 0.43. At
this point, no greater throughput can be realized at any latency.

For modest loads, Equation 2.3 gives a reasonable model for latency, but as the
network approaches saturation the assumption that a packet can be immediately
resent is brought into question. This is because there is an increasing chance that
a resent packet and a newly injected packet will simultaneously be introduced into
the network. In a real implementation, one packet would have to wait for the other
to go ahead, thus incurring an additional queueing latency. Figure 2.11 also shows
another latency curve that incorporates a model for queueing time. The shape of this
curve, with latency growing to infinity as throughput approaches saturation, is more
typical in an interconnection network. Both curves are compared to a simulation in
Exercise 2.9.

2.6 Performance Analysis 41

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Offered Traffic (fraction of capacity)

1

2

3

4

5

6

7

R
el

at
iv

e
L

at
en

cy

Simple model
Queuing model

Figure 2.11 Relative latency as a function of offered traffic (injection rate) for our simple network. The solid
curve shows the simple model presented in the text, while the dashed curve incorporates an
additional queueing delay.

It is important to keep in mind that Equation 2.3 and Figure 2.11 give the average
latency of a packet. For many applications, we are interested not only in the average
latency, but also in the probability distribution of latencies. In particular, we may be
concerned about the worst case latency or the variation in latency (sometimes called
jitter). For example, in a video playback system, the size of the buffer required to
hold packets before playback is determined by the jitter, not the average latency. For
our example network, the probability that a packet is received with a relative latency
of i is given by

P (T = i) = P
(i−1)
D (1 − PD) .

This exponential distribution of latency results in an infinite maximum latency
and, hence, an infinite jitter. More realistically, we might express the jitter in terms
of the bound of delays achieved by a given fraction (for example, 99%) of the
packets.

The performance measures discussed above are all for uniform random traffic. For
a butterfly network, this is the best case. As we shall see, for certain traffic patterns,
like bit-reversal,6 the performance of the network is far worse than described here.
The sensitivity of the butterfly network to bad traffic patterns is largely due to the

6. In a bit-reversal traffic pattern, the node with binary address {bn−1, bn−2, . . . , b0} sends a packet to the
node with address {b0, b1, . . . , bn−1}.

42 C H A P T E R 2 A Simple Interconnection Network

fact that there is just a single path from each input of the network to each output.
We shall see that networks with path diversity fare far better under difficult loads.

2.7 Exercises

2.1 Cost of the simple network. Compute the cost of our simple network using the data
in Tables 2.1 and 2.2.

2.2 Incorporating a power constraint. Limit the number of chips per board to six to
ensure enough power can be delivered to these chips, and their heat can be properly
dissipated. Suggest a packaging that meets this new constraint in addition to the
original set of constraints. What is the cost of this packaging?

2.3 Fair allocators. Modify the Verilog code for the allocator given in Figure 2.7 to
implement a more fair type of arbitration. Verify your new allocator via simulation
and describe your design.

2.4 Increasing the degree of the router. If the simple router is extended to be a 5 × 5 rather
than a 4 × 4 switch, it can be used to implement a 2-D mesh or torus network.
Describe how the router and packet format can be extended to add an additional
input and output port.

2.5 Reducing multiple drops of the same packet. Change the Verilog code to give priority
to retransmitted packets. That is, if two head phits are requesting the same output
at the same switch in the butterfly, the allocator should always give the resource to
a retransmitted packet first. Add a priority field to the phit header to include this
information and assume it is appropriately set when a packet is reinjected.

2.6 Multiple drops and average latency. Does introducing a scheme to reduce multiple
drops of a packet, such as the one in Exercise 2.5, reduce the average packet latency?
Explain why or why not.

2.7 Effects of a larger butterfly on dropping. If we add more stages to our example butterfly
network (and increase the number of nodes accordingly), will the fraction of packets
dropped increase? How will the fraction dropped change if the degree of the switches
is increased instead? Considering only the dropping probability, is it more efficient
to expand the degree of the switches or the number of stages when adding nodes?

2.8 Realistic drop delays. In real networks there is usually a significant delay before a
dropped packet is retransmitted. First, time must be allowed for an acknowledg-
ment to reach the source, then a timeout is allowed to account for delay in the
acknowledgment. Modify Equation 2.3 to reflect this delay.

2.9 Simulation. Write a simple computer program to simulate our example network.
Using this program, experimentally determine the network’s latency as a function
of offered traffic. How do your results compare to the analytical results from Equa-
tion 2.3 and Figure 2.11? Also compare against the relative delay given by the queue-
ing model

2.7 Exercises 43

T = T0

2
+ p0

p3

(
T0

2
+ p0

2(1 − p0)

)

where T0 is the zero-load latency — the latency of a packet that is never dropped
by the network.

2.10 Simulation. Add a timeout mechanism to the simulator from Exercise 2.9 and com-
pare the results from the model developed in Exercise 2.8. Comment on any major
differences.

.
This Page Intentionally Left Blank

C H A P T E R 3

Topology Basics

Network topology refers to the static arrangement of channels and nodes in an inter-
connection network — the roads over which packets travel. Selecting the network
topology is the first step in designing a network because the routing strategy and
flow-control method depend heavily on the topology. A roadmap is needed before
a route can be selected and the traversal of that route scheduled. As illustrated by
the example in Chapter 2, the topology specifies not just the type of network (for
example, butterfly), but also the details, such as the radix of the switch, the number
of stages, and the width and bit-rate of each channel.

Selecting a good topology is largely a job of fitting the requirements of the net-
work to the available packaging technology. On one hand, the design is driven by the
number of ports and the bandwidth and duty factor per port, and on the other hand,
by the pins available per chip and board, by wire density, by the available signaling
rate, and by the length requirements of cables.

We choose a topology based on its cost and performance. The cost is determined
by the number and complexity of the chips required to realize the network, and
the density and length of the interconnections, on boards or over cables, between
these chips. Performance has two components: bandwidth and latency. Both of these
measures are determined by factors other than topology — for example, flow con-
trol, routing strategy, and traffic pattern. To evaluate just the topology, we develop
measures, such as bisection bandwidth, channel load, and path delay, that reflect the
impact of the topology on performance.

A common pitfall for network designers is to try to match the topology of
the network to the data communication of the problem at hand. On the surface,
this seems like a good idea. After all, if a machine performs a divide-and-conquer
algorithm with a tree-structured communication pattern, shouldn’t a tree network
be the optimum to handle this pattern? The answer is usually no. For a variety of

45

46 C H A P T E R 3 Topology Basics

00 01 02

10 11 12

20 21 22

(a) A 3-ary 2-cube

0

1

2

3

4

5

6

7

00

01

02

03

10

11

12

13

20

21

22

23

0

1

2

3

4

5

6

7

(b) A 2-ary 3-fly
0

1

00

2

3

4

5

(c) An irregular network

Figure 3.1 Example network topologies: (a) a 3-ary 2-cube, (b) a 2-ary 3-fly, and (c) an irregular network.

reasons, a special purpose network is usually a bad idea. Due to dynamic load
imbalance in the problem, or a mismatch between problem size and machine size,
the load on such networks is usually poorly balanced. If data and threads are relo-
cated to balance load, the match between the problem and the network is lost. A
problem-specific network often does not map well to available packaging technology,
requiring long wires or a high node degree. Finally, such networks are inflexible. If
the algorithm changes to use a different communication pattern, the network cannot
be easily changed. It is almost always better to use a good general purpose network
than to design a network with a topology matched to the problem.

Figure 3.1 shows three example topologies. A 2-D torus with three nodes per
dimension, a 3-ary 2-cube, is shown in Figure 3.1(a). Each node in the cube net-
work is both a terminal and a switching node. Figure 3.1(b) shows a three-stage
radix-two butterfly, a 2-ary 3-fly. The butterfly network makes a clear distinction
between terminal nodes and switch nodes with terminal-only nodes at either end
and switch-only nodes (rectangles) in the middle. An irregular network is shown in
Figure 3.1(c).

3.1 Nomenclature

3.1.1 Channels and Nodes

The topology of an interconnection network is specified by a set of nodes N∗ con-
nected by a set of channels C. Messages originate and terminate in a set of terminal
nodes N where N ⊆ N∗. In a network where all nodes are terminals, we simply refer

3.1 Nomenclature 47

to the set of nodes as N . Each channel, c = (x, y) ∈ C, connects a source node, x, to
a destination node, y, where x, y ∈ N∗. We denote the source node of a channel c as
sc and the destination as dc. Note that each edge in Figure 3.1 denotes a pair of chan-
nels, one in each direction. This definition of a topology is equivalent to a directed
graph and, not surprisingly, much of the terminology used to describe a topology
borrows heavily from graph theory. For notational convenience, we will often refer
to the number of nodes in a network as simply N∗ instead of |N∗| and likewise for
the number of channels.

A channel, c = (x, y), is characterized by its width, wc or wxy , the number
of parallel signals it contains; its frequency, fc or fxy , the rate at which bits are
transported on each signal; and its latency, tc or txy , the time required for a bit to
travel from x to y. For most channels, the latency is directly related to the phys-
ical length of the channel, lc = vtc, by a propagation velocity v. The bandwidth
of channel c is bc = wcfc. In the common case where the bandwidths of all the
channels are the same, we drop the subscript and refer to the network channel band-
width as b.

Each switch node, x, has a channel set Cx = CIx ∪ COx . Where CIx = {c ∈
C|dc = x} is the input channel set, and COx = {c ∈ C|sc = x} is the output channel
set. The degree of x is δx = |Cx | which is the sum of the in degree, δIx = |CIx |, and
the out degree, δOx = |COx |. Where the degree of all x ∈ N∗ is the same, we drop
the subscript and denote degree by δ.

3.1.2 Direct and Indirect Networks

A network node may be a terminal node that acts as a source and sink for pack-
ets, a switch node that forwards packets from input ports to output ports, or both.
In a direct network, such as the torus of Figure 3.1(a), every node in the net-
work is both a terminal and a switch. In an indirect network, such as the butter-
fly of Figure 3.1(b), on the other hand, a node is either a terminal (round nodes)
or a switch (rectangular nodes). It cannot serve both functions. In a direct net-
work, packets are forwarded directly between terminal nodes, while in an indi-
rect network they are forwarded indirectly by means of dedicated switch nodes.
Some networks, like the random network of Figure 3.1(c), are neither direct nor
indirect. Every direct network can be redrawn as an indirect network by splitting
each node into separate terminal and switch nodes, as illustrated in Figure 3.2.
With such networks, the distinction between direct and indirect networks is largely
academic.

A potential advantage of a direct network is that the resources of a terminal
(which usually include a computer) are available to each switch. In some early
networks, the switching function was implemented in software running on the ter-
minal CPU, and buffering was performed using the terminal computer’s memory
[163, 192]. Software switching is, however, both very slow and demanding of the
terminal’s resources. Thus, it is rarely used today.

48 C H A P T E R 3 Topology Basics

C S

T

Figure 3.2 A combined node consists of a terminal node and a switch node.

3.1.3 Cuts and Bisections

A cut of a network, C(N1, N2), is a set of channels that partitions the set of all nodes
N∗ into two disjoint sets, N1 and N2. Each element of C(N1, N2) is a channel with a
source in N1 and destination in N2, or vice versa. The number of channels in the cut
is |C(N1, N2)| and the total bandwidth of the cut is

B(N1, N2) =
∑

c∈C(N1,N2)

bc.

A bisection of a network is a cut that partitions the entire network nearly in
half, such that |N2| ≤ |N1| ≤ |N2| + 1, and also partitions the terminal nodes nearly
in half, such that |N2 ∩ N | ≤ |N1 ∩ N | ≤ |N2 ∩ N | + 1. The channel bisection of a
network, BC , is the minimum channel count over all bisections of the network.

BC = min
bisections

|C(N1, N2)|

The bisection bandwidth of a network, BB , is the minimum bandwidth over all
bisections of the network.

BB = min
bisections

B(N1, N2)

For networks with uniform channel bandwidth b, BB = bBC . In the cost model
developed later in this chapter (Section 3.4), we use the bisection bandwidth of a
network as an estimate of the amount of global wiring required to implement it.

3.1.4 Paths

A path in a network is an ordered set of channels P = {c1, c2, . . . , cn}, where dci
=

sci+1 for i = 1 . . . (n − 1). Paths are also referred to as routes. The source of a path is,
sP = sc1 . Similarly, the destination of a path is dP = dcn . The length or hop count of
a path is |P |. If, for a particular network and its routing function, at least one path
exists between all source-destination pairs, it is said to be connected.

3.1 Nomenclature 49

A minimal path from node x to node y is a path with the smallest hop count
connecting these two nodes. The set of all minimal paths from node x to node y

is denoted Rxy . H(x, y), is the hop count of a minimal path between x and y. The
diameter of a network Hmax is the largest,minimal hop count over all pairs of terminal
nodes in the network.

Hmax = max
x,y∈N

H(x, y)

For a fully-connected network with N terminals built from switches with out degree
δO , Hmax is bounded by

Hmax ≥ logδO
N. (3.1)

or for symmetric switches where δI = δO = δ/2,

Hmax ≥ logδ/2 N.

Each terminal can reach at most δO other terminals after one hop, at most δ2
O after

two hops, and at most δH
O after H hops. If we set δH

O = N and solve for H , we get
Equation 3.1, which provides a lower bound on network diameter. Networks for
which this bound is tight, such as butterfly networks, have no path diversity. All of
the decisions are used up selecting the destination node and no decisions are left to
select between alternate paths.

The average minimum hop count of a network Hmin is defined as the average
hop count over all sources and destinations.

Hmin = 1
N2

∑
x,y∈N

H(x, y)

While Hmin represents the smallest possible average hop count, a specific implemen-
tation may choose to incorporate some non-minimal paths. In this case, the actual
average hop count Havg is defined over the paths used by the network, not just
minimal paths, and Havg ≥ Hmin.

The physical distance of a path is

D(P) =
∑
c∈P

lc

and the delay of a path is t (P) = D(P)/v. Distance and delay between node pairs
and average and maximum distances and delays for a network are defined in the same
manner as hop counts.

3.1.5 Symmetry

The symmetry of a topology plays an important role in load-balance and routing
as we will discuss in later sections. A network is vertex-symmetric if there exists an

50 C H A P T E R 3 Topology Basics

automorphism that maps any node a into another node b. Informally, in a vertex-
symmetric network, the topology looks the same from the point-of-view of all the
nodes. This can simplify routing, because all nodes share the same roadmap of the
network and therefore can use the same directions to route to the same relative
position.

In an edge-symmetric network, there exists an automorphism that maps any chan-
nel a into another channel b. Edge symmetry can improve load balance across
the channels of the network since there is no reason to favor one channel over
another.

3.2 Traffic Patterns

Before introducing the performance metrics for topologies, it is useful to consider
the spatial distribution of messages in interconnection networks. We represent these
message distributions with a traffic matrix �, where each matrix element λs,d gives
the fraction of traffic sent from node s destined to node d. Table 3.1 lists some com-
mon static traffic patterns used to evaluate interconnection networks. Historically,
several of these patterns are based on communication patterns that arise in particu-
lar applications. For example, matrix transpose or corner-turn operations induce the

Table 3.1 Network traffic patterns. Random traffic is described by a traffic matrix, �, with all entries λsd =
1/N . Permutation traffic, in which all traffic from each source is directed to one destination, can
be more compactly represented by a permutation function π that maps source to destination. Bit
permutations, like transpose and shuffle, are those in which each bit di of the b-bit destination
address is a function of one bit of the source address, sj where j is a function of i. In digit
permutations, like tornado and neighbor, each (radix-k) digit of the destination address dx is a
function of a digit sy of the source address. In the two digit permutations shown here, x = y.
However, that is not always the case.

Name Pattern

Random λsd = 1/N
Permutation d = π (s)

Bit permutation di = sf(i) ⊕ g(i)
Bit complement di = ¬si
Bit reverse di = sb-i-1
Bit rotation di = si+1 mod b
Shuffle di = si-1 mod b
Transpose di = si+b/2 mod b

Digit permutations dx = f(sg(x))
Tornado dx = sx + (�k/2�-1) mod k
Neighbor dx = sx + 1 mod k

3.3 Performance 51

transpose pattern, whereas fast Fourier transform (FFT) or sorting applications might
cause the shuffle permutation [175], and fluid dynamics simulations often exhibit
neighbor patterns. Temporal aspects of traffic also have important effects on network
performance and are discussed in Section 24.2.

Random traffic, in which each source is equally likely to send to each destination
is the most commonly used traffic pattern in network evaluation. Random traffic
is very benign because, by making the traffic uniformly distributed, it balances load
even for topologies and routing algorithms that normally have very poor load balance.
Some very bad topologies and routing algorithms look very good when evaluated only
with random traffic.

To stress a topology or routing algorithm, we typically use permutation traffic
in which each source s sends all of its traffic to a single destination, d = π(s). The
traffic matrix � for a permutation is a permutation matrix 	 where each row and each
column contains a single entry with all other entries zero. Because they concentrate
load on individual source-destination pairs, permutations stress the load balance of
a topology and routing algorithm.

Bit permutations are a subset of permutations in which the destination address
is computed by permuting and selectively complementing the bits of the source
address. For example, if the four-bit source address is {s3, s2, s1, s0}, the destina-
tion for a bit-reversed traffic pattern is {s0, s1, s2, s3}, for a bit-complement traffic
pattern the destination is {¬s3, ¬s2, ¬s1, ¬s0}, and for a shuffle, the destination is
{s2, s1, s0, s3}.

Digit permutations are a similar subset of permutations in which the digits of
the destination address are calculated from the digits of the source address. Such per-
mutations apply only to networks in which the terminal addresses can be expressed
as n-digit, radix-k numbers, such as k-ary n-cube (torus) networks (Chapter 5) and
k-ary n-fly (butterfly) networks (Chapter 4). The tornado pattern is designed as an
adversary for torus topologies, whereas neighbor traffic measures a topology’s ability
to exploit locality.

3.3 Performance

We select a topology for a network based on its cost and performance. In this section,
we address the three key metrics of performance: throughput, latency, and path
diversity. These measures are revisited in Section 3.4, where they are tied to the
implementation cost of a network.

3.3.1 Throughput and Maximum Channel Load

The throughput of a network is the data rate in bits per second that the network
accepts per input port. Throughput is a property of the entire network and de-
pends on routing and flow control (as we have seen in Chapter 2) as much as on
the topology. However, we can determine the ideal throughput of a topology by

52 C H A P T E R 3 Topology Basics

measuring the throughput that it could carry with perfect flow control and routing.
This is the throughput that would result if the routing perfectly balanced the load
over alternative paths in the network and if the flow control left no idle cycles on
the bottleneck channels. For simplicity, we present only the throughput and load
equations for networks where all the channel bandwidths are b in this section. This
limitation is removed as part of Exercise 3.5.

Maximum throughput occurs when some channel in the network becomes satu-
rated. If no channels are saturated, the network can carry more traffic and is thus not
operating at maximum throughput. Thus, to compute throughput, we must consider
channel load. We define the load on a channel c, γc, as the ratio of the bandwidth
demanded from channel c to the bandwidth of the input ports. Equivalently, this
ratio is the amount of traffic that must cross channel c if each input injects one unit
of traffic according to the given traffic pattern. Because it is a ratio, channel load is a
dimensionless quantity. Unless otherwise specified, we consider channel loads under
uniform traffic.

Under a particular traffic pattern, the channel that carries the largest fraction
of the traffic determines the maximum channel load γmax of the topology, γmax =
maxc∈C γc. When the offered traffic reaches the throughput of the network, the
load on this bottleneck channel will be equal to the channel bandwidth b. Any
additional traffic with the specified pattern would overload this channel. Thus, we
define the ideal throughput of a topology �ideal as the input bandwidth that saturates
the bottleneck channel

�ideal = b

γmax
(3.2)

where b is in bits per second and γmax is unitless.
Computing γmax for the general case of an arbitrary topology and an arbitrary

traffic pattern requires solving a multicommodity flow problem as described below.
For uniform traffic, however, we can compute some upper and lower bounds on γmax
with much less effort.

The load on the bisection channels of a network gives a lower bound on γmax
that in turn gives an upper bound on throughput. For uniform traffic, we know on
average that half of the traffic, N/2 packets, must cross the BC bisection channels.
The best throughput occurs when these packets are distributed evenly across the
bisection channels. Thus, the load on each bisection channel γB is at least

γmax ≥ γB = N

2BC

. (3.3)

Combining Equations 3.2 and 3.3 gives us an upper bound on ideal throughput

�ideal ≤ 2bBC

N
= 2BB

N
. (3.4)

For example, consider a k node ring under uniform traffic. BC = 4 channels cross the
network bisection, two in each direction. (Figure 3.3 shows an 8-node ring.) Thus,
from Equation 3.4 we know that �ideal ≤ 8b/k. For the ring, it turns out that this
bound is exact.

3.3 Performance 53

0 1 2 3 4 5 6 7

Figure 3.3 An 8-node ring.

Another useful lower bound on channel load can be computed in a similar man-
ner. The product HminN gives the channel demand — the number of channel traver-
sals required to deliver one round of packets for a given traffic pattern. If we assume
the best case in which all the channels are loaded equally, dividing this demand by
the number of channels bounds the load on every channel in the network:

γc,LB = γmax,LB = HminN

C
. (3.5)

These lower bounds can be complemented with a simple upper bound on maximum
channel load by considering a routing function that balances load across all minimal
paths equally. That is, if there are |Rxy | paths, 1/|Rxy | is credited to each channel of
each path. The maximum load γmax,UB is the largest γc,UB over all channels. Math-
ematically, we define these loads as

γc,UB = 1
N

∑
x∈N

∑
y∈N

∑
P∈Rxy

{
1/|Rxy | if c ∈ P

0 otherwise

γmax,UB = max
c∈C

γc,UB. (3.6)

For any topology,γmax,LB ≤ γmax ≤ γmax,UB and in the case of an edge-symmetric
topology (e.g., tori), both bounds exactly equal γmax.

To see how channel load can be used to estimate ideal throughput, consider the
case of an eight-node ring network (an 8-ary 1-cube) as shown in Figure 3.3. This
topology is edge-symmetric; therefore, our simple bounds are equal to the maximum
channel load and we also know that the load on all channels is the same, so it suffices
to compute the load on a single channel. We apply the upper bound approach to
channel (3,4), the right-going channel from node 3 to node 4. The summation of
Equation 3.6 is illustrated by the lines below the network in the figure. Each line
denotes a path that uses the channel. The dotted lines represent paths that count as
half. For these paths of length four, there is a second minimum path that traverses
the network in the clockwise direction. Performing the summation, we see that there
are six solid lines (six node pairs that always use (3,4)) and four dotted lines (four
node pairs that use (3,4) half the time) for a total summation of eight. Dividing this
sum by N = 8, we see that the channel load is γmax = 1.

54 C H A P T E R 3 Topology Basics

We can also verify that the lower bound gives the same maximum channel load.
In this case, the average packet travels Hmin = 2 hops. Each node also contributes
two channels, one to the left and one to the right; therefore, the channel load from
this approach is also γmax = HminN/C = 2 · 8/16 = 1.

To compute γmax in the general case, we must find an optimal distribution of
the packets across the network that minimizes channel load. This task can be formu-
lated as a convex optimization problem. While determining the solutions to these
problems is beyond the scope of this book, we will present the problem formulation.

For each destination d in the network, we denote the average distribution of
packets destined for d over the channels of the network with a vector xd of length
|C|. A valid distribution is maintained by adding flow balance equations at each node:
the sum of the incoming distributions minus the sum over the outgoing channels
must equal the average number of packets that the node is sourcing (positive values)
or sinking (negative values). These balance equations are maintained for each of the
distributions xd for all d ∈ N∗. For a distribution xd under uniform traffic, all terminal
nodes (including the destination d) source 1/N units of traffic and the destination d

sinks 1 unit. This is represented by using an |N∗| element balance vector fd :

fd,i =

⎧⎪⎨
⎪⎩

1/N − 1 if d = i and d ∈ N ,
1/N if d �= i and d ∈ N ,
0 otherwise

(3.7)

where fd,i is ith element of fd . We then express the topology by using an N∗ × C

node-arc incidence matrix A, where

An,c =

⎧⎪⎨
⎪⎩

+1 if sc = n,

−1 if dc = n,

0 otherwise.

(3.8)

Then, the objective is to minimize the maximum load on any one channel, and the
overall optimization problem is written as

minimize max
c∈C

∑
d∈N

xd,c

subject to Axd = fd and (3.9)

xd ≥ 0 for all d ∈ N∗.

3.3 Performance 55

The solution to this convex optimization problem gives the optimal maximum chan-
nel load γmax.1

Equations 3.6 and 3.9 estimate the throughput of the network under uniform
traffic: every node is equally likely to send to every node. Arbitrary traffic patterns
can be incorporated into Equation 3.9 by adjusting the balance vectors fd . Similarly,
Equation 3.6 can be adapted by weighting the final summation by λxy , the probability
that x sends to y

γc(�) =
∑
x∈N

∑
y∈N

λxy

∑
P∈Rxy

{
1/|Rxy | if c ∈ P

0 otherwise.

Finally,Equation 3.5 is modified by substituting the average hop count for an arbitrary
traffic pattern:

Hmin(�) =
∑
x∈N

∑
y∈N

λxyH(x, y).

We often refer to the ideal throughput of a network on uniform traffic �(U) as
the capacity of the network. It is often useful to express throughput of the network
on an arbitrary non-uniform traffic pattern � as a fraction of capacity: �(�)/�(U). If
the channels of a network all have equal bandwidth, it is also equivalent to express
the fraction of capacity as γmax(U)/γmax(�).

3.3.2 Latency

The latency of a network is the time required for a packet to traverse the network,
from the time the head of the packet arrives at the input port to the time the tail of
the packet departs the output port. We separate latency, T , into two components

T = Th + L

b
.

The head latency, Th, is the time required for the head of the message to traverse the
network, and the serialization latency,

Ts = L/b (3.10)

is the time required for the tail to catch up — that is, the time for a packet of length
L to cross a channel with bandwidth b.

Like throughput, latency depends not only on topology but also on routing,
flow control, and the design of the router. As above, however, we focus here on the
contribution of topology to latency and will consider the other effects later.

1. This type of network optimization problem is commonly called a multicommodity flow problem in
optimization literature. See [6] for example.

56 C H A P T E R 3 Topology Basics

In the absence of contention, head latency is the sum of two factors determined
by the topology: router delay, Tr , and time of flight, Tw. Router delay is the time spent
in the routers,whereas time of flight is the time spent on the wires.The average router
delay is Tr = Hmintr for a network with an average hop count of Hmin and a delay of
tr through a single router. The average time of flight is Tw = Dmin/v for a network
with an average distance of Dmin and a propagation velocity of v.

Combining these components gives the following expression for average latency
in the absence of contention

T0 = Hmintr + Dmin

v
+ L

b
. (3.11)

The three terms correspond to the three components of total latency: switch delay,
time of flight, and serialization latency. We refer to this latency as T0 as it represents
the latency at zero load where no contention occurs. As we increase the load, a fourth
term, Tc, is added to the equation, which reflects the time spent waiting for resources
(i.e., contention).

The topology of a network and its mapping onto the physical packaging largely
determine the three critical parameters in this equation. The average hop count,
Hmin is entirely a property of the topology. The average distance, Dmin, is affected by
packaging as well as topology. Finally, the bandwidth b is set by the node degree (a
property of the topology) and the packaging constraints.

Figure 3.4 shows a Gantt chart of a packet propagating along a two-hop route
from node x to node z, via intermediate node y, in a manner that illustrates the three
terms of Equation 3.11. The first row of the chart shows each phit of the packet
arriving at node x. One hop routing delay, tr , is incurred before the first phit of this
packet leaves node x. Then, a link latency, txy , occurs before the phit arrives at node
y. A second routing delay and link latency are incurred before the first phit arrives
at node z. The complete packet is received a serialization delay after the first phit of
the message arrives at z. The bar at the bottom of the figure summarizes the sources

Arrive at x

Leave x

Arrive at y

Leave y

Arrive at z

tr

txy

tr

tyz

L /b

Figure 3.4 Gantt chart showing latency of a packet traversing two channels in the absence of contention.

3.3 Performance 57

of latency. The single hatched areas correspond to routing delay, the light gray areas
to link latency, and the double-hatched areas to serialization latency.

Consider a 64-node network with Havg = 4 hops and 16-bit wide channels. Each
channel, c, operates at fc = 1 GHz and takes tc = 5 ns to traverse. If the delay of a
single router is tr = 8 ns (4 2 ns clocks), then the total routing delay is 8 · 4 = 32 ns
(16 clocks). For our example, the 4 wire delays are each 5 ns adding Tw = 20 ns (10
clocks) to the total. If the packet length is L = 64 bytes and the channels all have a
uniform 2 Gbytes/s bandwidth, the serialization delay is 64/2 = 32 ns (16 clocks).
Thus, for this network, T0 = 32 + 20 + 32 = 84 ns.

3.3.3 Path Diversity

A network with multiple minimal paths between most pairs of nodes, |Rxy | > 1 for
most x, y ∈ N , is more robust than a network with only a single route from node to
node, |Rxy | = 1. This property, which we call path diversity, adds to the robustness of
our network by balancing load across channels and allowing the network to tolerate
faulty channels and nodes.

So far, we have been primarily concerned with the throughput of a network
under random traffic, where each node is equally likely to send a message to any
other node. For many networks, this random traffic is a best case load because by
uniformly distributing traffic between node pairs, it also uniformly balances the load
across network channels. A more challenging case for many networks is arbitrary
permutation traffic, where each node, x, sends all of its traffic to exactly one other
node, π(x), for some permutation, π . Without path diversity, some permutations
focus a considerable fraction of traffic on a single bottleneck channel, resulting in
substantial degradation of throughput.

As an example of the importance of path diversity in balancing load, consider
sending bit-rotation traffic over both a 2-ary 4-fly with unit bandwidth channels
and a 4-ary 2-cube with half-unit bandwidth channels. Both of these networks have
γmax = 1 for random traffic. For bit-rotation (BR) traffic, the node with address
{b3, b2, b1, b0} sends packets only to the node with address {b2, b1, b0, b3}. Expressed
differently, this traffic corresponds to the shuffle permutation

{0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15}.
That is, node 0 sends to itself, node 1 sends to node 2, and so on. Figure 3.5 illustrates
the concentration of traffic that occurs when this permutation is applied to a 2-ary
4-fly. As illustrated by the bold lines in the figure, all of the packets from nodes
0, 1, 8, and 9 must traverse channel (10, 20). Similarly, all traffic from nodes 2, 3,
10, and 11 must traverse channel (11, 23); 4, 5, 12, 13 concentrate on (16, 24); and
6, 7, 14, 15 concentrate on (17, 27). Thus, for this traffic pattern, γmax,BR = 4, and
the throughput is therefore γmax/γmax,BR = 25% of capacity.

Figure 3.6 shows how this permutation traffic maps onto a 4-ary 2-cube. Two
routes traverse no channels, four traverse one channel, four traverse two channels
(each with two possible minimal routes, H(5, 10) = 2 and |R5,10| = 2 for

58 C H A P T E R 3 Topology Basics

2

3

4

5

6

7

11

12

13

21

22

23

30

31

32

33

0

1

2

3

4

5

6

7

14

15

16

17

24

25

26

27

34

35

36

37

8

9

10

11

12

13

14

15

01

02

03

10

11

12

13

14

15

05

06

07

0

1
10 2000

8

9
04

Figure 3.5 Routing a shuffle permutation on a 2-ary 4-fly results in all of the traffic concentrating on one
quarter of the channels at the center of the network, degrading performance by a factor of 4.

example), four traverse three channels (with three alternate routes), and four tra-
verse four channels (with 24 alternate routes). With minimal routing, the one-hop
channels become the bottleneck. There are no alternative minimal routes and thus
γmax, BR = 1. For this topology, uniform traffic gives γmax = 0.5 and therefore the
throughput under the bit-reversal pattern is γmax/γmax,BR = 50% of capacity. How-
ever, if we allow the four one-hop routes to route half of their traffic non-minimally
and in the opposite direction, the traffic is spread uniformly. For example, half of
the traffic from node 1 to 2 takes the route {(1, 2)}, while the remaining half takes
{(1, 0), (0, 3), (3, 2)}. The resulting throughput is increased to 89% of capacity, and
the 11% degradation is because of the extra hops taken by the non-minimal routes.

3.3 Performance 59

12 13 14

8 9 10

4 5 6

15

11

7

0 1 2 3

Figure 3.6 Routing a shuffle permutation on a 4-ary 2-cube. With minimal routing, throughput is degraded
by a factor of 2, since all of the one-hop traffic must traverse a single channel with bandwidth
of 0.5. With non-minimal routing, the traffic is spread uniformly and throughput is 0.89 of
capacity.

This example shows how non-minimal routing is often required to balance the
load across the channels. Even though more total work is done with non-minimal
routing (more channels are traversed), overall performance improves because of bet-
ter load balancing. However,non-minimal routing can increase implementation com-
plexity. For example,networks that use non-minimal routing require special attention
to avoid deadlock, as we shall see in Chapter 14.

Another important advantage of increased path diversity is a network’s ability
to handle faults, such as a failed node or link. For example, for the butterfly network
in Figure 3.5, if the link from switch 07 to 17 fails, there is no possible path from
source 14 to destination 15. Since the mean time to failure of an interconnection
network decreases with the number of components in the system, it is critical for
large interconnection networks to tolerate one or more faulty nodes or links.

One measure of a network’s ability to handle faults is the number of edge-
disjoint or node-disjoint paths allowed by the routing function between each source-
destination pair. A set of paths is edge-disjoint if the paths do not share any common
links. So, if one link in a network fails, it is guaranteed to affect at most one path in an
edge-disjoint set of paths. In general, if the minimum number of edge-disjoint paths
between all nodes for a given routing function is j , the network is guaranteed to be
connected as long as there are fewer than j link failures.

Node-disjoint paths are a set of paths that share no common nodes, excluding the
source and destination. Analogous to edge-disjoint paths, if one node fails, it can only
affect one path in a set of node-disjoint paths, unless, of course, the failed node is the
source or destination of the paths. A node-disjoint set of paths is also edge-disjoint,
so a network and routing function that has at least j node-disjoint paths between
each source-destination pair can tolerate up to j total link plus node failures.

60 C H A P T E R 3 Topology Basics

An unlucky group of faults could all affect the neighbors of a particular node in a
network. For this unlucky node, if all its neighboring nodes, all its incoming links, all
its outgoing links, or any equivalent combination fails, there is no way to route either
to or from this node. So, it is possible that a network will no longer be connected
after minx [min{|CIx |, |COx |}] failures.

3.4 Packaging Cost

When constructing a network, the nodes of a topology are mapped to packaging
modules, chips, boards, and chassis, in a physical system. The properties of the topol-
ogy and the packaging technology, along with the placement of nodes, determine
the constraints on the channels’ bandwidth. Without these constraints, one cannot
evaluate a topology or perform a fair comparison between topologies. In this section,
we develop a simple model of packaging cost based on a typical two-level packaging
hierarchy where the channel width w is constrained by both the number of pins per
node and the total amount of global wiring. We also discuss how frequency f , the
other factor in a channel’s bandwidth, is affected by packaging choices.

At the first level of hierarchy in the packaging model, individual routers are
connected by local wiring. Compared to global wiring, local wiring is inexpensive
and abundant, so a topology must be arranged to take advantage of spatial locality —
neighboring nodes should be placed physically close to one another.This arrangement
allows local wiring to be used in place of global wiring. For example, consider a system
in which 16 nodes can be fit on a single printed circuit (PC) board. By packaging a 4×4
array of nodes on a PC board as shown in Figure 3.7, three quarters of all pins remain
local to the PC board and only 32 channels need to cross the module boundary.

Once an efficient local arrangement of nodes is found, the main constraint on
channel width becomes the available number of pins on each node. For a node with
a maximum pin count of Wn per node, the channel width w is constrained by

w ≤ Wn

δ
. (3.12)

The second level of the hierarchy connects local groups of nodes via global wiring.
A typical realization of this global wiring is a backplane connecting several individual
boards of nodes, as shown in Figure 3.8. Any global signal travels from one board
across an electrical connector, onto the backplane, and across another connector to
another board. At this level, the number of available global wires, Ws , limits the width
of the individual channels. For example, a network constructed on a backplane has
a wire bisection limited by the wire density of the backplane. Allowing space for
through-hole vias, a typical PC board can support a wire density of 1 wire/mm, or
0.5 signals/mm for differential signals, on each signal layer.A moderate-cost PC board
may have a total of 8 wiring layers, 4 in the x direction and 4 in the y direction, for
a total wire density of 2 signals/mm in each direction.

To estimate the number of global channels required for a particular topology, we
use the minimum channel bisection BC of the topology. The minimum bisection is

3.4 Packaging Cost 61

00 01 02

10 11 12

20 21 22

03

13

23

30 31 32 33
PC board

Figure 3.7 A 4 × 4 array of nodes is packaged on a PC board so that 3
4 of all node pins are connected to

other pins on the board using local wiring.

a cut of the network that partitions the network almost in half while cutting as few
wires as possible. Therefore, the two sets of nodes created by a bisection represent
a good partitioning of nodes into local groups for packaging. While this model is
limited in that many networks may have to be partitioned into more than two local
groups to meet the constraints of the packaging technology, it is generally a good
estimate in these cases.

Using the minimum bisection, the available global wiring constrains the channel
width to

w ≤ Ws

BC

. (3.13)

While our discussion has focused on a two-level packaging hierarchy, Equation 3.13
can also be applied to additional levels of packaging necessary in larger systems. (See
Exercise 5.3.)

PC board

Backplane

Ws

Figure 3.8 The connection of several boards of nodes with a backplane.

62 C H A P T E R 3 Topology Basics

By combining Equations 3.12 and 3.13, we get an overall constraint on channel
width

w ≤ min
(

Wn

δ
,

Ws

BC

)
. (3.14)

The first term of Equation 3.14 tends to dominate networks with low degree (e.g.,
rings). These networks are node-pin limited. Networks with high degree (e.g., binary
n-cubes), on the other hand, tend to be bisection limited with the second term of
Equation 3.14 dominating.

We can also express our packaging constraints in terms of bandwidth rather than
channel width. The maximum bandwidth of a node is Bn = f Wn and the maximum
bandwidth across the bisection of the system is Bs = f Ws . Using bandwidth, we can
rewrite Equation 3.14 to give the maximum bandwidth per channel as

b ≤ min
(

Bn

δ
,

Bs

BC

)
.

In addition to the width of wiring available at different levels of the packaging
hierarchy, another important consideration is the length of these wires. The length
of the network channels must be kept short because, above a critical length, the
frequency of a signal falls off quadratically with wire length:2

f = min

(
f0, f0

(
lw

lc

)−2
)

.

The critical length of a wire, lc, is a function of the nominal signaling rate3 of the
wire, f0, the physical properties of the wire, and the amount of frequency-dependent
attenuation that can be tolerated by the system.

Table 3.2 shows the critical length for several common types of wires at a signaling
rate of 2 GHz, assuming no more than 1 dB of attenuation can be tolerated.4 Density-
cost constraints lead most networks to be constructed from stripguides in PC boards,
fine wire cables, or both. These interconnects, which correspond to the first two rows
of the table, can be run only a short distance, less than a meter, before the critical
wire length is reached and data rate begins to drop off quadratically with length.

By inserting repeaters into the lines, one can build long channels and operate
them at high bit rates. However, inserting a repeater is about the same cost as inserting

2. This bandwidth limitation is caused by the skin-effect resistance of the wire. See Section 3.3.4 of [55]
for a detailed treatment.

3. Note that a signaling rate of f0 corresponds to a maximum frequency of f0/2.
4. Much higher amounts of frequency-dependent attenuation can be tolerated, and hence much longer wires

can be driven, by equalizing the signal [54].

3.4 Packaging Cost 63

Table 3.2 Critical length of common wires at 2 GHz (without equalization).

Wire Type lc

5 mil stripguide 0.10 m
30 AWG pair 0.56 m
24 AWG pair 1.11 m
RG59U coax 10.00 m

a switch, so there is little point in this exercise. One would be better off using a
topology that keeps the channels under the critical length, inserting switches rather
than repeaters into long routes. The relationship between wire speed and wire length
makes it impractical to build high-speed electrical networks using topologies that
require long channels.

One can also build long channels that operate at high bit rates by using optical
signaling. While optical fibers also attenuate and disperse signals, limiting distance,
they do so at a much lower rate than electrical transmission lines. Single-mode optical
fibers can transmit signals tens to hundreds of kilometers before they need to be
regenerated. The downside of optical channels is cost. An optical channel in 2003
costs over ten times as much as an electrical channel of the same bandwidth.

A comparison between two different 6-node topologies is shown in Figure 3.9.
The first topology is a simple 6-ring,with δ = 4 and BC = 4.The second topology falls
under a large class of graphs known as Cayley graphs and has δ = 6 and BC = 10.
Our packaging technology allows Wn = 140 pins per node and a backplane that
is Ws = 200 signals wide. So, for a fair comparison between these topologies, the
channel width w is chosen so both topologies meet the packaging constraints. First,
for the ring,

w ≤ min
(

Wn

δ
,

Ws

BC

)
= min

(
140
4

,
200

4

)
= 35. (3.15)

0

1

2

3

4

5

(b)

BC =10

0 1 2 3 4 5

(a)

BC =4

Figure 3.9 The bisection and degree for (a) a 6-ring and (b) a Cayley graph. Each edge represents two
unidirectional channels going in opposite directions.

64 C H A P T E R 3 Topology Basics

And for the Cayley graph,

w ≤ min
(

Wn

δ
,

Ws

BC

)
= min

(
140
6

,
200
10

)
= 20. (3.16)

Using these widths and a signaling frequency of f = 1 GHz, the channel bandwidth
of the ring is 35 Gbits/s and 20 Gbits/s for the Cayley graph. If the message length
is L = 1024bits, the router delay tr = 20 ns, and given the maximum channel load
and average hop count, the ideal throughput and zero-load latency of both networks
can be compared. (See Table 3.3.) As shown, the Cayley graph gives better ideal
throughput, while the ring has a lower zero-load latency for the given packaging
constraints. Examining Equations 3.15 and 3.16 shows that the ring’s channel width
is limited by pin bandwidth, whereas the Cayley graph is able to take advantage of the
full bisection width. This results in better bisection utilization and hence better ideal
throughput for the Cayley graph. However, the higher degree of the Cayley graph
limits the size of an individual channel, resulting in higher serialization delay and a
better zero-load latency for the ring. One might conclude that this latency result is
counterintuitive by examining the topologies alone, because the Cayley graph has a
smaller average hop count. However, by considering the limits on the channel width
imposed by a particular package, we see that the actual latency of the Cayley graph
is in fact higher than that of the ring — in this case, the reduction in hop count is
overwhelmed by the increase in serialization latency.

3.5 Case Study: The SGI Origin 2000

To give you a concrete example of a topology, we will take a look at the intercon-
nection network of the SGI Origin 2000 [108]. The Origin 2000 system, shown
in Figure 3.10, was first announced in 1997. The Origin 2000 supports up to 512
nodes with 2 MIPS R10000 [197] processors on each node. Because it is a shared-
memory multiprocessor, the requirements on the network are both low latency and
high throughput.

Table 3.3 Example performance for the packaged ring and Cayley graph networks.

Ring Cayley

b 35 Gbits/s 20 Gbits/s
Havg 3/2 7/6
γmax 3/4 7/18
�ideal ≈ 46.7 Gbits/s ≈ 51.4 Gbits/s
Th 30 ns ≈ 23.3 ns
Ts ≈ 29.3 ns ≈ 51.2 ns
T0 ≈ 69.3 ns ≈ 74.5 ns

3.5 Case Study: The SGI Origin 2000 65

Figure 3.10 SGI Origin Servers. A single cabinet (16-processor) and a deskside (8-processor) configuration
are shown.

By examining the network of this machine, we will see a number of issues
involved in mapping an interconnection network to a packaging hierarchy. We will
also explore issues in building an interconnection network from a fixed set of com-
ponents that supports scalable machine sizes from a few nodes to hundreds of nodes.

The Origin 2000 network is based on the SGI SPIDER routing chip [69]. The
SPIDER chip provides 6 bidirectional network channels. Each channel is 20 bits wide
and operates at 400 MHz for a channel bandwidth of 6.4 Gbits/s. Thus, each node
of the network has six 6.4 Gbits/s links for a total node bandwidth of 38.4 Gbits/s.
All these channels may be driven across a backplane and three of the channels have
a physical interface capable of driving up to five meters of cable.

Figure 3.11 illustrates how the Origin 2000 network topology changes as the
number of nodes is increased. In all configurations, the network attaches 2 process-
ing nodes (4 processors) to each terminal router.5 These terminal connections use
2 of the 6 channels on the router, leaving 4 channels to connect to other routers.
Systems with up to 16 routers (32 nodes, 64 processors) are configured as binary
n-cubes, with each router connecting to neighboring routers in up to 4 dimensions,
as illustrated in Figure 3.11(a). If all 4 dimensions are not used (for example, in an
8-router system), then the unused channels may be connected across the machine
to reduce network diameter.

5. This is an example of concentration, which we will discuss in Section 7.1.1.

66 C H A P T E R 3 Topology Basics

N

N N

N

N

N N

N

R RN

N N

N

R RN

N N

N

R R

R R

N

N N

N

N

N N

N

R RN

N N

N

R RN

N N

N

R R

R R N

N N

N

N

N N

N

R RN

N N

N

R RN

N N

N

R R

R R

(a)

(b)

Figure 3.11 For up to 16 routers (R) (32 nodes [N]) the Origin 2000 has a binary n-cube topology, n ≤ 4.
(a) An 8-router (16-node) machine has a binary 3-cube topology. (b) A 16-router (32-node)
machine has a binary 4-cube topology.

Machines with more than 16 routers are implemented with hierarchical net-
works, as shown in Figure 3.12. These larger configurations are composed of 8-router
(16-node, 32-processor) local sub-networks that are configured as binary 3-cubes
with one channel on each node left open. Eight router-only global subnetworks are
then used to connect the 8-router subnetworks together. For a machine with 2n

routers, each global network is a binary cube with m = n − 3 dimensions. For exam-
ple, a maximal 256-router (512-node, 1024-processor) configuration uses 8 32-node
binary 5-cubes for global subnetworks. The open channel of router i in local sub-
network j is connected to router j of global subnetwork i. For the special case of
a 32-node machine (n = 5), each 4-port global subnetwork is realized with a single
router chip. This structure is, in effect, a Clos network (see section 6.3) with the
individual switches constructed from binary n-cubes.

The Origin 2000 is packaged in a hierarchy of boards, modules, and racks, as
shown in Figure 3.13. Each node (2 processors) is packaged on a single 16-inch ×
11-inch circuit board. Each router chip is also packaged on a separate circuit board.
Four node boards (8 processors) and 2 router boards are packaged in a chassis and
connected by a midplane. The remaining room in each chassis is used for the I/O
subsystem. Two chassis (four routers) are placed in each cabinet. A system may have
up to 64 cabinets (256 routers). In large systems, additional router-only cabinets are
used to realize the global subnetworks.

3.5 Case Study: The SGI Origin 2000 67

N

N N

N

N

N N

N

R RN

N N

N

R RN

N N

N

R R

R R

R R

R R

R R

R R

Local subnetwork 0 Global subnetwork 0

Local
subnetwork

1

Global
subnetwork

1

Local
subnetwork

7

Global
subnetwork

7

Figure 3.12 Origin 2000 machines with more than 32 nodes use a hierarchical topology where 8-router
(16-node) binary 3-cube subnetworks are connected by 1 link per node to 8 central binary
n-cube, n ≤ 5, networks. The figure shows a 128-node machine in which there are 8 local
subnetworks connected to 8 binary 3-cube global subnetworks.

Of the 6 channels on each router board, 2 connect to 2 of the 4 node boards
on the midplane, 1 connects to the other router on the midplane, and the remaining
3 are brought out to back-panel connectors for connection to other chassis. One of
these back-panel connections on each router is used to connect to the other chassis
in the same cabinet, a second connects to the second cabinet in a local subnet, and
the third connects either to a global sub-network or to a second pair of cabinets in a
16-router, 4-cabinet system.

Table 3.4 shows how this hierarchical topology meets the requirements of a
shared-memory multiprocessor given the constraint of constructing the network en-
tirely from 6-port routers. As shown in Equation 3.11, zero-load latency grows with
average hop count and distance, both of which grow with diameter, and serialization
latency, Equation 3.10, which is fixed by the 20-bit width of the router channel. To
keep latency low, the Origin 2000 uses a topology in which diameter, and hence hop
count, increases logarithmically with the size of the machine. Going to a hierarchical

68 C H A P T E R 3 Topology Basics

Figure 3.13 Packaging of a 4-router (16-processor) Origin 2000 system. Reprinted by permission from
Laudon/Lenoski [ISCA ’97] © [1997] ACM, Inc.

network allows the designers to continue the logarithmic scaling at machine sizes
larger than can be realized with a degree-4 (2 ports are used by the nodes) binary
n-cube. We leave the exact calculation of latency as Exercise 3.8.

The Origin 2000 topology meets the bandwidth requirements of a shared-
memory multiprocessor by providing a flat bisection bandwidth per node as the
machine scales. For each machine configuration, a bisection of the machine cuts
N channels where N is the number of routers (N/2 in each direction). For the
small machines, a binary n cube network has 2n routers and 2n channels across the
bisection, 2n−1 in each direction. For the larger machines, each node has one chan-
nel to a global sub-network and each global sub-network has a bisection bandwidth
equal to its input bandwidth.

3.7 Exercises 69

Table 3.4 Configuration and performance of Origin 2000 network as a function of the number of nodes.

Size (nodes) Topology Chassis Diameter BC

4 binary 1-cube 1 3 2
8 binary 2-cube 2 4 4

16 binary 3-cube 4 5 8
32 binary 4-cube 8 6 16
64 4 3-cubes × 8 4 × 4 switches 16 7 32

128 8 3-cubes × 8 3-cubes 32 9 64
256 16 3-cubes × 8 4-cubes 64 10 128
512 32 3-cubes × 8 5-cubes 128 11 256

3.6 Bibliographic Notes

Although we focus on the two most common interconnection networks in the next
chapters of this book, there are several other notable topologies. Cube-connected
cycles [153] maintain the low hop count (diameter) of hypercube networks, but
with constant-degree nodes. Fat trees [113] have been shown to be a universal net-
work topology, in that they can emulate the behavior of any other topology in poly-
logarithmic time. A 4-ary fat tree was used in the Connection Machine CM-5’s
network [114]. (See Section 10.6.) Cayley graphs [7], a family of topologies that
subsume the cube-connected cycle, offer simple routing and lower degree than
hypercube networks of equivalent size.

3.7 Exercises

3.1 Tornado traffic in the ring. Consider an 8-node ring network in which each node
sends traffic to the node 3 hops around the ring. That is, node i sends traffic to i + 3
(mod 8). Each channel has a bandwidth of 1 Gbit/s and each input offers traffic of
512 Mbits/s.

What is the channel load, ideal throughput, and speedup if minimum routing is used
on this network? Recalculate these numbers for the case where non-minimal routing
is allowed and the probability of taking the non-minimal route is weighted by its
distance so that a packet takes the three-hop route with probability 5/8 and the
five-hop route with probability 3/8.

3.2 A worst-case channel load bound. Derive a lower bound for the maximum chan-
nel load under worst-case traffic, assuming that the bisection channels are the most
heavily loaded channels and all channels have an equal bandwidth b.

3.3 Limitations of channel load bounds. Find a topology where the upper bound on max-
imum channel load given by Equation 3.6 is not tight. Does the topology you

70 C H A P T E R 3 Topology Basics

have found require non-minimal routing to optimally balance traffic? Explain your
answers.

3.4 Tightness of channel load bounds for symmetric topologies. Prove that the maximum
channel load bounds in Equations 3.5 and 3.6 equal the optimal load for any edge-
symmetric topology.

3.5 Throughput with asymmetric channel bandwidths. Derive an expression for the ideal
throughput of a network when the channel bandwidths are not equal. If necessary,
change the definitions of γc and γmax to be consistent with this new expression for
throughput.

3.6 Impact of serialization latency on topology choice. A system designer needs to build a
network to connect 64 processor nodes with the smallest possible packet latency. To
minimize cost, each router is placed on the same chip as its corresponding proces-
sor (a direct network) and each processor chip has 128 pins dedicated to the net-
work interface. Each pin’s bandwidth is 2 Gbits/s and the average packet length is
L = 512 bits. The hop latency of the routers is tr = 15 ns. Ignore wire latency
(Tw = 0).

(a) The designer first considers a fully connected topology. That is, each node has a
dedicated channel to every other node. What is the average router latency Trmin

and serialization latency Ts of this network? What is the average, zero-load
message latency T0?

(b) Recompute the latencies for a ring topology. Hmin for this ring is 16. (See
Section 5.2.2.)

3.7 Latency under non-random traffic. For the torus and ring networks described in
Section 1.3.1, random traffic was assumed when computing latency. This led to
the conclusion that the ring had superior latency performance. Is there any traffic
pattern where the torus would have lower latency? If not, explain why not. For sim-
plicity, assume node (i, j) of the torus is mapped to node (4i + j) of the ring. (For
example, torus 00 maps to ring 0, torus 13 maps to ring 7, and so on.)

3.8 Latency in the Origin 2000. Each of the racks in the Origin 2000 (Section 3.5)
is 19 inches wide and 72 inches high. Assume that all cables within a rack are
48 inches long, all cables between racks must be routed under a raised floor, and
that the propagation velocity of the cables is 2×108 m/s. Also, assume that all mes-
sages are 512 bits long (16 32-bit words). Compute the average zero-load message
latencies, including wire delay Tw, for an Origin 2000 configured with 16 nodes and
one configured with 512 nodes for uniform traffic.

3.9 Diameter improvements from partially random wiring. Random topologies,where nodes
are randomly connected by channels, are known to have several good graph-theoretic
properties such as low diameter. This comes at the cost of regularity of packaging
and routing, which makes most purely random networks impractical. However, a
hybrid approach can still realize some of the benefits of randomization [191] with-
out sacrificing ease of packaging. Consider the mesh network in Figure 3.14(a),
where the left and right sides of the network are packaged in separate cabinets.

3.7 Exercises 71

(a)

00 01

10 11

20 21

30 31

Cabinet 1

02 03

12 13

22 23

32 33

Cabinet 2

00 01

10 11

20 21

30 31

02 03

12 13

22 23

32 33

(b)

Figure 3.14 The packaging of a 16-node network across 2 cabinets (a) using coaxial cables to create a mesh
topology, and (b) with a random permutation of the cables between cabinets.

Coaxial cables (wavy lines in the graph) connect corresponding nodes between the
two cabinets.

(a) What is the diameter of this mesh network?
(b) How does the diameter of this network change if the cable connections are

randomly permuted? (Figure 3.14[b] shows one such permutation.) What are
the minimum and maximum diameters of the network over all permutations?
Give a permutation that realizes the minimum diameter.

3.10 Performance of a fat tree network. Figure 3.15 shows a 16-node, radix-2 fat tree
topology.

(a) Assuming all channel bandwidths equal the injection and ejection rates of the
terminal nodes, what is the capacity of this network?

(b) Consider a randomized approach for routing on this network: for each packet,
route first from the source “up” to the top of the tree (these are the 8 small,
center nodes in the figure), along the way randomly choosing between the two
possible “up” channels, and then finish by routing along the “down” channels
to the destination. What is the maximum channel load you can reach by using
this routing algorithm for any traffic pattern?

3.11 Performance and packaging of a cube-connected cycles topology. The topology in
Figure 3.16 is called the 3rd -order cube-connected cycles.

(a) What is the channel bisection BC of this topology?
(b) If minimal routing is used, what is the maximum hop count Hmax? What is the

average hop count Hmin?
(c) Now we want to package this topology under a constraint of Wn = 128 sig-

nals per node and Ws = 180 across the backplane. Assume a packet size of
L = 200 bits and a signaling frequency of 800 MHz, and also ignore wire length.
What is maximum channel width w under these constraints? Is this network

72 C H A P T E R 3 Topology Basics

3

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

Figure 3.15 A 16-node, radix-2 fat tree. All rectangular nodes are switch nodes.

pin or bisection bandwidth limited? What does the router latency tr need to be
to ensure a zero-load latency of 75 ns?

3.12 Physical limits of performance. Using simple ideas, it is possible to compute realizable
bounds on the diameter of a network and the physical distance between nodes once
it has been packaged. First, if radix k switches (out degree k) are used, what is the
smallest possible diameter of an N node network? Now assume that each node has
a volume V . What packaging shape in three-dimensions gives the smallest maxi-
mum distance between nodes? What is this distance, assuming a large number of
nodes?

Figure 3.16 3rd -order cube-connected cycles.

3.7 Exercises 73

3.13 Capacity of arbitrary networks. Write a program to determine the capacity of an ar-
bitrary network topology on uniform traffic using the optimization problem from
Equation 3.9. The program’s input is simply the node-arc incidence matrix corre-
sponding to the topology, and the output is the capacity of the network. For simplic-
ity, assume all channels have equal bandwidth and that the ejection and injection
rates of all nodes are also equal. Finally, it may be simpler to work with this alternative
formulation of the optimization problem:

minimize t

subject to Axd = fd and∑
d∈N

xd,c ≤ t for all c ∈ C

xd ≥ 0 for all d ∈ N∗

By introducing an extra variable t , the optimization is expressed as a linear program,
which can be solved by specialized tools or by the linear programming routines
included in software packages such as MATLAB.

.
This Page Intentionally Left Blank

C H A P T E R 4

Butterfly Networks

While numerous topologies have been proposed over the years, almost all networks
that have actually been constructed use topologies derived from two main families:
butterflies (k-ary n-flies) or tori (k-ary n-cubes). In this chapter, we will define the
family of butterfly networks and explore its properties. Torus networks are examined
in Chapter 5.

A butterfly network is the quintessential indirect network.The butterfly topology
has the minimum diameter for an N node network with switches of degree δ = 2k,
H = logk N + 1. Although this optimal diameter is an attractive feature, butterfly
networks have two main drawbacks. First, the basic butterfly network has no path
diversity: there is exactly one route from each source node to each destination node.
As we shall see, this problem can be addressed by adding extra stages to the butter-
fly. These extra stages improve the path diversity of the network, while keeping the
diameter of the network within a factor of two of optimal.

Second, the butterfly cannot be realized without long wires that must traverse
at least half the diameter of the machine. Because the speed of a wire decreases
quadratically with distance over the critical length, these long wires make butterflies
less attractive for moderate-sized and larger interconnection networks. However, the
logarithmic diameter and simple routing of the butterfly network has made it and its
variants some of the most popular of interconnection networks for many applications.

4.1 The Structure of Butterfly Networks

We have already seen many examples of k-ary n-flies. The simple network shown in
Figure 2.2 is a 4-ary 3-fly (three stages of radix-four switches), Figure 3.1(b) shows a

75

76 C H A P T E R 4 Butterfly Networks

2-ary 3-fly, and Figure 3.5 shows a 2-ary 4-fly. Many other “flies” are possible; k need
not be a power of 2, for example.

A k-ary n-fly network consists of kn source terminal nodes, n stages of kn−1 k × k

crossbar switch nodes, and finally kn destination terminal nodes. We adopt the con-
vention of drawing the source nodes of the butterfly at the left and the destinations
at the right. All channels in a butterfly are unidirectional and flow from left to right,
unless otherwise stated. In most realizations of the butterfly, the source and des-
tination terminal nodes are physically colocated, although they are often drawn as
logically separate. We will count each of these source and destination node pairs as
a single terminal node so that a k-ary n-fly has a total of N = kn terminals.

0

1

2

3

4

5

6

7

1.0

1.1

1.2

1.3

2.0

2.1

2.2

2.3

3.0

3.1

3.2

3.3

0

1

2

3

4

5

6

7

1.4

1.5

1.6

1.7

2.4

2.5

2.6

2.7

3.4

3.5

3.6

3.7

8

9

10

11

12

13

14

15

0.0

0.1

0.2

0.3

8

9

10

11

12

13

14

15

0.4

0.5

0.6

0.7

0.0

0.1

1.0

1.1 2.1

1.8 2.8

1.9

2.13

2.12

2.9

2.0

Figure 4.1 Labeling of a 2-ary 4-fly. A node is labeled with its stage number concatenated with its address.
A subset of the channels is also labeled with its stage and address.

4.2 Isomorphic Butterflies 77

We label each terminal node and the outgoing channels from each switch node
with an n-digit radix-k number, {dn−1, dn−2, . . . , d0}. The first n − 1 digits, {dn−1,

dn−2, . . . , d1} identify the switch, and the last digit, d0, identifies the terminal on the
switch.The wiring between the stages permutes the terminal address. Between stages
i − 1 and i (numbering starts with 0), the wiring exchanges digits dn−i and d0. Both
the node and a partial channel labeling of a 2-ary 4-fly are shown in Figure 4.1. To
distinguish nodes and channels from different stages, the stage number is appended
to their label separated by a period. So, for example, node {1, 0, 1} = 5 in stage 1 is
labeled 1.5 in the figure.

Routing on the k-ary n-fly is understood easily in terms of these permutations.
Switch stage i sets the current low-order digit of the terminal address, d0, to an
arbitrary value. The wiring stage between switch stage i − 1 and stage i then places
this value into position dn−i . Thus, the first stage sets dn−1, the second stage dn−2,
and so on, with the final stage setting d0, which is already in the right position, so no
further wiring is needed.

4.2 Isomorphic Butterflies

Over the years, many multistage networks have been proposed: the shuffle-exchange,
the butterfly, the data manipulator, and the flip, to name a few. It turns out, however,
that they are all the same network [195] with a few of the switches renumbered.
That is, they are isomorphic.

A network, K, is defined by its node and channel sets: K = (N∗, C). Two net-
works, K1 = (N1, C1) and K2 = (N2, C2) are isomorphic if there exists a permutation
π of the vertices such that an edge {u, v} ∈ C1 iff {π(u), π(v)} ∈ C2. As an exam-
ple of this type of isomorphism, Figure 4.2 shows a 2-ary 3-fly drawn two ways: as
a shuffle-exchange network and as a butterfly. The shuffle-exchange network has
identical wiring between each stage that performs a shuffle permutation.1 This per-
mutation connects the output terminal of stage i with address {d2, d1, d0} to the
input terminal of stage i + 1 with address {d1, d0, d2}.

The two networks shown in Figure 4.2 are isomorphic with a very simple map-
ping: the position of switch nodes 11 and 12 are simply swapped. To make the
mapping clear, these switch nodes are numbered with a butterfly numbering in both
networks. The simplest way to see the isomorphism is to consider routing from
input terminal {a2, a1, a0} to output terminal {b2, b1, b0}. The sequence of switch
ports visited in the two networks is illustrated in Table 4.1. The sequences are iden-
tical except that the address of the stage 1 switch is reversed: it is {b2, a1} in the
butterfly and {a1, b2} in the shuffle exchange. Thus, routing in the two networks
visits the identical switches modulo this simple relabeling of the first stage switches.

1. This is the permutation performed on the cards of a deck when shuffling. Card 0 remains in position 0,
card 1 goes to position 2, card 2 goes to position 4, and so on.

78 C H A P T E R 4 Butterfly Networks

0

1

2

3

4

5

6

7

00

01

02

03

10

11

12

13

20

21

22

23

0

1

2

3

4

5

6

7
(a) A 2-ary 3-fly

0

1

2

3

4

5

6

7

00

01

02

03

10

12

11

13

20

21

22

23

0

1

2

3

4

5

6

7

(b) A 2-ary 3-fly drawn as a shuffle-exchange

Figure 4.2 A 2-ary 3-fly drawn two ways (a) as a conventional butterfly, and (b) as a shuffle exchange
network. The only difference is the position of switch nodes 11 and 12.

Table 4.1 Routing from {a2, a1, a0} to {b2, b1, b0} in 2-ary 3-flies wired as a butterfly and a shuffle
exchange. The only difference is in the address of the stage 1 switch: {b2, a1} in the butterfly
and {a1, b2} in the shuffle exchange.

Stage Butterfly Shuffle Exchange

Stage 0 input {a2, a1, a0} {a2, a1, a0}
Stage 0 output {a2, a1, b2} {a2, a1, b2}
Stage 1 input {b2, a1, a2} {a1, b2, a2}
Stage 1 output {b2, a1, b1} {a1, b2, b1}
Stage 2 input {b2, b1, a1} {b2, b1, a1}
Stage 2 output {b2, b1, b0} {b2, b1, b0}

4.3 Performance and Packaging Cost

As we saw in Chapter 3, a topology is characterized by its throughput, latency, and
path diversity. We discuss throughput and latency of butterflies in this section, while
addressing path diversity in Section 4.4. All performance comparisons use the two-
level packaging model introduced in Section 3.4.

A k-ary n-fly network has kn input terminals, kn output terminals, and nkn−1

switch nodes. The degree of each switch node is

δfly = 2k. (4.1)

4.3 Performance and Packaging Cost 79

The channel bisection is

BC,fly = N

2
(4.2)

for N even. The case for N odd is addressed in Exercise 4.7.
Although butterflies are not edge-symmetric networks, the channels between

each stage are symmetric and this is sufficient for the bounds on maximum channel
load developed in Section 3.3.1 to be tight (that is, all channels are loaded equally
under uniform traffic). Then a formulation for channel load only requires the average
hop count.

The hop count for any packet sent in a butterfly network is the same regardless
of source and destination and is simply the number of stages plus one,2 or

Hmin,fly = n + 1.

Using this hop count and Equation 3.5, the channel load is

γU,fly = NHmin,fly

C
= kn(n + 1)

kn(n + 1)
= 1.

As we have just shown for uniform traffic, half of the traffic crosses the network
bisection, and each bisection channel is loaded with γfly,uniform = 1. For a reverse
traffic pattern, where node i sends a packet to node N − i − 1, or any other pattern
where each node in one half of the network sends to a node in the other half, all
traffic will cross a bisection channel and load increases to γfly,rev = 2. This difference
between average and worst-case bisection traffic is not unique to butterfly networks.
However, as we shall see in Section 4.4, the lack of path diversity in butterflies can
increase γ to as high as

√
N by concentrating a large fraction of the traffic on a single

channel.
The channel width of the butterfly network under the two-level packaging hier-

archy is calculated by substituting Equations 4.1 and 4.2 into Equation 3.14 giving

wfly ≤ min

(
Wn

δfly
,

Ws

BC,fly

)
= min

(
Wn

2k
,

2Ws

N

)
.

Then with uniform loading, and thus γ = 1, the ideal throughput is

�ideal,fly = f wfly

γ
= min

(
Bn

2k
,

2Bs

N

)
(4.3)

where Bn and Bs are the node and bisection bandwidths, respectively.
For most butterfly networks the goal is first to get maximum throughput, and

second to minimize message latency. To achieve this goal, one chooses the largest k

for which the network is bisection bandwidth limited. This occurs when

k =
⌊

NBn

4Bs

⌋
. (4.4)

2. This assumes that the source and destination are terminal nodes distinct from the switching nodes. If the
source and destination nodes are switching nodes, then the hop count is n − 1.

80 C H A P T E R 4 Butterfly Networks

This value of k gives the smallest diameter, which minimizes the H portion of
latency while maximizing channel bandwidth. This also maximizes ideal through-
put and minimizes serialization latency. Any k less than this value does not improve
throughput and only increases latency due to additional hop count3.

For a k-ary n-fly, all three components of latency (Ts , Tr , and Tw) are influenced
by the choice of k and n. Serialization latency for a butterfly is Ts = L/b and is
determined by the bandwidth given in Equation 4.3. Tr is simply trHmin = tr (n+1).
The exact value of wire latency Tw depends on how the k-ary n-fly is packaged. All
k-ary n-flies of any size require many long channels. Half of the channels in the first
stage cross to the other half of the machine, half the channels in the second stage
cross to a different quadrant, and so on. In many butterflies these channels are longer
than the critical wire length and repeaters must be inserted in the wires if they are
to operate at full speed.

To illustrate the butterfly performance measures described in this section, con-
sider an N = 212 node k-ary n-fly that is to route L = 512-bit packets and is to
be packaged in a technology with a wire bisection of Ws = 214, a node pinout of
Wn = 28, and a channel frequency of f = 1 GHz. We also assume router latency is
tr = 10 ns and ignore wire delay. From Equation 4.4 we calculate k = 212×28

4×214 = 16.
Thus, for best performance, this will be a 16-ary 3-fly. With δ = 2k = 32, each
channel is at most w = Wn

δ
= 8 bits wide. This gives a network with a hop count of

H = 4, an ideal throughput of �ideal = b/γ = 8 Gbits/s, and an average latency of
T = 104 ns. The performance of this butterfly over all choices of k and n is summa-
rized in Table 4.2.

Table 4.2 Throughput and latency of a 4,096-node butterfly network. ws and wn are the channel widths
due to bisection and node pinout constraints, respectively. Values of w limited by node pinout
are shown in italics, and the optimal value of k is bolded.

n k ws wn w � ideal (Gbits/s) Th(ns) Ts(ns) T (ns)

1 4,096 8 0.03125 0.03125 0.03125 20 16,384 16,404
2 64 8 2 2 2 30 256 286
3 16 8 8 8 8 40 64 104
4 8 8 16 8 8 50 64 114
6 4 8 32 8 8 70 64 134

12 2 8 64 8 8 130 64 194

3. In Chapter 7 we will introduce the option of bit slicing or channel slicing the butterfly network, which
allows the diameter to be reduced while keeping the network bisection bandwidth limited. Channel
slicing, in particular, allows serialization latency to be traded off against diameter.

4.4 Path Diversity and Extra Stages 81

4.4 Path Diversity and Extra Stages

There is no path diversity in a k-ary n-fly network: |Rxy | = 1 ∀x, y ∈ N . This can lead
to significant degradation in throughput due to load imbalance across the channels
when the traffic pattern is non-uniform.

This load imbalance can be mitigated by adding extra stages to the network
[166]. To see how adding stages to the network reduces the problem, we will first
see how traffic becomes concentrated on the bottleneck channels.

Let k = 2, n be even, and m = n/2. Using the address format described in
Section 4.1, suppose packets are sent from node {xm, . . . , x2, am, . . . , a1, x1} to node
{bm, . . . , b1, ym, . . . , y0} for all x ∈ Z(2m), where y = π(x) is any permutation of the
elements of Z(2m).4 For brevity of notation, we will write an m-digit address using a
single character, so x = {xm, . . . , x1}, for example.

In the first stage of routing, a packet from node x moves through switch {xm, . . . ,

x2, a}. During the next stage of routing, the same packet moves through switch
{bm, xm−1, . . . , x2, a}. This continues for the mth stage, where the packet is at switch
{bm, . . . b2, a}, and (m + 1)th stage, where the packet is at switch {b, am−1, . . . , a1}.
Because the mth stage switch is not a function of x, all 2m = √

N packets in our
pattern travel through this switch. The same can be said about the (m + 1)th stage
switch, and since there is only one channel between these two switches, the load
on this channel is

√
N . Finding the address of this overloaded channel is left as

Exercise 4.4.
This traffic concentration is easy to visualize if we draw our butterfly network in

two dimensions, as illustrated in Figure 4.3. The figure shows that a k-ary n-fly can be
thought of as 2m y-axis switching planes, each with 2m switches per stage followed
by an equal number of z-axis switching planes with the same number of switches

MSB axis, 2n/2

switching planes

LSB axis, 2n/2

switching planes

n/2 stages n/2 stages

Figure 4.3 A 2-D view of a butterfly network. The first m stages resolve the most significant m switch
address bits, routing the packet to the correct position along the y axis in this figure. The next
m stages resolve the remaining m switch address bits, routing the packet to the correct position
along the z axis.

4. Z(i) is shorthand for the set of integers {0, . . . , i − 1}.

82 C H A P T E R 4 Butterfly Networks

per stage. This is because the first m stages adjust only the most significant m switch
address bits and, hence, move the packet only in the y dimension (vertically). Then
the next m stages adjust only the least significant address bits, moving the packet in
the z dimension (into the page).5

To see how a butterfly can become congested, consider what happens when all of
the input ports connected to the first y-axis network attempt to send packets to all of
the output ports connected to the first z-axis network. All 2m of these packets must
route through the single channel connecting these two networks, which corresponds
exactly to the permutation traffic we described above.

Suppose now that we add m stages to the front of the network, and that these
stages are wired identically to the last m stages in the network — that is, they
adjust the m least significant bits of the switch address. These extra stages give a path
diversity of 2m. That is |Rxy | = 2m ∀x, y ∈ N . To see this, consider routing a packet
from {s, t} to {u, v}. The new m stages can route from {s, t} to {s, i} for an arbitrary
i ∈ Z(2m). With an appropriate routing strategy,6 i will be chosen uniformly and
the traffic from {s, t} to {u, v} will be uniformly distributed over the 2m intermediate
channels {s, i} from stage m − 1. Now, the next n

2 stages (the first half of the original
network) route the packet from {s, i} to {u, i}. Finally, the last n

2 stages route from
{u, i} to {u, v}. Note that our pathological traffic pattern, from {xm, . . . , x2, a, x1}
to {b, y}, does not concentrate on a single channel in this network, since the addi-
tional stages distribute this traffic uniformly over the channels {xm, . . . , x2, am, i} and
then {b, i}.

Figure 4.4 shows how adding an extra stage to a 2-ary 3-fly gives the network
a path diversity of 2. In the unmodified network, bit-reversal traffic — that is, from
0 → 0, 4 → 1, and so on — will concentrate all of the traffic on half the links out of
the second stage. Adding the additional input stage eliminates this problem, giving
a uniform channel load of γ = 1 on bit-reversal traffic.

The optimistic reader may assume at this point that the problem is solved: that
by adding m stages to a butterfly network, we can perfectly load-balance the network.
Unfortunately, this is not the case. Two problems remain. First, because the channel
bisection of the network, BC,fly is less than N , the network cannot handle traffic in
which all nodes transmit across the bisection (for example, where node i sends to
N − i − 1). Second, for larger networks, n > 3, the problem of traffic concentration
still exists, but with a concentration factor of 2n/4 rather than 2n/2.

To see the problem with concentration, we will express our switch addresses
in terms of r = n/4 bit strings (assume n = 2m = 4r for some integers m and
r). Consider a route from {xr , . . . , x2, a, x1, s, t} to {b, y, u, v}, where y = π(x) is a
permutation of the elements of Z(2r). After our extra input stages, we are at channel
{xr , . . . , x2, a, x1, i, j}. Our middle stages then take us to {b, y, i, j}. Since the two

5. This 2-D arrangement of a butterfly has been used to efficiently package small butterfly networks. With
this approach, the first half of the stages is packaged on a set of vertical circuit cards, while the remaining
stages are packaged on horizontal circuit cards. The cards are connected together as shown in Figure 4.3
by a midplane

6. The output port for a packet traveling through the redundant stages may either be chosen randomly or
by selecting any idle output port. This latter strategy is often called deflection routing.

4.4 Path Diversity and Extra Stages 83

1

2

3

4

5

6

7

02

03

10

11

20

21

22

0

1

2

3

4

5

6

7

x1

x2

x3

0
00

01

12

13 23

x0

Figure 4.4 A 2-ary 3-fly with one extra stage provides a path diversity of 2 on routes between all pairs of
nodes. The two paths between nodes 0 and 7 are shown in bold.

least significant digits of the address are fixed during the middle stages, we have
recreated the same concentration as in the original adversary. However, in this case
the total load is 2r = 2n/4. To see this intuitively, note that the middle stages of
the network are equivalent to 2m separate networks (indexed by the low address
bits), each of which has 2m ports. We have just moved the problem from the whole
network into these multiple middle networks.

Figure 4.5 gives a 2-D view of a k-ary n-fly with m extra stages. The extra stages
form a set of 2m m-stage z-axis networks, each with 2m−1 switches per stage. These
networks, properly routed, uniformly distribute the traffic across the z-dimension,
preventing congestion at the crossing from the y-axis networks to the z-axis networks.

n/2 stages n/2 stages

MSB axis, 2n/2

switching planes

LSB axis, 2n/2

switching planes

n/2 stages

Figure 4.5 A 2-D view of a butterfly network with m extra stages. Properly routed, the extra stages act
to balance traffic in the z direction. Load imbalance may still occur, however, routing in the y

direction through the center networks.

84 C H A P T E R 4 Butterfly Networks

However, congestion can still occur entirely within the y-axis. We can, for example,
divide each y-axis network into two m/2 stage networks, and concentrate traffic at
the junction of these two networks.

The load balance problem for butterflies can be solved by duplicating all n stages
of the network. The resulting 2n-stage network, equivalent to two back-to-back
n-stage butterflies, is called a Beneš (pronounced Ben-ish) network. It has a channel
bisection of N and thus can handle patterns like reversal traffic. It also perfectly load-
balances the traffic by distributing traffic between each pair of nodes over N alternate
paths. In fact, the Beneš network is non-blocking, as we shall discuss in Section 6.4.

4.5 Case Study: The BBN Butterfly

Bolt, Beranek, and Neumann (BBN) Advanced Computer Systems built a series of
shared-memory parallel processors by using interconnection networks with k-ary
n-fly topologies. The first of these machines, offered in 1981, was the BBN But-
terfly. The Butterfly connected up to 256 processing nodes, each composed of an
8 MHz Motorola 68000 microprocessor and 512 Kbytes of memory. In 1987, the
Butterfly GP-1000’s processors were upgraded to faster Motorola 68020s and
memory was increased to 4 Mbytes per node. In 1989, the TC-2000 was upgraded
again with Motorola 88100 RISC processors with 88200 cache and memory
management chips and up to 16 Mbytes of memory per node. Each processor of
the Butterfly was able to read and write the memory of any other node via an inter-
connection network. This was not a cache-coherent machine. The original Butterfly
and the GP-1000 had no caches, and the TC-2000 allowed only caching of local data.
The Monarch (Section 23.4) was designed as a follow-on to the TC-2000, but was
never completed.

Remote memory accesses were made over a 4-ary n-fly network with one extra
stage, as shown in Figure 4.67 for a 64-node machine. Each channel in the figure is
4 bits wide and operated at 8 MHz (also the clock rate of the 68000 processor) for
a channel bandwidth of b = 32 Mbits/s. The network contained 4 stages of 4 × 4
switches, rather than the log4(64) = 3 stages that would be required without the
extra stage. The extra stage provided path diversity and improved throughput on
adversarial traffic patterns, as discussed in Section 4.4. With radix-4 switches, the
extra stage provided four edge disjoint paths between any source and destination.
When a packet was transmitted, the network interface randomly choose one of the
four paths through the switch.8 A 4-bit mask enabled the system to disable any
combination of the 4 paths if one or more became faulty.

The 4 × 4 by 4-bit wide switches were realized on a single 12-inch-high PC
board using discrete TTL logic, and the channel interfaces used emitter-coupled logic

7. The TC-2000 used a slightly different network with an 8-ary n-fly topology. Here we will confine our
discussion to the radix-4 network used on the original Butterfly and the GP-1000.

8. This is an example of oblivious routing, which we will discuss in Chapter 9.

4.5 Case Study: The BBN Butterfly 85

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

4x4
Switch

Figure 4.6 The BBN Butterfly (1981) used a 4-ary n-fly network with one extra stage of switches to connect
processors to memories. Each channel had a bandwidth of 32 Mbits/s and the switches dropped
messages to resolve contention. The figure shows a 4-ary 3+1-fly that connects 64 nodes with
4 stages of 4 × 4 switches.

86 C H A P T E R 4 Butterfly Networks

(ECL) line drivers and receivers. The switch cards and processor/memory cards were
inserted into 19-inch racks in an arbitrary pattern. All network wiring was realized
with ribbon cable connections on the front side of the cards.

The latency through the switch was three 125 ns clocks, one of which was used
to consume the routing nybble that specified the switch output port, so the 4-stage
network of Figure 4.6 had an end-to-end zero-load latency of twelve 125 ns clocks
or 1.5μs. The throughput on uniform traffic (neglecting routing overhead) was 32
Mbits/s per node. Adversarial traffic patterns, however, could result in much lower
throughput. (See Exercise 4.6.)

The network employed dropping flow control similar to that used in our simple
network of Chapter 2. When multiple packets request the same output port, one
packet is granted the port and the remaining packets are dropped. Dropped pack-
ets are retransmitted after a short timeout. Each time a packet is retransmitted, it
again randomly selects one of the four paths to the destination. This makes multiple
collisions between the same set of packets unlikely.

4.6 Bibliographic Notes

Butterfly topologies have appeared in many forms over the years. Early examples
include Stone’s shuffle-exchange [175], Feng’s data manipulator [65], Lawrie’s
omega [110], Batcher’s flip [15], and Pease’s indirect binary cube topology [144].
Wu and Feng subsequently showed that all of these networks are isomorphic to the
butterflies we studied in this chapter [195]. A further comparison of butterflies and
butterfly-like topologies is presented by Kruskal and Snir [106]. In addition, several
commercial and academic systems have been built around butterflies, such as the
NYU Ultracomputer [75], the BBN Butterfly studied in this chapter [85], and more
recently, NEC’s Cenju-4 computer [133].

4.7 Exercises

4.1 Isomorphism between butterflies and shuffle-exchange networks. A radix-2 shuffle-
exchange network consists of n = log2 N switch stages where each stage is con-
nected in a perfect shuffle pattern. A perfect shuffle connects the output terminal
of stage $ i $ with address $\{a {n-1}, a {n-2}, \ldots, a 0\}$ to the input terminal
of stage $ i+1$ with address $\{a {n-2}, \ldots, a 0, a {n-1}\}$. Show that 2-ary n-
flies are isomorphic to radix-2 shuffle exchange networks with the same number of
nodes. (An example of this is shown in Figure 4.2.)

4.2 Throughput under bit-reversal. What fraction of capacity does a 4-ary 2-fly achieve
when routing the bit-reversal traffic pattern?

4.3 Packaging a butterfly topology. You need to connect 210 nodes in a packaging technol-
ogy with Wn = 128 and Ws = 1024. Choose a butterfly topology that first maximizes
the throughput of the network and then minimizes latency. What is this throughput

4.7 Exercises 87

and the corresponding latency? Assume L = 512 bits, f = 1 GHz, and tr = 10 ns.
Also, ignore wire latency.

4.4 Overloaded channel under adversarial traffic. In Section 4.4 a permutation traffic
pattern is found to load a particular channel to

√
N . By using the channel address

notation for butterflies described in Section 4.1, determine the address of this highly
overloaded channel.

4.5 Identical extra stages. Consider the network of Figure 4.4. Suppose you add a second
redundant stage wired identically to the first stage of the network. Does this increase
the path diversity? Is the maximum channel load reduced?

4.6 Worst-case traffic on the BBN Butterfly. Describe a traffic pattern that results in worst-
case throughput — that is, one that maximizes γmax — on the network of the BBN
Butterfly shown in Figure 4.6. What is the worst-case throughput on a butterfly with
an odd number of stages in general?

4.7 Packaging odd radix butterflies. What is the minimum number of bisection channels
BC for a 3-ary 2-fly network? Remember that the sizes of the two sets of nodes
separated by the bisection will differ by one because N = 9 in this case. Does this
bisection represent a good packaging of the network? If not, suggest an alternative
cut or set of cuts that partitions the network into approximately equal size sections
and does correspond to an efficient packaging.

4.8 Mixed radix butterflies. Sketch the topology of a 12-node butterfly, first using 2 switch
stages and then using 3 switch stages. Each stage should contain switches that have
the same radix, but the radix may differ from stage to stage. Also, do not leave any
switch ports unused. (For example, do not implement a 16-node butterfly with 4
unconnected terminals.) How are these two topologies related to factorizations of 12?

4.9 Wounded butterfly networks. Consider a 2-ary n-fly network with one faulty switch
node in one of its stages. The error recovery mechanism of the network removes
this faulty switch from the network and messages are no longer allowed to route
through it. If there are no extra stages, this fault will obviously create a disconnected
network — some source-destination pairs will not have a path between them. For
a butterfly with x extra stages, where 0 ≤ x ≤ n, what is the probability that the
network will remain connected after a single switch failure? For x = 1, what is the
probability the network is still connected after two switch failures?

4.10 Wire length in the layout of a butterfly. Calculate the average wire length traversed
by a message in a 2-ary butterfly network laid out in a plane. Assume that all
nodes are aligned on a 2-D grid and the inter-node spacing is 10 cm. So, for
example, the first stage of the butterfly is in the first column of the grid and requires
10 × 2n−1cm of vertical space. The next stage is laid out in the next grid column
with 10 cm of horizontal separation from the first stage, and so on. For simplicity,
measure distances from the center of each switch node and ignore the wiring to and
from the terminal nodes. Compare the wire length for the layout in the plane versus
the layout used in Figure 4.3, assuming n is even. How much shorter are the wires
for a large network?

.
This Page Intentionally Left Blank

C H A P T E R 5

Torus Networks

Torus and mesh networks, k-ary n-cubes, pack N = kn nodes in a regular n-dimen-
sional grid with k nodes in each dimension and channels between nearest neighbors.
They span a range of networks from rings (n = 1) to binary n-cubes (k = 2), also
know as hypercubes.

These networks are attractive for several reasons. This regular physical arrange-
ment is well matched to packaging constraints.At low dimensions, tori have uniformly
short wires allowing high-speed operation without repeaters. Logically minimal paths
in tori are almost always physically minimal as well. This physical conservation
al lows torus and mesh networks to exploit physical locality between communicating
nodes. For local communication patterns, such as each node sending to its neighbor
in the first dimension, latency is much lower and throughput is much higher than for
random traffic. Butterfly networks, on the other hand, are unable to exploit such
locality.

Tori have good path diversity and can have good load balance even on permuta-
tion traffic. Also, since all channels in a torus or mesh network are bidirectional, they
can exploit bidirectional signaling, making more efficient use of pins and wires.

One disadvantage of torus networks is that they have a larger hop count than
logarithmic networks. This gives them a slightly higher latency than the minimum
bound and increases the pin cost of the network. Note, however, that some increase
in hop count is required for path diversity.

A designer can determine the properties of a torus network by choosing the
dimension, n, of the network. As we shall see in Section 5.2.1, the throughput of
the network increases monotonically with dimension until the point where the net-
work becomes bisection limited. Beyond that point, there is no further increase in
throughput. Network latency is high at either extreme. With low dimension, latency
is dominated by the high hop count, H , whereas with high dimension, serialization

89

90 C H A P T E R 5 Torus Networks

latency, Ts , dominates. Minimum latency is usually achieved at a relatively low di-
mension, typically between 2 and 4. To minimize both latency and wire length, we
typically choose n to be the smallest dimension that makes the network bisection
limited.

5.1 The Structure of Torus Networks

An n-dimensional, radix-k torus, or k-ary n-cube, consists of N = kn nodes arranged
in an n-dimensional cube with k nodes along each dimension. Being a direct network,
each of these N nodes serves simultaneously as an input terminal, output terminal,
and a switching node of the network. Each node is assigned an n-digit radix-k address
{an−1, . . . , a0} and is connected by a pair of channels (one in each direction) to all
nodes with addresses that differ by ±1(mod k) in exactly one address digit. This
requires 2 channels in each dimension per node or 2nN channels total. Tori are
regular (all nodes have the same degree) and are also edge-symmetric, which helps
to improve load balance across the channels.

We have already seen many examples of k-ary n-cubes. Figure 3.1(a) shows a
3-ary 2-cube (a 2-D torus with three nodes per dimension), and an 8-ary 1-cube (an
8-node ring) is shown in Figure 3.3.

In general, an arbitrary k-ary n-cube can be constructed by adding dimensions
iteratively, as illustrated in Figure 5.1. A k-ary 1-cube (Figure 5.1[a]) is simply a
k-node ring. Connecting k of these 1-cubes in a cycle adds a second dimension,
forming a k-ary 2-cube (Figure 5.1[b]). The process continues one-dimension at a
time, combining k k-ary (n − 1)-cubes to form a k-ary n-cube (Figure 5.1[c]).

A mesh network is a torus network with the connection from address ak−1 to
address a0 omitted in each direction. For example, Figure 5.2 compares a 4-ary 2-
cube (torus) with a 4-ary 2-mesh. A mesh network has the same node degree, but
half the number of bisection channels as a torus with the same radix and dimension.
Although the mesh has a very natural 2-D layout that keeps channel lengths short,
it gives up the edge symmetry of the torus. This can cause load imbalance for many
traffic patterns, as the demand for the central channels can be significantly higher
than for the edge channels. As we shall see in Section 5.3, the maximum channel
length of the torus can be reduced to twice that of the mesh by using a folded layout.

A torus may be unidirectional, with channels in only one direction (from ai to
ai+1) in each dimension, or bidirectional with channels in both directions between
connected nodes. Meshes can also be made either unidirectional or bidirectional;
however, unidirectional meshes must alternate channel direction between rows of
the network to keep the network fully connected. Unless they employ simultane-
ous bidirectional signaling, bidirectional networks require twice the pin count and
twice the wire bisection as unidirectional networks. Even with this increase in cost,
bidirectional networks are generally preferred, as they have a lower hop count H

and greater path diversity. We consider a torus or mesh to be bidirectional unless
otherwise specified.

Each dimension of a torus network may have a different radix. For example,
Figure 5.3 illustrates a 2,3,4-ary 3-mesh that has a radix of 2 in the y dimension, a

5.1 The Structure of Torus Networks 91

0 1 2 3

k-ary
(n–1)-cube

k-ary
(n–1)-cube

k-ary
(n–1)-cube

(a) A 4-ary 1-cube

kn–1channels

(c) Constructing a k-ary n-cube
from k k-ary (n–1)-cubes

(b) A 4-ary 2-cube

Figure 5.1 Three k-ary n-cube networks: (a) a 4-ary 1-cube; (b) a 4-ary 2-cube that is constructed from
4 1-cubes by connecting like elements in a ring; and (c) a k-ary n-cube that is constructed by
connecting like nodes of k k-ary (n − 1)-cubes in a cycle.

(a) A 4-ary 2-cube (b) A 4-ary 2-mesh

Figure 5.2 Torus and mesh networks: (a) a torus network (4-ary 2-cube) includes the connection from node
3 to node 0 in both dimensions, but (b) a mesh network (4-ary 2-mesh) omits this connection.

92 C H A P T E R 5 Torus Networks

Figure 5.3 A mixed-radix 2,3,4-ary 3-mesh has a different radix in each of its three dimensions.

radix of 3 in the z dimension, and a radix of 4 in the x dimension. Mixed-radix tori and
meshes are often built for practical reasons of packaging and modularity. However,
a mixed-radix tori is no longer edge-symmetric and a mixed-radix mesh has further
asymmetries compared to a single radix mesh. These asymmetries introduce load
imbalance, and for many traffic patterns, including uniform traffic, the channel load
on the longer dimensions is larger than the load on the shorter dimensions. With
uniform traffic — for example, γx — the load on the x dimension in Figure 5.3 will
be twice γz .

5.2 Performance

The performance of a torus network, as with any network, is characterized by its
throughput, latency, and path diversity.

5.2.1 Throughput

In the two-level packaging model, throughput is limited by either pin bandwidth or
bisection bandwidth. We first consider the bisection limit and calculate the channel
bisection of the networks as

BC,T = 4kn−1 = 4N

k
(5.1)

BC,M = 2kn−1 = 2N

k
(5.2)

for k even.

5.2 Performance 93

The minimum bisection that yields Equation 5.1 can be visualized by using
Figure 5.1(c). When k is even, there is an even number of k-ary (n − 1)-cubes in the
loop of the outermost dimension. The minimum bisection divides this loop at its
center point, cutting 2 sets of kn−1 bidirectional channels or 4kn−1 channels total.
The minimum bisection is similar for the mesh, except the wraparound channel does
not exist, thus halving the number of channels cut.

Since a torus is both node- and edge-symmetric, the channel load under uniform
traffic can be determined from the bisection channel load by substituting Equa-
tion 5.1 into Equation 3.3.

γ T,U = N

2BC

= N

2
× k

4N
= k

8
(5.3)

Due to the edge symmetry of the torus, we can find the same result by substituting
the hop count for a torus from Equation 5.10 into Equation 3.5 and get

γ T,U = NHmin

C
= N(nk/4)

2nN
= k

8
(5.4)

for k even.
Because the mesh is asymmetric, it cannot achieve the lower bound due to hop

count used above for the torus. Rather, the channel load for the mesh under uniform
traffic is

γ M,U = k

4
(5.5)

for k even. Initutively, this result comes from the fact that the mesh can saturate its
bisection channels under uniform traffic. Half of the traffic,N/2 packets per cycle,will
cross the bisection on average,and balancing load across the BC,mesh = 2N/k channels
gives an average load of (N/2)/(2N/k) = k/4. For the non-bisection channels, the
average load drops off further from the center of the array.1

For worst-case traffic, all traffic crosses the bisection and the channel loadings
are doubled.2

γ T,W = N

BC

= k

4

γ M,W = N

2BC

= k

2

1. Equations 5.3 through 5.5 are for bidirectional networks. The channel load for unidirectional tori is
studied in Exercise 5.4.

2. In a bidirectional mesh or torus, non-minimal routing is required to prevent load imbalance between the
two directions from increasing the peak channel load (in one direction) to almost 4γuniform.

94 C H A P T E R 5 Torus Networks

To consider the pin bandwidth limit, we first compute the degree of each node.
Each bidirectional cube node has 4 connections in each of its n dimensions.3,4

δT = δM = 4n (5.6)

Substituting Equations 5.1 and 5.6 into Equation 3.14 gives the maximum chan-
nel width of a torus.

w T ≤ min
(

Wn

4n
,

kWs

4N

)
(5.7)

Similarly, for a mesh we get

w M ≤ min
(

Wn

4n
,

kWs

2N

)
.

From channel width and channel load, we then compute throughput with uni-
form loading as

�ideal,T = f wT

γ
= 8

k
min

(
Bn

4n
,

kBs

4N

)
,

�ideal,M = f wM

γ
= 4

k
min

(
Bn

4n
,

kBs

2N

)
.

In general, the best throughput for a torus occurs when the dimension is high
enough to keep the network bisection limited and small enough to keep all wires
below the critical wire length. Ignoring wire length for the moment, maximum
throughput is achieved when

nk ≤ NBn

Bs

. (5.8)

To keep wires short and to minimize serialization latency (see below) we typically
choose the smallest n for which Equation 5.8 holds.

Suppose, for example, that you must build an N = 212 node torus where
Ws = 214 and Wn = 28 and f = 1 GHz. Table 5.1 compares the alternative tori
networks of this size. For each row of the table, the dimension n and radix k deter-
mine the remaining properties. The table shows the product, nk, which must be kept
smaller than NWn

Ws
= 64 to meet Equation 5.8. This value is shown in bold at the

point where it falls below this limit. Three channel widths are shown: wn, the width
limit due to node pinout; ws , the width limit due to bisection; and w, the actual
channel width (the smaller of wn and ws). The channel width is shown in italics for
cases that are node pin limited. Finally, the table shows the throughput � in Gbit/s.

3. Strictly speaking, some nodes in the mesh have degree less than 4n, but in practice it is not worth designing
special parts for these edge cases. Rather, the degree of all nodes is constant and channels are simply left
unconnected at the edge of the mesh.

4. If simultaneous bidirectional signaling is used, pins can be shared between channels in opposite directions
and the effective node degree is halved. (See Exercise 5.11.)

5.2 Performance 95

Table 5.1 Throughput of 4,096-node torus networks.

n k nk ws wn w �ideal (Gbits/s)

1 4,096 4,096 4,096 64 64 0.125
2 64 128 64 32 32 4
3 16 48 16 21 16 8
4 8 32 8 16 8 8
6 4 24 4 10 4 8

12 2 24 2 5 2 8

Table 5.1 shows that throughput increases monotonically with dimension until
the network becomes bisection limited at n = 3. Beyond that point, the throughput
is flat because the design uses all the available bisection wiring. Most likely, we would
choose a 16-ary 3-cube topology for this network because it gives us the maximum
throughput with a minimum dimension. We will see how the low dimension benefits
us in latency and wire length in the next section.

5.2.2 Latency

The latency of a torus network depends strongly on dimension. At the low extreme
of dimension, latency is dominated by the high hop count; at the high extreme of
dimension, serialization latency dominates due to the narrow channel width, w. The
optimal latency typically occurs at a low, intermediate dimension.

The serialization latency of a torus network is given by substituting Equation 5.7
into Equation 3.10.

Ts,T = L

b
= L

f min
(

Wn

4n
, kWs

4N

) = 1
f

max
(

4nL

Wn

,
4NL

kWs

)
.

Similarly, for a mesh,

Ts,M = 1
f

max
(

4nL

Wn

,
2NL

kWs

)
. (5.9)

With large n, and hence small k, both the pin and bisection terms of Equation 5.9
become large. However, the bisection term usually dominates. With small n, and
hence large k, Ts is small. However, in this regime hop count dominates latency.

The average minimum hop count in a torus network is determined by averaging
the shortest distance over all pairs of nodes, giving

Hmin,T =
{

nk
4 k even

n
(

k
4 − 1

4k

)
k odd

. (5.10)

96 C H A P T E R 5 Torus Networks

Table 5.2 Latency of 4,096-node torus networks.

n k w �ideal Th (ns) Ts(ns) T (ns)

1 4,096 64 0.125 10,240 8 10,248
2 64 32 4 320 16 336
3 16 16 8 120 32 152
4 8 8 8 80 64 144
6 4 4 8 60 128 188

12 2 2 8 60 256 316

With uniform traffic and even radix, a packet travels, on average, one quarter of the
way, k

4 hops, around each of n dimensions. Hence, the hop count is nk
4 . For odd k,

the average distance includes a small additional factor.
Similarly, for a mesh the hop count is

Hmin,M =
{

nk

3
k even

n
(

k

3
− 1

3k

)
k odd

. (5.11)

To see the combined effect of Ts and H on latency, consider our example N = 212

node torus and let L = 512 bits, tr = 8 ns, and tc = 2 ns, a total of 10 ns per hop.
Table 5.2 and Figure 5.4 compare the header latency Th, serialization latency, Ts , and
overall latency, T , as dimension is varied. The table shows that the minimum latency,
144 ns, occurs at n = 4. However, the latency of 152 ns when n = 3 is close enough
that it would probably be chosen to gain the packaging and wire length advantages
of a lower dimension.

5.2.3 Path Diversity

Many distinct paths exist between every pair of nodes in a torus network. By
selectively dividing traffic over these paths, load can be balanced across the network
channels, even for very irregular traffic patterns. This path diversity also enables the
network to be quickly reconfigured around faulty channels, by routing traffic along
alternative paths.

How many paths exist between a source node, a, and a destination node, b? To
answer this question, we will first examine the simple case in which we consider
only minimal paths and in which all paths take the same direction in each dimension
(one-way routes). The number of possible paths increases rapidly with dimension.
For a one-dimensional network, there is only a single path. For a 2-D network where
a and b are separated by �x hops in the x dimension and �y hops in the y dimension,
the number of paths is given by

|Rab| =
(

�x + �y

�x

)
.

5.2 Performance 97

102 4 6 8 12

Dimension (n)

0

50

100

150

200

250

300

350

L
at

en
cy

 (
T

)

Th
Ts
T

Figure 5.4 Latency vs. dimension for 4,096-node torus networks. The graph plots header latency, Th,
serialization latency, Ts , and overall latency, T .

There are this many ways of choosing where to take the �x hops out of the �x + �y

total hops. Similarly, in three dimensions, with �z hops in the z dimension, the
formula is

|Rab| =
(

�x + �y + �z

�x

)(
�y + �z

�y

)
= (�x + �y + �z)!

�x !�y !�z!
.

As above, the first term gives the number of ways to pick where to take the �x x hops
out of the total. The second term gives the number of ways to choose where to take
the �y y hops out of the remaining y and z hops. These two terms are multiplied
together to give the total number of unique paths.

In general, if there are n dimensions numbered 0 to n − 1 and there are �i hops
from a to b in the ith dimension, then the total number of minimal one-way routes
from a to b is given by

|Rab| =
n−1∏
i=0

(∑n−1
j=i �j

�i

)
=

(∑n−1
i=0 �i

)
!∏n−1

i=0 �i !
.

98 C H A P T E R 5 Torus Networks

Each term of the product gives the number of ways of choosing where to take the
hops in dimension i out of all of the remaining hops. As expected, the number of
minimal paths grows rapidly with dimension and distance. For example, in a 3-D
network with �x = 3, �y = 3, and �z = 3, the number of paths is 1,680. Some
routing algorithms will also incorporate non-minimal paths and, in these cases, the
path diversity can be nearly unbounded.

5.3 Building Mesh and Torus Networks

To construct a network, and to determine properties such as channel length, l, the
abstract nodes of a network must be mapped to real positions in physical space.
Depending on the packaging technology, the mapping may be to one-dimensional
space (e.g., boards along a linear backplane), 2-D space (e.g., chips on a PC board), or
3-D space (e.g., modules placed in arbitrary locations in a volume). While the world
we live in has three dimensions, some packaging systems constrain networks to live
in one or two dimensions.

Torus and mesh networks are particularly easy to map to physical space with
uniformly short wires. The simplest case is when the network is a mesh with the same
number of dimensions as the physical dimensions of the packaging technology. In
this case, the n-digit address of a node {a1, . . . , an} is also its position in n-dimensional
Cartesian space. Mathematically, the node’s position in dimension i equals its address
in dimension i: pi = ai . All channels connect physically adjacent nodes and hence
are all of unit length5.

If a torus is packaged in the same manner, with pi = ai , the long end-around
channels, from node k − 1 to and from node 0 in each dimension, will have length
k. Such long channels may result in excessive latency or require slower signaling
rates. This problem can be avoided by folding a torus network as shown in Figures 5.5
and 5.6. In a folded torus, the mapping to physical space is

pi =
{

2ai if ai < k

2

2k − 2ai − 1 if ai ≥ k

2

.

Folding the torus eliminates the long end-around channel, but at the expense of
doubling the length of the other channels. As shown in Figure 5.5, a one-dimensional
torus or ring network is folded by interleaving the first half of the nodes, 0, . . . , n

2
−1

in ascending order with the second half of the nodes, n − 1, . . . , n

2
in descending

order. In general, a folded k-ary n-cube is constructed by combining k folded k-ary
n − 1-cubes in folded order, as shown in Figure 5.6.

5. Here we assume that each node has unit diameter in physical space and thus channels connecting physi-
cally adjacent nodes in each dimension are of unit length.

5.3 Building Mesh and Torus Networks 99

0

3

1

2

0 1 2 3

(a) Unfolded 4-ary 1-cube

(b) Folded 4-ary 1-cube

Figure 5.5 Folding a ring: (a) a 4-ary 1-cube unfolded, and (b) a 4-ary 1-cube folded to shorten the long
connection from 3 to 0.

00

30

10

20

03

33

13

23

01

31

11

21

02

32

12

22

Figure 5.6 A folded 4-ary 2-cube.

When the number of logical dimensions exceeds the number of physical dimen-
sions, several logical dimensions must be mapped into each physical dimension. If
the number of physical dimensions is q, a straightforward mapping is to fold n

q
of the

logical dimensions into each physical dimension.

pi =
n
q
−1∑

j=0

kj ai+jq .

This mapping is illustrated in Figure 5.7 for the case of a 3-ary 2-mesh. Here, the
three rows of the mesh are laid out in a line. The dimension 0 (logical x) channels

100 C H A P T E R 5 Torus Networks

00 10 20 01 11 21 02 12 22

Figure 5.7 A 3-ary 2-mesh mapped to a single physical dimension. Logical x channels are unit length.
Logical y channels have length 3.

have unit length while the dimension 1 (logical y) channels have length l = k = 3.
In general, the channel length for dimension i of a mesh mapped into q physical
dimensions in this manner is

li = k

⌊
i
q

⌋
.

This projection of logical dimensions to physical dimensions can also be performed
for a folded torus. In this case, the lengths are doubled.

li = 2k

⌊
i
q

⌋

5.4 Express Cubes

Because torus networks have short physical channels, the channel latency, tc, is
often dominated by the routing latency, tr . This results in a larger header latency, Th,
than could be achieved by a network with a smaller diameter. The diameter can be
decreased by increasing dimension. However, as illustrated in Figure 5.4, this narrows
the channel width, resulting in an increased serialization latency, Ts .

An express cube network is a k-ary n-cube augmented with a number of
long (express) channels [45]. By routing packets that must traverse a long distance in
a dimension over the express channels, the header latency can be reduced to nearly
the channel latency limit. Because the number of express channels can be controlled
to match the bisection width of the network, this reduction in header latency can be
achieved without increasing serialization latency.

A k-ary n-cube network is transformed into an express cube by inserting inter-
changes every i nodes in each dimension and connecting the interchanges along a
dimension with long express channels, as illustrated for one dimension in Figure 5.8.
If a message had a hop count of Hj in dimension j of the original network,and
assuming that Hj is divisible by i, the hop count in dimension j of the express

5.4 Express Cubes 101

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

(c) Extra channels can be added to increase channel bisection

(a) One dimension of a 16-ary n-cube

(b) One dimension of a 16-ary express cube with i = 4

Figure 5.8 A flat express cube is created by inserting interchanges connected by long channels: (a) one
dimension of a 16-ary n-cube, (b) this network is transformed into an express cube by inserting
an interchange every i nodes and connecting these interchanges by long, express, channels,
and (c) channel bisection can be controlled by varying the number of express channels between
interchanges.

cube becomes6

Hje =
(

Hj

i
+ i

)
.

For very long dimensions, the first term of this equation dominates. In this case,
channel delay can be balanced against routing delay by choosing i = tr

tc
. For networks

with shorter dimensions, the two terms of the equation can be balanced against one
another by choosing i = √

Hmin (where Hmin is the average hop count without the
express channels).

A hierarchical express cube gives a network with the locality properties of a
torus and logarithmic diameter approaching the limit of Equation 3.1. As shown
in Figure 5.9, a hierarchical express cube is constructed recursively. First a level-0
interchange is inserted every i nodes. Then every ith level-0 interchange is made a
level-1 interchange, and so on for l levels. Each interchange at level j is spaced ij

nodes from other interchanges at level j and connects to adjacent interchanges at
levels 0 through j .

Assuming that Hj is divisible by il , if a packet had a hop count of Hj in
dimension j in a conventional cube, on a hierarchical express cube this hop count

6. If Hj is not evenly divisible by i, the equation becomes more complicated, but the result is the same.
See [45] for details.

102 C H A P T E R 5 Torus Networks

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 5.9 A hierarchical express cube with i = 2 and l = 3.

becomes7

Hjh =
(

Hj

il
+ (i − 1)l + 1

)
.

Choosing i = 2 minimizes delay due to local nodes. Choosing l = logi
tr
tc

balances

router and channel delay for long distances.
Overall, a hierarchical express cube has a latency that is within a small constant

of the sum of two fundamental limits: (1) the minimum channel delay required to
traverse the minimum distance between two nodes, and (2) the logarithmic delay
required to make the routing decisions to select the destination node.When the num-
ber of express channels is varied, the throughput of an express cube can be made
to saturate both pin and bisection bandwidth constraints. Despite these advantages,
express cubes have seen very little use in practice. This is largely because most prac-
tical networks do not have a radix that is high enough to justify the complexity of
adding interchanges.Also, as technology advances, both tr and the critical wire length,
lc, get smaller, reducing the motivation for long channels.

5.5 Case Study: The MIT J-Machine

The MIT J-Machine [51, 136], shown in Figure 5.10, illustrates how torus and mesh
networks map naturally into three dimensions. The J-Machine, constructed at MIT
in collaboration with Intel in 1991, was a message-passing multicomputer. Each
processing node contained a message-driven processor chip [53] and three exter-
nal DRAM chips. At the time, the machine was notable for the performance of its
network, which had the highest bisection bandwidth and lowest latency of any par-
allel computer of comparable size. The machine had a novel network interface that
allowed short messages to be sent directly out of the processor registers in a single
instruction.8

7. This also assumes that Hj is large enough to use all l levels. Again, see [45] for the more general case in
which Hj is not evenly divisible by il .

8. We defer our discussion of processor-network interfaces to Section 20.4, where we discuss the network
interface of the M-Machine, a descendant of the J-Machine.

5.5 Case Study: The MIT J-Machine 103

Figure 5.10 A pair of J-Machines. The near machine has its skins removed. The upper portion of the machine
houses up to 1,024 processing nodes connected in an 8 × 8 × 16 mesh. This machine is half
populated with eight 8 × 8 64-processor boards. Below the processor array are I/O cards for
graphics, disk control, and LAN interface. The bottom of the machine houses an 80-disk disk
array.

The J-Machine used the network both for inter-node message communication
and for I/O. An array of I/O nodes were arranged along one edge of the machine, as
shown in Figure 5.10. Any node in the machine could communicate with any I/O
device by sending it a message. I/O devices for graphics (distributed frame buffer),
disks (SCSI host adapter), and network (LAN interface) were developed for the
J-Machine.

104 C H A P T E R 5 Torus Networks

The J-Machine processing nodes were connected in a 3-D mesh network [138].
The natural mapping of the mesh to physical space enabled a very dense machine
construction.9 Each board contained 64 nodes connected in an 8 × 8 mesh. Each
processing node measured 2 × 3 inches. Adjacent boards were connected vertically
using elastomeric connectors distributed across the face of the board. Up to 16 boards
could be connected in a single chassis (Figure 5.10) to form a 1,024-node 8× 8 × 16
mesh. Ribbon cable connectors were provided along the edges of the boards to allow
multiple chassis to be connected together to form larger machines. Router addressing
limited the maximum machine size to a 64 K-node 32 × 32 × 64 mesh; however, no
machine larger than 1,024 nodes was ever constructed.

Each network channel consisted of 15 lines (9 data signals10 and 6 control sig-
nals) and operated at 32 MHz, twice the rate of the 16 MHz processor. This gave a
channel payload bandwidth of 288 Mbits/s. A single physical channel was used for
communication in both directions between a pair of adjacent nodes, with the nodes
arbitrating for use of the channel on a flit-by-flit basis. Depending on the location
in the machine, a network channel could be implemented on a PC board (inter-
nal connections between the 64 nodes on a card), over an elastomeric connector
(vertical connections between two adjacent 64-node cards), or over a ribbon cable
(horizontally between adjacent cards).

The J-Machine network employed dimension-order routing (Section 8.4.2) and
wormhole flow control (Section 13.2). The router was integrated on the message-
driven processor (MDP) chip (Figure 5.11). The dimension-order routing enabled
the router to be cleanly partitioned into X, Y, and Z sections. The latency through
the router, including channel traversal, was two 32-MHz router cycles (one 16 MHz
processor cycle) per hop.

The zero-load latency of a 4-word message on an 8×8×16 J-Machine network on
uniform traffic can be calculated by extending Equation 5.11 to handle this mixed-
radix case. The serialization latency is 16 31.25 ns network cycles, and the average
hop count is 32/3 at two network cycles per hop for a total latency of 37 31.25 ns
network cycles (18.5 processor cycles), or 1.16 μs.

The throughput of this network on uniform traffic can be calculated using the
bisection bound. Applying Equation 5.2 in the long k = 16 dimension, we calculate
that BC = 128 channels cross the network bisection. However, because the physical
channel is shared between the two directions, the actual channel bisection is half
this number, BC = 64.11 With uniform traffic, half of the 1,024 nodes send packets
across this bisection for a channel load of γ = 512/64 = 8. We then calculate the
throughput as � = b/γ = 288/8 = 36 Mbits/s per node.

9. In Exercise 5.9, we will explore the difficulties of mapping other topologies to such dense packaging.
10. The machine had a 36-bit word length (32 data + 4 tag bits) and sent a word over the network in 4

network cycles.
11. We explore the advantages of this bidirectional channel in Exercise 5.10.

5.5 Case Study: The MIT J-Machine 105

RAM

Rouler

CPU

Address
Calculator

DRAM
Control

Memory
Interface

Figure 5.11 An MDP chip, implemented in 1.2 μm CMOS, includes a 32-bit RISC processor, a 3-D dimension-
order router, a network interface, a DRAM interface, and 18 Kbytes of on-chip memory. The
router, just below the RAM, is divided into X, Y, and Z sections.

For comparison with our calculated performance numbers, Figure 5.12 (from
[136]) shows measured latency as a function of offered traffic for a 512-node J-
Machine operating at a 12.5 MHz processor clock. The measured zero-load latency
of 23 processor cycles is 4.5 cycles greater than our calculated value (of 18.5 cycles)
due to a fixed 4-cycle latency through the network input and output interfaces and a
half cycle of roundup. The saturation bisection traffic of 6 Gbits/s is only 42% of the
calculated throughput of 14.4 Gbits/s (64 channels × 9 bits × 25 MHz). This is due
to two principal factors. First, the four-word message includes a two-word header
giving it a 50% header overhead. Second, the wormhole flow control employed in
the machine is not capable of reaching 100% channel utilization.

106 C H A P T E R 5 Torus Networks

0 2000 4000 6000

Bisection Traffic (Mbits/s)

0

50

100

150

O
n

e-
W

ay
 M

es
sa

g
e

L
at

en
cy

 (
cy

cl
es

)

16 word messages
8 word messages
4 word messages
2 word messages

Figure 5.12 Measured latency (in processor cycles) vs. offered traffic (in bisection traffic) for a 512-node
J-Machine.

5.6 Bibliographic Notes

Meshes and tori have long been popular network topologies and were employed
on some of the earliest parallel computers, including the Solomon [172] and Illiac-
IV [13]. Binary n-cubes or hypercube networks were popularized by Sullivan and
Bashkow [179]. A hypercube was employed in the Caltech Cosmic Cube [163]
and many commercial parallel computers were modeled after the Cosmic Cube,
including the Intel iPSC computers [155, 38] and NCUBE systems [140, 134]. In
1985, Dally introduced the concept of comparing network topologies based on phys-
ical constraints (wire bisection and pinout) and showed the advantages of lower-
dimensional tori under realistic constraints [46]. Agarwal later improved on this
analysis [2]. After this point, low-dimensional torus and mesh networks became the
standard for parallel computers [56, 164, 138, 95, 162]. More recently, torus net-
works have been applied to Internet router design [49]. Dally developed express
cubes to address the large asymptotic routing latency of conventional torus net-
works [45]. However, practical networks rarely get large enough for asymptotics to
matter. Many variants of torus networks have been published that involve twisting
an end-around connection or varying the ordering of connections within a dimen-
sion. Some of these variants give a small improvement in diameter. See for example

5.7 Exercises 107

[119, 165, 33]. You will have the opportunity to experiment with such topologies
in Exercise 5.6.

5.7 Exercises

5.1 Comparing butterfly and torus topologies. Compare 1,024-node butterfly and torus
networks where the node bandwidth is 300 Gbits/s and the bisection bandwidth
is 4Tbits/s. For both networks, choose the smallest values of k and n so that the
bisection bandwidth is saturated (for simplicity, consider only combinations of k and
n where kn = 1,024). What is the serialization latency of these networks for a packet
length of L = 1,280? What is the average hop count Hmin? Ignoring wire latency,
with a per-hop latency of tr = 12 ns, what is the zero-load latency of both networks?

5.2 Tradeoffs in a 4,096-node torus. Examine the tradeoff between k and n for a 4,096-
node torus. For each combination of k and n where kn = 4, 096, what is the ideal
throughput and average zero-load message latency?Assume each node has 120 signal
pins, the bisection width of the system is 1,500 signals, the signalling frequency is
f = 2.5 GHz, the packet length is L = 512 bits, and the router hop delay is 20 ns.
Ignore wire latency (Tw = 0).

5.3 A three-level packaging hierarchy. A 256-node torus needs to be packaged in a three-
level hierarchy under the following constraints: each node has 384 signal pins, 1,200
signals may go off a board, and 6,000 signals can cross the midsection of the back-
plane. Determine k and n that maximize the network’s bandwidth. If several values
of k and n achieve this goal, choose the one with the minimum zero-load latency.
Explain how you would package this network by using nodes,boards, and a backplane
while minimizing the number of boards used.

5.4 Channel load in unidirectional tori. Calculate the average channel load in unidirec-
tional tori under uniform traffic. Approximately how many times greater is this load
than in bidirectional tori? Explain the sources of this increase.

5.5 Number of slightly non-minimal routes. As a function of the minimal hop counts in
the x and y dimensions, �x and �y respectively, how many routes are there in a 2-D
torus if routes that are at most 1 hop longer than minimal are allowed? How many
routes are there that are at most 2 hops longer than minimal? Assume k is odd.

5.6 Doubly twisted tori.The topology shown in Figure 5.13 is a doubly-twisted torus [165].
Assuming minimal routing, compare the average hop count Hmin of this topology
with that of a standard 4-ary 2-cube. Why does twisting change the hop count?

5.7 Wire length in the layout of a torus. Calculate the average wire length traversed by a
message in a k-ary 6-mesh network laid out in a plane. Assume that all nodes are
aligned on a 2-D grid and the inter-node spacing is 10 cm. For simplicity, measure
distances between node centers. How does the average distance change if the network
is packaged in three dimensions and the inter-node spacing in third dimension is also
10 cm? Assume k is even in both cases.

108 C H A P T E R 5 Torus Networks

Figure 5.13 A doubly twisted torus topology.

5.8 Cube connected cycles topologies. While high dimensional tori offer low hop counts,
their high degree requirements result in narrow channels that in turn increase
serialization latency. The cube connected cycles (CCC) topologies address this issue
in hypercubes (2-ary n-cubes). An nth-order CCC is constructed by taking a 2-ary
n-cube and replacing each node with a cycle of n nodes (Figure 5.14). The resulting
topology has a fixed node degree of 3 independent of the network size. Figure 3.16
shows a 3rd -order CCC. How many nodes are in an nth-order CCC and what is its
average minimum hop count Hmin? (Computing the minimum hop count between
nodes is difficult — approximate if necessary.) Consider the design of a 64-node
network with a node limit of 120 pins, each operating at 2.5 Gbits/s. Compare the
zero-load latency of this network using a CCC topology to an optimally sized k-ary
n-cube. Make sure the channels are wide enough to saturate the pin bandwidth of
each node. Use a message size of L = 1,024 bits, a per-hop latency of tr = 20 ns, and
ignore any wire latency.

(a) (b)

Figure 5.14 The node transformation used from (a) a 2-ary n-cube to (b) an nth-order CCC. As shown, each
single node in the 2-ary n-cube is replaced with a cycle of n nodes in the CCC. Each node in the
CCC has a fixed degree of 6: 2 bidirectional connections within the cycle and a bidirectional
channel to another cycle.

5.7 Exercises 109

5.9 Packaging the J-Machine. Each J-Machine (Section 5.5) 64-node circuit board was
an 8-layer board with 2 power planes, 2 surface layers, 2 x routing layers, and 2 y

routing layers. Each routing layer provided a signal density of 20 signals per linear
inch. There were 16 elastomeric connectors between the boards that each carried
60 signals. What were the throughput and latency (on uniform traffic with 128-bit
messages) of the highest performance 1,024-port butterfly network that you could
realize in the same volume as the J-Machine using the same packaging technology?

5.10 Benefits of bidirectional signaling in the J-Machine. The J-Machine used bidirectional
signaling, sharing a single physical channel between logical channels traveling in
opposite directions between two nodes. To see why this was done, compare the
throughput and latency of a 1,024-node J-Machine network with a network in which
each 9-bit wide bidirectional channel is replaced with two 4.5-bit wide unidirectional
channels. (Do not worry about the fractional bit width.)

5.11 Benefits of simultaneous bidirectional signaling. Compare the throughput and latency
of a 1,024-node J-Machine with 9-bit wide sequentially bidirectional channels (one
direction at a time) with the same network using simultaneous bidirectional channels
(that can send information in both directions at once).

5.12 The J-Machine network as a torus. Using the same packaging density assumptions
from Exercise 5.9, what is the throughput and latency (on uniform traffic with 128-
bit long messages) of the highest-performance 1,024-node torus network that you
can realize in the same volume using the same packaging?

.
This Page Intentionally Left Blank

C H A P T E R 6

Non-Blocking Networks

Until this point, we have focused on packet-switched networks, but for this chapter,
we shift our attention to circuit-switched networks. In circuit-switched networks,
connections between a particular source and destination are first set up, then held
as data flows continuously through the connection, and then finally torn down.1

Historically, non-blocking, circuit-switched networks were first associated with the
telephone system. A call placed from one person to another represented a single con-
nection request. For the call to go through, an unused path through the network had
to be found and then allocated for that call. If the telephone system was non-blocking,
then the call would always succeed as long as the recipient’s phone was not in use.

More precisely, a network is said to be non-blocking if it can handle all circuit re-
quests that are a permutation of the inputs and outputs. That is, a dedicated path can
be formed from each input to its selected output without any conflicts (shared chan-
nels). Conversely, a network is blocking if it cannot handle all such circuit requests
without conflicts.2

In this chapter, we examine two types of non-blocking networks. First, a network
is strictly non-blocking if any permutation can be set up incrementally, one circuit at
a time, without the need to reroute (or rearrange) any of the circuits that are already
set up. If any unused input can be connected to any unused output without altering
the path taken by any other traffic, then the network is strictly non-blocking.

In contrast, a network is rearrangeably non-blocking (or simply rearrangeable)
if it can route circuits for arbitrary permutations, but incremental construction of

1. Chapter 12 includes a detailed description of both packet and circuit switching.
2. The U.S. phone system is obviously blocking to any person who has ever received the “all circuits are busy”

recording.

111

112 C H A P T E R 6 Non-Blocking Networks

a permutation may require rearranging some of the early circuits to permit later
circuits to be set up. A rearrangeble network can connect any unconnected input to
any unconnected output, but it may need to reroute some unrelated traffic to make
this connection.

All of the above definitions apply to unicast traffic, where each input is connected
to at most one output. We also consider multicast traffic, where a connection from
a single input may fan out to several outputs. A network is strictly non-blocking for
multicast traffic if any unconnected output can be connected to any input (connected
or unconnected) without affecting other traffic. Also, a network is rearrangeable for
multicast traffic if it can connect any unconnected output to any input but may have
to reroute other traffic to make the connection.

Crossbar switches and Clos networks with an expansion of 2:1 are examples of
strictly non-blocking networks for unicast traffic. Crossbar switches and Clos net-
works with larger expansion are also strictly non-blocking for multicast traffic. Beneš
networks and Clos networks without expansion are examples of rearrangeable net-
works for unicast traffic.

6.1 Non-Blocking vs. Non-Interfering Networks

For packet switching applications, the notion of a non-blocking network is largely
irrelevant, or at least overkill. Because packet switches do not tie down a circuit
for the duration of a connection or session, they can share channels between con-
nections and packet flows without interference as long as two constraints having to
do with bandwidth and resource allocation are met. First, there must be adequate
channel bandwidth to support all of the traffic sharing the channel. This bandwidth
constraint is met if the channel load γmax is less than the channel bandwidth. Sec-
ond, the allocation of resources (buffers and channel bandwidth) must be done in a
manner such that no single flow denies service to another flow for more than a short,
predetermined amount of time. This resource allocation constraint can be realized
by a suitable flow control mechanism as described in Chapter 12.

We will call a packet-switched network that meets these criteria non-interfering.
Such a network is able to handle arbitrary packet traffic with a guaranteed bound
on packet delay. The traffic neither exceeds the bandwidth capacity of any network
channel, nor does it result in coupled resource allocation between flows.

For almost all applications today, when people say they want a non-blocking
network, what they really require is a non-interfering network, which can usually
be realized with considerably less expense. For the sake of history, however, and for
those cases in which true non-blocking is needed to support circuit switching, we
give a brief survey of non-blocking networks in the remainder of this chapter.

6.2 Crossbar Networks

A n × m crossbar or crosspoint switch directly connects n inputs to m outputs with
no intermediate stages. In effect, such a switch consists of m n:1 multiplexers, one for

6.2 Crossbar Networks 113

each output. Many crossbar networks are square in that m = n. Others are rectangular
with m > n or m < n.

Figure 6.1 shows a conceptual model of a 4 × 5 crossbar. There are 4 input lines
and 5 output lines. At each point where an input line crosses an output line — that is,
at each crosspoint — a switch optionally connects the input line to the output line.
For correct operation, each output must be connected to at most one input. Inputs,
however, may be connected to more than one output.3 In Figure 6.1, for example,
input 1 drives outputs 0 and 3.

At one point in time, much of the telephone network was implemented using
crossbar switches composed of mechanical relays that did in fact have the structure
of Figure 6.1. With such switch-based crossbars, there is no real distinction between
inputs and outputs. The connections made by the switches are bidirectional.

Today, however, most crossbars are implemented using digital logic and have the
structure shown in Figure 6.2. Each of the n input lines connect to one input of
m n:1 multiplexers. The outputs of the multiplexers drive the m output ports. The
multiplexers may be implemented with tri-state gates or wired-OR gates driving an
output line, mimicking the structure in Figure 6.1, or with a tree of logic gates to
realize a more conventional multiplexer.

in0

in1

in2

in3

ou
t0

ou
t1

ou
t2

ou
t3

ou
t4

Crosspoint
Input line

Output line

Figure 6.1 A 4×5 crossbar switch consists of 4 input lines, 5 output lines, and 20 crosspoints. Each output
may be connected to at most one input, while each input, may be connected to any number
of outputs. This switch has inputs 1,0,3,1,2 connected to outputs 0,1,2,3,4, respectively.

3. This is true of most, but not all, crossbar implementations. Some have limited fanout.

114 C H A P T E R 6 Non-Blocking Networks

in0

in1

in2

in3

ou
t0

ou
t1

ou
t2

ou
t3

ou
t4

1 3 210

Figure 6.2 A 4×5 crossbar switch as implemented with 5 4:1 multiplexers. Each multiplexer selects the
input to be connected to the corresponding output. The multiplexer settings here realize the
same connection as in Figure 6.1: {1, 0, 3, 1, 2} → {0, 1, 2, 3, 4}.

However it is realized, when we depict crossbar switches in a system, to avoid
drawing the entire schematic each time, we employ the symbol for a crossbar shown
in Figure 6.3. Where it is clear from context that the box is a crossbar switch, we
will omit the “X” and depict the crossbar as a simple box with inputs and outputs.

A crossbar switch is obviously strictly non-blocking for both unicast and multicast
traffic. Any unconnected output can be connected to any input by simply closing the
switch connecting the input and the output, or by setting that output’s multiplexer
appropriately. Many other networks work very hard to achieve this property that
comes to the crossbar very easily.

If crossbars are trivially non-blocking, then why bother with any other non-
blocking network? The reasons are cost and scalability. Although economical in small
configurations, the cost of a square n × n crossbar increases as n2. As n grows, the

in0

in1

in2

in3

out0

out1

out2

out3

out4

Figure 6.3 Symbol for a 4×5 crossbar switch.

6.2 Crossbar Networks 115

cost of a crossbar quickly becomes prohibitive compared to networks whose cost
increases as n log n. Also, as we shall see in Chapter 19, the problem of scheduling a
crossbar in a packet switch becomes increasingly difficult as n becomes larger.

The quadratic cost of the crossbar is evident both in the structure of the switch
itself and in the construction used to combine several smaller crossbars into one
larger crossbar. From Figures 6.1 and 6.2, it is clear that n2 area is needed to lay out
the grid of input and output lines, n2 area is needed to contain the n2 crosspoints, and
n2 area is needed to hold n multiplexers, each of which has area proportional to n.4

As shown in Figure 6.4, the cost of building a large crossbar from small crossbars
is also quadratic. The figure shows how a 2n × 2n crossbar can be constructed using
a 2 × 2 array of n × n crossbars. Because high-speed signals require point-to-point
distribution, 1:2 distributors are needed on the inputs to fan out the input signals to
the crossbars in each row.The complementary operation is performed in each column
where 2:1 multiplexers select the signal to be forwarded to each output. In general,
a jn × jn crossbar can be constructed from a j × j array of j2 n × n crossbars with
n 1:j distributors to fan out the inputs and n j :1 multiplexers to select the outputs.

As with most things in interconnection networks, the cost of a real crossbar
depends strongly on how it is packaged. A crossbar packaged entirely within a chip

in0

in(n-1)

inn

in(2n-1)

ou
t0

ou
t(

n-
1)

ou
tn

ou
t(

2n
-1

)

Figure 6.4 A 2n × 2n crossbar can be constructed from 4 n × n crossbars, as shown. Each sub-crossbar
handles one quarter of the crosspoint array. Distributors are needed on the inputs to maintain
point-to-point connections and multiplexers are needed on the outputs to select between the
upper and lower input sets. In general, a jn × jn crossbar can be constructed from j2 n × n

crossbars along with jn 1:j distributors and jn j :1 multiplexers.

4. m × n area for a rectangular crossbar.

116 C H A P T E R 6 Non-Blocking Networks

that contains no other system components tends to be pin limited. That is, its size
is limited by Wn, the number of pins on the chip, rather than the area required to
implement the crossbar on the chip. In this case, the effective cost of the crossbar is
linear up to the largest crossbar that can be packaged on a single chip. If, however,
a crossbar fits on a chip but also connects together other components on that same
chip, then its quadratic area becomes important, since it might no longer be pin
limited. Once a crossbar must be implemented with multiple chips, as illustrated in
Figure 6.4, then its cost increases quadratically with size.

6.3 Clos Networks

6.3.1 Structure and Properties of Clos Networks

A Clos network is a three-stage5 network in which each stage is composed of a num-
ber of crossbar switches.A symmetric Clos is characterized by a triple, (m, n, r) where
m is the number of middle-stage switches, n is the number of input (output) ports
on each input (output) switch, and r is the number of input and output switches.6 In
a Clos network, each middle stage switch has one input link from every input switch
and one output link to every output switch. Thus, the r input switches are n × m

crossbars to connect n input ports to m middle switches, the m middle switches are
r × r crossbars to connect r input switches to r output switches, and the r output
switches are m × n crossbars to connect m middle switches to n output ports. For
example, a (3,3,4) Clos network is shown in Figure 6.5 and a (5,3,4) Clos network
is shown in Figure 6.6. In referring to the input and output ports of Clos networks,
we denote port p of switch s as s.p.

It is often valuable to visualize the all-to-all connection between stages of the
Clos network in three dimensions, as shown in Figure 6.7. The input and output
switches can be thought of as moving the traffic horizontally to and from the vertical
middle switches. The middle switches move the traffic vertically from a horizontal
input switch to a horizontal output switch. This crossed arrangement is also a useful
way to package small Clos networks, as it keeps all of the connections between the
stages short.

The properties of an (m, n, r) Clos network with N = rn terminals follow from
the topology.All three-stage Clos networks have H = 4.The network can be bisected
either horizontally or vertically, as drawn in Figure 6.7, giving a bisection of BC = mr

for the horizontal cut through the middle switches or BC = 2nr = 2N for the vertical
cut through the input and output switches. In practice, most networks are packaged
by co-locating the input and output switches and cutting all of the inter-switch

5. Clos networks with any odd number of stages can be derived recursively from the three-stage Clos by
replacing the switches of the middle stage with three-stage Clos networks.

6. In some situations, asymmetric Clos networks are used, in which r and n differ between the input and
output stages. Asymmetric Clos networks are described by a 5-tuple (m, ni , ri , no, ro).

6.3 Clos Networks 117

n = 3 ports
per switch

middle
switch 1

4x4

m = 3 r x r
middle switches

middle
switch 2

4x4

middle
switch 3

4x4

input
switch 1

3x3

1.1

1.2

1.3

r = 4 n x m
input switches

input
switch 2

3x3

2.1

2.2

2.3

input
switch 3

3x3

3.1

3.2

3.3

input
switch 4

3x3

4.1

4.2

4.3

output
switch 1

3x3

1.1

1.2

1.3

output
switch 2

3x3

2.1

2.2

2.3

output
switch 3

3x3

3.1

3.2

3.3

output
switch 4

3x3

4.1

4.2

4.3

r = 4 m x n
output switches

Figure 6.5 An (m = 3, n = 3, r = 4) symmetric Clos network has r = 4 n × m input switches, m = 3 r × r

middle-stage switches, and r = 4 m × n output switches. All switches are crossbars.

n = 3 ports
per switch

middle
switch 2

4x4

m = 5 r x r
middle switches

middle
switch 3

4x4

middle
switch 4

4x4

1.1

1.2

1.3

r = 4 n x m
input switches

2.1

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

1.1

1.2

1.3

r = 4 m x n
output switches

2.1

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

middle
switch 1

4x4

middle
switch 5

4x4

input
switch 1

3x5

input
switch 2

3x5

input
switch 3

3x5

input
switch 4

3x5

output
switch 1

5x3

output
switch 2

5x3

output
switch 3

5x3

output
switch 4

5x3

Figure 6.6 A (5,3,4) Clos network. This network is strictly non-blocking for unicast traffic.

118 C H A P T E R 6 Non-Blocking Networks

r - n x n
input switches

r - n x n
output switches

m - r x r
middle switches

Figure 6.7 The all-to-all connection between the stages of a Clos network is better understood by drawing
the network in three dimensions. The input switches move traffic horizontally to select a middle
switch, the middle switches move traffic vertically to select an output switch, and the output
switches move traffic horizontally to select an output port.

channels giving BC = 2N . The degree of the input and output switches is δio = n+m

and of the middle switches is δm = 2r.
The most interesting property of the Clos, and the one from which its non-

blocking properties derive, is its path diversity. For a Clos network with m middle
switches, there are |Rab| = m routes from any input a to any output b, one through
each middle stage switch.

In routing a circuit in a Clos network, the only free decision is at the input
switch, where any of the m middle switches can be chosen as long as the link to that
middle switch is available. The middle switches must choose the single link to the
output switch (and the route is not possible if this link is busy). Similarly, the output
switch must choose the selected output port. Thus, the problem of routing in a Clos
network is reduced to the problem of assigning each circuit (or packet) to a middle
switch.

6.3.2 Unicast Routing on Strictly Non-Blocking Clos Networks

THEOREM
6.1

A Clos network is strictly non-blocking for unicast traffic iff m ≥ 2n − 1.

Proof Consider an arrangement of N − 1 calls where all inputs are connected except for
input a.i and all outputs are connected except for output b.j . The previous calls in
the network have been set up so that the middle switches being used by the calls on
switch a are disjoint from the middle switches being used by the calls on switch b.
Without loss of generality, we can assume that the calls on a are using the first n − 1
middle switches and the calls on b are using the last n−1 middle switches. To connect
a.i to b.j we must find a middle switch that is not currently being used by either a or
b. Since n−1 middle switches are being used by a and different n−1 middle switches

6.3 Clos Networks 119

are being used by b, there must be at least 2n − 1 middle switches for there to be a
switch available to route this call.7

Thus, the (5,3,4) Clos network of Figure 6.6 is strictly non-blocking for unicast
traffic, since m = 2n − 1 = 5. The (3,3,4) Clos network of Figure 6.5 is not strictly
non-blocking because m = 3 < 2n − 1 = 5. We will see in Section 6.3.3 that the
(3,3,4) network is rearrangeable.

The algorithm for routing unicast calls on a strictly non-blocking Clos network
is shown in Figure 6.8. To route a unicast call from a.i to b.j , the middle stage switch
is found by intersecting the list of switches that are not used by a with the list of
switches that are not used by b. By the counting argument above, there will always
be at least one switch in this intersection.

Consider routing a circuit from input 1.1 (1) to output 3.3 (9) as shown in
Figure 6.9. In this case, input switch 1 has already blocked the paths to middle
switches 1 and 2 with routes from 1.2 (2) and 1.3 (3) to 4.1 (10) and 2.3 (6),
respectively, as shown with dotted lines. The paths from middle switches 4 and 5 to
output switch 3 are also blocked with routes to 3.1 (7) and 3.2 (8) from 3.1 (7) and
2.1 (4), respectively. Because the input switch and output switch can each block at
most n − 1 = 2 middle switches, there can be at most 2n − 2 = 4 middle switches
blocked. With m = 2n − 1 = 5 middle switches, there is always guaranteed to be
one middle switch available to handle the new call. In this case, middle switch 3 is
available to route the new call as shown with the bold lines in the figure.

For a more complete routing example, consider the permutation {5, 7, 11, 6, 12,
1, 8, 10, 3, 2, 9, 4}. That is, input 1 (1.1) routes to output 5 (2.2), input 2 (1.2) to
output 7 (3.1), and so on. We also simplify the permutation to {(2, 3, 4), (2, 4, 1),
(3, 4, 1), (1, 3, 2)} by considering only switches, not ports. We need to consider only
switches when finding the middle stage assignments, and once these assignments
are found, scheduling the first and last stages is trivial because the crossbar ele-
ments are strictly non-blocking. Input switch 1 has connections to output switches
2, 3, and 4; input switch 2 to output switches 2, 4, and 1; and so on. Suppose
the calls are applied in the order {9,6,7,8,3,12,10,5,1,11,2,4}. The call from input 9

For each call (a,b)
freeab = free(a) ∧ free(b) middle switches available on both a and b

middle = select(freeab) pick one
assign((a,b),middle) route (a,b)

Figure 6.8 Algorithm for routing unicast traffic on a strictly non-blocking Clos network.

7. This proof technique is commonly referred to as the pigeonhole principal and is useful in a wide range of
scheduling problems.

120 C H A P T E R 6 Non-Blocking Networks

1.1

3.3

middle
switch 2

4x4

m = 5 r x r
middle switches

middle
switch 3

4x4

middle
switch 4

4x4

input
switch 1

3x5

1.2

1.3

r = 4 n x m
input switches

input
switch 2

3x5

2.1

2.2

2.3

input
switch 3

3x5

3.1

3.2

3.3

input
switch 4

3x5

4.1

4.2

4.3

output
switch 1

5x3

1.1

1.2

1.3

r = 4 m x n
output switches

output
switch 2

5x3

2.1

2.2

2.3

output
switch 3

5x3

3.1

3.2

output
switch 4

5x3

4.1

4.2

4.3

middle
switch 1

4x4

middle
switch 5

4x4

Figure 6.9 Routing from input 1.1 to output 3.3 on a (5,3,4) Clos network. Input switch 1 already has
blocked paths (shown as dotted lines) to middle switches 1 and 2, and output switch 3 has
blocked paths to middle switches 4 and 5. The only available path (shown as a bold line) is via
middle switch 3.

(3.3) to output 3 (1.3) is applied first, then the call from 6 (2.2) to 1 (4.3), and
so on.8

The process of routing this call set on the (5,3,4) Clos network is shown in
Table 6.1. Each row of the table corresponds to one step in the routing process.
The first three columns show the input switch from which the call is coming (In),
the output switch to which the call is going (Out), and the middle switch allocated
to the call (Middle). The remaining eight columns give bit vectors showing which
middle switches are free from each input and output switch. For example, the first
row of the table shows setting up the call from 9 (3.3) to 3 (1.3). The input switch
is 3, the output switch is 1, and, since there are no paths blocked for this first call, it
is assigned middle switch 1. The free vectors then show that after this call is set up,
the path from input switch 3 to middle switch 1 is busy (Input Free 3 = 01111) and
the path to output switch 1 from middle switch 1 is busy (Output Free 1 = 01111).

8. This permutation and call ordering was chosen to be particularly nasty for the rearrangeable (3,3,4)
network. Most call sequences are much easier to schedule.

6.3 Clos Networks 121

Table 6.1 Example of routing a call set on a strictly non-blocking Clos network. The set of calls
{(2, 3, 4), (2, 4, 1), (3, 4, 1), (1, 3, 2)} is routed in the order {9,6,7,8,3,12,10,5,1,11,2,4}. Each
row of the table shows the setup of one call. In each row, the columns indicate the input,
output, and middle switches used by the call (In, Out, and Middle), and the free vector for each
input and output switch.

In Out Middle Input Free Output Free

1 2 3 4 1 2 3 4

3 1 1 11111 11111 01111 11111 01111 11111 11111 11111
2 1 2 11111 10111 01111 11111 00111 11111 11111 11111
3 3 2 11111 10111 00111 11111 00111 11111 10111 11111
3 4 3 11111 10111 00011 11111 00111 11111 10111 11011
1 4 1 01111 10111 00011 11111 00111 11111 10111 01011
4 2 1 01111 10111 00011 01111 00111 01111 10111 01011
4 1 3 01111 10111 00011 01011 00011 01111 10111 01011
2 4 4 01111 10101 00011 01011 00011 01111 10111 01001
1 2 2 00111 10101 00011 01011 00011 00111 10111 01001
4 3 4 00111 10101 00011 01001 00011 00111 10101 01001
1 3 3 00011 10101 00011 01001 00011 00111 10001 01001
2 2 3 00011 10001 00011 01001 00011 00011 10001 01001

Using this bit-vector representation for the free sets, we select the middle switch
for a new call from input switch a to output switch b, by AND-ing the input free
vector a, which indicates the switches available from a, with output free vector b,
which indicates the switches available from b. The resulting vector has a 1 for every
middle switch that is available to handle the call. Because the two free vectors can
have at most two 0s each, there will be at most four 0s, and hence at least a single
1, in the result of the AND. One of the 1s in this vector is selected to determine the
middle switch to carry the new call.

For example, consider the last call set up in Table 6.1, from input 4 (2.1) to
output 4 (2.1). Before this call, the free vectors are shown in the second to last row
of the table. The free vector for input switch a = 2 is 10101 (middle switches 2 and
4 blocked), and the free vector for output switch b = 2 is 00111 (middle switches
1 and 2 blocked). We AND together these two free vectors to give a combined free
vector of 00101, which indicates that switches 3 and 5 are available to handle the
new circuit. Middle switch 3 is selected.

The procedure for routing a strictly non-blocking Clos network is very sim-
ple. However, this simplicity comes at a cost. A strictly non-blocking Clos network
is nearly twice as expensive, requiring 2n−1

n
times as many middle switches as a

corresponding rearrangeable network. Hence, for most applications a rearrangeable
network is preferred.

122 C H A P T E R 6 Non-Blocking Networks

6.3.3 Unicast Routing on Rearrangeable Clos Networks

THEOREM
6.2

A Clos network with m ≥ n is rearrangeable.

To simplify our reasoning about routing Clos networks, we represent a set of
circuits to be routed as a bipartite graph. The input switches are one set of vertices,
the output switches the other set of vertices, and each call is represented by an edge
in the graph. The routing problem becomes an edge coloring problem in this graph.
Each middle switch corresponds to a color, and the problem is to assign each edge a
color (each call to a middle switch) so that no vertex is incident to two edges of the
same color (no input or output uses a middle switch more than once).

Consider, for example, the routing problem from Section 6.3.2. Recall that,
in terms of switches, the set of circuits to be routed is {(2, 3, 4), (2, 4, 1), (3, 4, 1),
(1, 3, 2)}. That is, input switch 1 has circuits to output switches 2, 3, and 4; input
switch 2 connects to 2, 4, and 1; and so on. The bipartite graph representing this set
of calls is shown in Figure 6.10.

An algorithm for routing a set of calls on a rearrangeable non-blocking network
is shown in Figure 6.11. To route a call from input switch a to output switch b,
the algorithm starts by looking for a middle switch that is free on both a and b. If
such a free middle switch is found, it is assigned and the call is completed. Up to
this point, the procedure is the same as the procedure for a strictly non-blocking
network shown in Figure 6.8. If a common free middle switch cannot be found, a
middle switch, mida, that is free on a is assigned to the call, and the call (c,b) that
uses this switch on b is moved to a middle switch, midb, that is free on b. If midb
is in use on c, then the algorithm loops, renaming (c,d) to (a,b) to reroute (c,d) on
mida, rearranging further calls as needed.

I1

I2

I3

I4

O1

O2

O3

O4

Figure 6.10 The set of circuits to be routed on a Clos network can be represented as a bipartite graph.

6.3 Clos Networks 123

For each call (a,b)
freeab = free(a) ∧ free(b) middle switches available on both a and b

If freeab �= 0 then if there is one free on both a and b

middle = select(freeab) pick one
assign((a,b),middle) route (a,b)

else
mida = select(free(a)) middle switch for (a,b)
midb = select(free(b)) middle switch for rearranged call
do rearrange calls

(c,b) = call(b,mida) rearrange call using mida on b

if(c,b) then unassign((c,b),mida) disconnect (c,b)
assign((a,b),mida) setup (a,b)
if(c,b) then if mida on b was used - rearrange (c,b)

(c,d) = call(c,midb) get call using midb on c

if(c,d) then unassign((c,d)) disconnect call
assign((c,b),midb) move (c,b) to midb
if(c,d) then if midb on c was in use

(a,b) = (c,d) iterate to move this call
while (a,b) ∧ (c,b) while calls remain to be moved

Figure 6.11 Looping algorithm for routing unicast traffic on a rearrangeable Clos network.

The application of the looping algorithm to the call set and ordering of Sec-
tion 6.3.2 is shown in Table 6.2. The algorithm is able to set up calls without rear-
rangement until it attempts to set up the call (2,4) from input 2 to output 4 (eighth
row of the table). The situation at this point is illustrated in Figure 6.12(a). Input
switch 2 is using middle switch 2 to route to output 1, and output switch 4 is us-
ing middle switches 1 and 3 to route to input switches 1 and 3, respectively. Thus,
there are no middle switches available to handle a call from switch 2 to switch 4.
The looping algorithm routes (a=2, b=4) over switch mida = 1. To make this switch
available, it rearranges (c=1, b=4) to switch midb = 2. Because input switch 1 has no
call using middle switch 2, no further rearrangement is needed. The result is shown
in Figure 6.12(b).

A larger rearrangement that demonstrates the looping action of the algorithm
occurs when the program attempts to set up the call from a=4 to b=3 (row 11 of the
table). The situation before attempting this call is shown in Figure 6.13(a). As there
is no free middle switch common between I4 and O3, the call is set up on middle
switch mida = 2, causing a conflict with the call (I3,O3) as shown in Figure 6.13(b).
Call (I3,O3) is the first call of a chain of conflicts, (I3,O3), (I3,O1), (I2,O1), (I2,O4),
and (I1,O4), illustrated in Figure 6.13(c) that must be flipped between mida=2 and
midb=1. Flipping (I3,O3) to midb=1 conflicts with (I3,O1). This conflict is resolved,
on a second iteration of the algorithm, by flipping (I3,O1) to mida=2, which in turn
causes a conflict with (I2,O1), and so on. Flipping all of the calls in the chain resolves
all conflicts, as shown in Figure 6.13(d).

124 C H A P T E R 6 Non-Blocking Networks

Table 6.2 A routing problem.

In Out Middle Input Free Output Free

New Old 1 2 3 4 1 2 3 4

3 1 1 111 111 011 111 011 111 111 111
2 1 2 111 101 011 111 001 111 111 111
3 3 2 111 101 001 111 001 111 101 111
3 4 3 111 101 000 111 001 111 101 110
1 4 1 011 101 000 111 001 111 101 010
4 2 1 011 101 000 011 001 011 101 010
4 1 3 011 101 000 010 000 011 101 010
2 4 1 011 001 000 010 000 011 101 010
1 4 2 1 101 001 000 010 000 011 101 000
1 2 3 100 001 000 010 000 010 101 000
4 3 2 100 001 000 000 000 010 101 000
3 3 1 2 100 001 010 000 000 010 001 000
3 1 2 1 100 001 000 000 100 010 001 000
2 1 1 2 100 011 000 000 000 010 001 000
2 4 2 1 100 001 000 000 000 010 001 100
1 4 1 2 010 001 000 000 000 010 001 000
1 3 2 000 001 000 000 000 010 001 000
4 3 3 2 000 001 000 010 000 010 000 000
4 1 2 3 000 001 000 000 001 010 000 000
3 1 3 2 000 001 010 000 000 010 000 000
3 4 2 3 000 001 000 000 000 010 000 001
2 4 3 2 000 010 000 000 000 010 000 000
2 2 2 000 000 000 000 000 000 000 000

THEOREM
6.3

Setting up a single call using the looping algorithm requires rearranging at most 2r −2
other calls.

Proof This is true because the looping algorithm, in setting up a single call, never revisits a
vertex of the bipartite graph. Thus, it completes its iterations after visiting at most 2r

vertices. Calls are rearranged starting with the visit to the third vertex. Thus, at most
2r − 2 calls are rearranged.

To see that the path traveled by the algorithm is acyclic, consider unfolding the
conflict chain of Figure 6.13(c) as shown in Figure 6.14. In Figure 6.14, ai and bi

denote input switch a and output switch b on the ith iteration of the loop. On the
first iteration of the loop, the algorithm sets up the original call (a1,b1), and then
moves the call (a2,b1) (if it exists) from mida to midb. On each subsequent iteration,
i, of the loop, the algorithm moves call (ai , bi) from midb to mida and (if it exists) call
(ai+1, bi) from mida to midb.

6.3 Clos Networks 125

1

2

3
I1

I2

I3

I4

O1

O2

O3

O4

I1

I2

I3

I4

O1

O2

O3

O4

(a) Before routing (2,4) (b) After routing (2,4)

Figure 6.12 Stages of routing the call set of Figure 6.10. Assignment to middle stages is denoted by the
dotting of the edges. (a) Before routing call (I2,O4), there are no middle switches free on both
I2 and O4. (b) To route this call, (I1,04) is moved to middle switch 2, allowing (I2,04) to use
middle switch 1.

We show that no vertex can be revisited by induction. We know vertices a1 and
b1 are not the same, since a is an input switch and b is an output switch. Suppose
vertices ai and bi are unique for i < j . Then when we visit node aj , it must also
be unique because it is found by following the mida link from bj−1 and the mida
link on all ai, i < j is accounted for. On a1, mida is originally unconnected. For
ai, 1 < i < j , mida originally connected to bi−1, which is distinct from bj−1. Similarly,
bj is guaranteed to be unique because it is identified by following the midb link from
aj and the midb link on all bi, i < j is accounted for. Thus, the chain is guaranteed to
be acyclic since no vertex will be revisited. Because there are a total of 2r vertices, the
algorithm is guaranteed to terminate after visiting at most 2r vertices and rearranging
at most 2r − 2 calls, starting with the call (a2, b1).

Proof (Theorem 6.2) When the algorithm terminates after scheduling N = rn calls, it has
produced a schedule for arbitrary unicast traffic. Thus, we have shown that a Clos
network with m ≥ n is rearrangeable.

When rearranging an existing call, (c, d), to set up a new call, (a, b), it is desirable
to switch call (c, d) to its new route without affecting the traffic being carried. Such
hitless switching can be realized by synchronizing the switching of the input, middle,
and output switches carrying call (c, d) so they all pass unit i of the call along the old
path and then switch to pass unit i + 1 of the call along the new path. The unit here
could be a bit, byte, or frame. What is important is not the granularity of switching,
but rather that it be synchronized.

Finally, the previous examples have considered only bipartite graphs with at
most one edge between each pair of nodes. However, in general, we need to allow

126 C H A P T E R 6 Non-Blocking Networks

I1

I2

I3

I4

O1

O2

O3

O4

I1

I2

I3

I4

O1

O2

O3

O4

(a) Before routing (4,3) (b) (4,3) on 2

I1

I2

I3

I4

O1

O2

O3

O4

(c) Chain of calls to be flipped

I1

I2

I3

I4

O1

O2

O3

O4

(d) After flipping calls

Figure 6.13 Stages of routing the call set of Figure 6.10. Assignment to middle stages is denoted by the
dotting of the edges. (a) Before routing call (I4,O3), there are no middle switches free on both I4
and O3. (b) The call is routed on middle switch mida=2, creating a conflict with call (I3,O3). (c)
Moving (I3,O3) to switch midb=1 starts a chain of conflicting calls (I3,O3),(I3,O1),(I2,O1),(I2,O4),
and (I1,O4) that must be flipped between switches 1 and 2 to resolve the conflict. (c) After
flipping these calls, no further conflicts exist.

for bipartite multigraphs. A multigraph is a graph that can contain parallel edges.
This would arise, for example, if a circuit from input 1.1 to output 3.3 along with
another circuit from 1.2 to 3.1 were required. Then, in terms of switches, we would
have two circuits from switch I1 to switch O3, corresponding to two parallel edges
from I1 to O3 in the bipartite multigraph. Fortunately, this complication does not
affect the results of this section, and the looping algorithm works equally well on
multigraphs.

6.3.4 Routing Clos Networks Using Matrix Decomposition

A rearrangeable Clos network can also be routed using matrix decomposition.The set
of calls to be routed can be represented as a matrix R where each entry xij indicates

6.3 Clos Networks 127

a1

b1

a2

b2

ar

br

mida

midb

(a) Before rearranging

a1

b1

a2

b2

ar

br

(b) After rearranging

Figure 6.14 Sequence of visiting vertices during the looping algorithm.

the number of calls from input swtch i to output switch j . For example, the matrix
representing our routing example is

R =

⎡
⎢⎢⎣

0 1 1 1
1 1 0 1
1 0 1 1
1 1 1 0

⎤
⎥⎥⎦ .

This matrix can be decomposed into the sum of a set of m positive matrices
where each row and column sum to at most one. Each matrix in this set corresponds
to the setting of a middle stage switch. For example, the solution shown in Table 6.2
corresponds to the following matrix decomposition:

⎡
⎢⎢⎣

0 1 1 1
1 1 0 1
1 0 1 1
1 1 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎥⎦

(6.1)

In this case the three terms on the right side of Equation 6.1 are permutation matrices
that correspond to the settings of the three middle-stage switches in Figure 6.5. As
mentioned in the previous section, it is possible to have multiple circuit requests
between an input-output switch pair. This corresponds to elements greater than one
in the original request matrix.

Matrix decomposition can be used to route unicast or multicast traffic and can be
applied to both rearrangeable and strictly non-blocking Clos networks.The derivation
of decomposition algorithms is left as an exercise.

128 C H A P T E R 6 Non-Blocking Networks

6.3.5 Multicast Routing on Clos Networks

In multicast call set C = {c1, . . . , cn}, each multicast call ci = (ai, {bi1, . . . , bif })
specifies the connection between an input port, ai , and f output ports, bi1, . . . , bif .
The fanout, f , of the call is the number of output ports connected. The call set C is
constrained so that each input port and output port can be included in at most one
call. Equivalently, if we express the calls in terms of switches rather than ports, each
input switch and output switch can be included in at most n calls.

Routing multicast traffic on a Clos network is a harder problem than routing
unicast traffic for three reasons. First, more middle switches are required. To route a
multicast call set with a maximum fan out of f it is sufficient9 to have m(f) middle
switches, as given in Equation 6.5. Second, the looping algorithm cannot be applied
to multicast traffic unless all of the fan out is done in the input switches. Any fan
out in the middle switches will result in cycles in our conflict graphs and cause the
algorithm to fail. Finally, with multicast we have an additional degree of freedom.
We can choose where to fan out a call — in the input switch, in a middle switch, or
partially in both places — in addition to choosing particular middle switches. As we
shall see, properly exploiting this additional degree of freedom is the key to efficient
multicast routing in Clos networks.

To illustrate the multicast problem, consider the problem of routing the fanout-
of-two call set C = {(1, {1, 2}), (1, {3, 4}), (1, {1, 3}), (2, {1, 4}), (2, {2, 4}), (2, {2, 3})}
on a Clos network with n = 3 and r = 4.As before, we show only the switch numbers
corresponding to the circuits, not the specific ports.

Table 6.3 gives a vector representation of this call set. The table has a column for
each input switch and a column for each output switch. Row i of the table represents
call ci = (ai, {bi1, bi2}) by placing a 1 in the positions corresponding to ai , bi1, and

Table 6.3 Conflict vector representation for call set C =
{(1, {1, 2}), (1, {3, 4}), (1, {1, 3}), (2, {1, 4}), (2, {2, 4}), (2, {2, 3})}.

Call Input Output

1 2 3 4 1 2 3 4

c1 1 1 1
c2 1 1 1
c3 1 1 1
c4 1 1 1
c5 1 1 1
c6 1 1 1

9. Although we do not have a bound on the necessary number of middle switches, there are several examples
in which n is not enough.

6.3 Clos Networks 129

bi2. For example, the first row of the table has 1s in the column for input switch 1
and 1s in the columns for output switches 1 and 2, and hence represents (1, {1, 2}).

Two calls, ci and cj , can share the same middle switch only if their vectors have
no 1s in the same column. That is, ci and cj can be mapped to the same middle
stage iff ci ∧ cj = 0. An examination of Table 6.3 shows that every pair of rows
has a non-zero intersection. Hence, six different middle-stage switches are needed
to route these six calls unless they are split by performing some of the fanout in the
input switches.

Fanout performed in the input switch allows the output set to be split across
multiple middle stages. In effect, k-way input fanout splits a single call ci = (a, B)

into k calls ci1 = (a, B1), . . . , cik = (a, Bk), where B1, . . . , Bk are disjoint and⋃k
j=1 Bj = B.

For example, the call set of Table 6.3 is shown in Table 6.4 with input fanout
applied to calls c3 and c6. Splitting calls in this manner eliminates many of the
pairwise conflicts and allows the call set to be routed on four middle-stage switches,
as shown in Table 6.5 and Figure 6.15.

Table 6.4 Call set of Table 6.3 with input fanout to split calls c3 and c6. The resulting set of calls can be
routed on four middle stage switches rather than six.

Call Input Output

1 2 3 4 1 2 3 4

c1 1 1 1
c2 1 1 1
c3a 1 1
c3b 1 1
c4 1 1 1
c5 1 1 1
c6a 1 1
c6b 1 1

Table 6.5 Call set of Table 6.4 packed into 4 middle switches.

Middle Calls Input Output
Switch

1 2 3 4 1 2 3 4

1 c1, c6b 1 1 1 1 1
2 c2, c6a 1 1 1 1 1
3 c3a, c5 1 1 1 1 1
4 c3b, c4 1 1 1 1 1

130 C H A P T E R 6 Non-Blocking Networks

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

Figure 6.15 Routing specified by Table 6.5. Fanout for calls c3 and c6 is performed in input switches 1 and
2, respectively. All other fanout is performed in the middle switches. All six dual-cast calls are
routed on 4 middle stage switches.

If we have m middle switches, then our speedup is S = m
n

. To route a general
multicast call set, we can always fan out by S in the input stage. This leaves a fanout
of at most g =

⌈
f
S

⌉
to be performed in the middle stages. Each of the split calls

to be assigned to middle stage switches has at most g + 1 1s in its vector, one for
the input switch, and g for the g output switches. This call can conflict with at
most (g + 1)(n − 1) other calls, n − 1 calls in each of the g + 1 columns where it
has a 1. Thus, we are guaranteed to be able to route an arbitrary fanout of f call
set if

m ≥ (g + 1)(n − 1) + 1. (6.2)

If f is evenly divisible by S, we can rewrite this as

S = f

g
≥ (g + 1)(n − 1) + 1

n
. (6.3)

After splitting calls for fanout in the first-stage switches, a given input column
may have as many as Sn 1s. However, we are still guaranteed that a given call can
conflict with at most n calls in this column. This is because two sub-calls that are
derived from the same main call do not conflict.

6.3 Clos Networks 131

Table 6.6 Fanout as a function of the number of middle stages.

n S m f

2 2 4 4.0
2 3 6 12.0
2 4 8 24.0
2 5 10 40.0
3 2 6 3.0
3 3 9 9.0
3 4 1 18.0
3 5 1 30.0
4 2 8 2.7
4 3 1 8.0
4 4 1 16.0
4 5 2 26.7
48 2 96 2.0
48 3 144 6.1
48 4 192 12.3
48 5 24 20.4

Thus, from Equation 6.3, given a Clos network with m middle switches, we are
guaranteed to be able to route calls with a fanout of

f ≤ m(m − n)

n(n − 1)
. (6.4)

Table 6.6 gives values for the maximum fanout that can be handled for several values
of n and S. Note that because of the n − 1 term in Equation 6.4, the fanout that can
be handled for a given speedup drops considerably as n is increased. For example,
with a speedup of S = 2, the fanout drops from 4 when n = 2 to just over 2 when
n = 48.

If we solve Equation 6.4 for m, we can derive the following expression for the
number of middle switches required for a fanout of f :

m ≥ n + √
n2 + 4n(n − 1)f

2
= n + √

(4f + 1)n2 − 4f n

2
. (6.5)

Our argument about the number of conflicting calls, Equations 6.2 through 6.5,
works only if g is an integer. In cases where f

S
is not an integer, we must round up

to g =
⌈

f
S

⌉
.

132 C H A P T E R 6 Non-Blocking Networks

Cs = φ initialize split call set empty
for each call ci ∈ C first split calls for first stage fanout

split ci into ci1, . . . , ciS each with fanout ≤ g =
⌈

f
S

⌉
add ci1, . . . , ciS to Cs

for each call ci ∈ Cs

for each middle switch mj ∈ M find first middle stage that doesn’t conflict
if ci doesn’t conflict with calls already assigned to mj

assign ci to mj

break skip to next call ci

Figure 6.16 Greedy algorithm to route multicast calls on a Clos network.

The bounds calculated above can be achieved by the simple greedy algorithm
shown in Figure 6.16. The algorithm starts by splitting the calls in call set C, creating
a split call set Cs with a maximum fanout of g. The calls in Cs are then assigned to
middle switches in a greedy manner. For each call ci , the algorithm scans through
the middle switches. For each middle switch mj , ci is checked to see if it conflicts
with calls already assigned to mj . If there is no conflict, ci is assigned to mj and the
algorithm moves on to the next call.

To determine if ci conflicts with a call assigned to mj ,we use an m×2r assignment
matrix A. Each row of A corresponds to a middle switch and each column of A

corresponds to an input or output switch. Each element of A is initialized to φ.
When we assign ck = (ak, {bk1, . . . , bkg}) to mj , we set Amj ,ak

= Amj ,bk1 = · · · =
Amj ,bkg

= p(ck) where p(ck) ∈ C is the parent of ck, the call from which this call was
split. To check a call, ci = (ai, {bi1, . . . , big}) for a conflict with mj , we check that
each relevant entry of A, Amj ,ai

, Amj ,bi1 , . . . , Amj ,big
is either φ or equal to p(cj).

THEOREM
6.4

The greedy algorithm (Figure 6.16) meets the bound of Equation 6.2 on the number
of middle stages required to route multicast traffic with a fanout of f .

Proof We prove that the algorithm meets the bound of Equation 6.2 by contradiction. As-
sume we had a call in Cs that cannot be assigned to any of the m ≥ (g +1)(n−1)+1
middle switches. Then this call must conflict with at least one call assigned to each of
these switches, or m calls altogether. However, this is not possible, since the call can
conflict with at most (g + 1)(n − 1) calls.

The ability of the algorithm to handle an arbitrary fanout of f callset without
moving any calls leads directly to the following theorem.

THEOREM
6.5

An (m, n, r) Clos network is strictly non-blocking for multicast traffic with fanout f if
Equation 6.4 holds.

6.3 Clos Networks 133

6.3.6 Clos Networks with More Than Three Stages

Using n × n crossbar switches as a building block, we can build a rearrangeably non-
blocking (n, n, n) three-stage Clos network with n2 ports. If we need more than n2

ports, we can use this n2 ×n2 port Clos network for each of the middle switches of a
Clos network, using the n×n crossbars for input and output switches. This gives us a
five-stage Clos network with n3 ports. In general, for any integer i we can construct
a 2i +1 stage rearrangeable Clos network with ni+1 ports by using ni n×n crossbars
for the first stage, n 2i − 1 stage Clos networks for the middle stage, and ni n × n

crossbars for the last stage. A similar construction can be used to create a 2i +1-stage
strictly non-blocking Clos network, with ni n × (2n − 1) input switches, and 2n − 1
ni-port 2i − 1-stage Clos networks for middle switches.

For example, a five-stage (2,2,4) Clos network composed of 2 × 2 crossbar
switches is shown in Figure 6.17. The two 4 × 4 middle switches in this network are
each themselves (2,2,2) Clos networks.

Traffic is routed on a Clos network with more than three stages by working from
the outside in using the algorithm of Figure 6.11 or Figure 6.16. We start by assigning
each call to one of ni middle switches. This divides one (2i + 1)-stage scheduling
problem into n (2i − 1)-stage scheduling problems. We repeat this process until we
get to the point of scheduling ni n × n crossbars, after i steps. At the j th step, we
schedule nj−1 (2i − 2j + 3)-stage networks.

Consider scheduling unicast calls on a five-stage Clos network (i = 2) con-
structed from n × n crossbars. The first step is to assign each call to one of the n

middle switches. This is done using the algorithm of Figure 6.11 to schedule to
an (n, n, n2) Clos. This gives the switch settings for the two outside stages and poses

(2,2,2) Clos

(2,2,4) Clos, using two (2,2,2) Clos networks as middle switches

Figure 6.17 A (2,2,4) rearrangeable Clos network is constructed using two (2,2,2) Clos networks as 4 × 4
middle switches. A Clos network such as this composed of 2 × 2 switches is also referred to as
a Beneš network.

134 C H A P T E R 6 Non-Blocking Networks

routing problems for each of the n three-stage Clos networks used as middle switches.
We then move inward and apply the same procedure to each of the Clos networks
used as a middle switch. For each of the n middle switches, we route the calls assigned
to this (n, n, n) Clos middle switch using the algorithm of Figure 6.11. This assigns
each call to one of the n crossbars in this Clos (one of n2 middle-stage crossbars
overall).

The five-stage Clos network of Figure 6.17 is rearrangeably non-blocking for
unicast traffic. The outer (2,2,4) network is rearrangeable and thus can assign each
call to one of the two middle stage switches. Also, each of the (2,2,2) middle stage
networks are rearrangeable, and thus can route all of the calls assigned to them.

For a five-stage Clos network to be strictly non-blocking for unicast traffic, ex-
pansion is required in each input stage. For example, a strictly non-blocking network
comparable to the network of Figure 6.17 would require a (3,2,4) outer network
with four 2 × 3 switches in the input stage, four 3 × 2 switches in the output stage,
and three 4 × 4 middle stage subnetworks. To be strictly non-blocking, each of the
four middle stage subnetworks must be realized as (3,2,2) Clos networks with two
2×3 input switches, two 3×2 output switches, and three 2×2 middle switches. The
five-stage strictly non-blocking network has nine 2 × 2 switches down its midpoint,
as opposed to four 2 × 2 switches for the five-stage rearrangeable network. This is
because expansion is needed in both the first and second stages. If we use a factor
of two expansion in each input stage,10 a 2n + 1-stage strictly non-blocking Clos
network requires a total expansion of 2n.

To route multicast traffic in a Clos network that has more than three stages, one
must decide where to perform the fanout. Fanout can be performed at any stage
of the network. A complete discussion of this problem is beyond the scope of this
book. However, when routing a fanout of f multicast call on a 2n + 1-stage Clos

network, a good heuristic is to perform a fanout of f
1

n+1 on each of the first n + 1
stages.

6.4 Beneš Networks

A Clos network constructed from 2 × 2 switches —for example, the network of
Figure 6.17 — is also called a Beneš network. These networks are notable because
they require the minimum number of crosspoints to connect N = 2i ports in a
rearrangeably non-blocking manner. As discussed above, to connect N = 2i ports
with 2 × 2 switches requires 2i − 1 stages of 2i−1 2 × 2 switches. This gives a total
of (2i − 1)2i−1 switches. With 4 crosspoints per 2 × 2 switch, the total number of
crosspoints is (2i − 1)2i+1.

The astute reader will have noticed that a 2i−1 stage Beneš network is equivalent
to two 2-ary i-fly networks back-to-back with the abutting stages fused. Very often,
Beneš networks and other multistage Clos networks are implemented by folding the

10. Strictly speaking, the expansion required in each stage is 2n−1
n , which is slightly less than 2.

6.5 Sorting Networks 135

network along this middle stage of switches. In a 2i − 1-stage folded Clos network,
stages j and 2i − j are co-located and share common packaging. This arrangement
takes advantage of the symmetry of the network to reduce wiring complexity.

6.5 Sorting Networks

An N-input sorting network accepts a set of N records tagged with unique sorting
keys on its N input terminals and outputs these records with the keys in sorted order
on its N output terminals. A sorting network can be used as a non-blocking network

1 3 4 5

(a) Batcher bitonic sort

(b) Bitonic sorting network

2 6

Figure 6.18 Batcher bitonic sorting network. (a) Batcher bitonic sort operates by treating two sorted se-
quences of length 2i as a bitonic sequence of length 2i+1 and then merging this into a sorted
sequence of length 2i+1. (b) A sorting network that realizes this sort is constructed from 2 × 2
switches that route based on the relative values of the sorting keys.

136 C H A P T E R 6 Non-Blocking Networks

by using the output address for each record as its sorting key.11 Because the sorting
network is able to sort any permutation of the sorting keys into sorted order, it is
able to route any permutation.

Figure 6.18 shows a Batcher bitonic sorting network and illustrates the bitonic
sorting algorithm on which this network is based. The sorting algorithm takes advan-
tage of the properties of a bitonic sequence, a sequence that, when viewed cyclically,
has at most one ascending subsequence and one descending subsequence (two mono-
tonic subsequences form a bitonic sequence). As shown in Figure 6.18(a), the bitonic
sorting algorithm starts with 2n (in this case 8) unsorted search keys on the left side
and generates a sorted sequence on the right side. In this figure, each arrow denotes
an operation that compares the keys of the two records on the left side and swaps
them if necessary so that the record with the highest key is at the head of the arrow
on the right side. The first stage sorts even and odd keys in alternating directions so
that the input to stage 2 consists of two bitonic sequences, one from inputs 0–3, and
the other from inputs 4–7. Stages 2 and 3 then merge each of these 4-long bitonic
sequences into 4-long monotonic sequences. The result is an 8-long bitonic sequence.
Stages 4, 5, and 6 then merge this bitonic sequence into a monotonic sequence, and
the sort is complete. For example,Table 6.7 illustrates the sort on a sequence of eight
numbers.

In general, an N = 2n input bitonic sort takes S(N) = (log2 N)(1+log2 N)

2 stages
consisting of S(N/2) stages to sort the input into a bitonic sequence consisting of two
2n−1-long monotonic sequences, and log2 N stages to merge this bitonic sequence
into an N-long monotonic sequence.

The sorting network, shown in Figure 6.18(b) follows directly from the algo-
rithm. Here each arrow in Figure 6.18(a) is replaced by a 2 × 2 switch that routes
by comparing keys.

Table 6.7 Example of a bitonic merge sort.

Row 0 1 2 3 4 5 6 7

Input 4 6 2 7 3 1 5 0
Stage 1 4 6 7 2 1 3 5 0
Stage 2 4 2 7 6 5 3 1 0
Stage 3 2 4 6 7 5 3 1 0
Stage 4 2 3 1 0 5 4 6 7
Stage 5 1 0 2 3 5 4 6 7
Stage 6 0 1 2 3 4 5 6 7

11. Note that dummy records must be sent to idle outputs to make this work.

6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch 137

Some asynchronous transfer mode (ATM) switches have used a Batcher sort-
ing network in combination with a butterfly (this is usually called a Batcher-banyan
network, using the banyan alias for butterfly). The Batcher network sorts the input
cells by destination address. At the output of the Batcher, a trap stage detects cells
destined for the same output and removes all but one from consideration. The re-
maining cells, in sorted order and all destined for different outputs, are then shuffled
and input into the butterfly. Because of their ordering, the butterfly is guaranteed to
be able to route them. (See Exercise 6.4.)

6.6 Case Study: The Velio VC2002 (Zeus)
Grooming Switch

The Velio VC2002 is a single-chip time-domain-multiplexing (TDM) circuit switch
(Figure 6.19). A VC2002 accepts 72 synchronous optical network (SONET) STS-48
2.488 Gbits/s serial input streams and produces 72 STS-48 output streams. Each of
these streams contains 48 51.83 Gbits/s STS-1 streams multiplexed on a byte-by-
byte basis. That is, each 3.2-ns byte time or time slot one byte from a different STS-1
is carried on the line — first a byte from channel 0, then channel 1, and so on up
to channel 47. After 48 time slots, the pattern repeats. A TDM switch, also called

Figure 6.19 The Velio VC2002 is a single-chip 72×72 STS-48 grooming switch. The chip is packaged in a
37.5mm×37.5mm 1296-ball ball-grid-array package.

138 C H A P T E R 6 Non-Blocking Networks

A B C D

TDM
switch

E F G H

H D F A

B A E C

Figure 6.20 A TDM switch accepts and generates time-domain multiplexed streams and switches the con-
tents of input time slots into the contents of output time slots. For example, channel C on 0.2
(input 0, time slot 2) is switched to 1.3.

a cross connect or a grooming switch, switches in time as well as space to map input
STS-1 time slots onto output STS-1 time slots.12

Figure 6.20 shows an example of TDM switching for the simplified case of two
inputs and outputs with four time slots each. This example includes both unicast
connections — for example, the B on 0.1 (input 0, time slot 1) is switched to 1.0
(output 1, time slot 0) — and multicast connections — the A on 0.0 is switched to
both 0.3 and 1.1. The VC2002 performs a similar function, but on 72 inputs with
48 time slots each.

TDM grooming switches form the bulk of most metropolitan and long-haul voice
and data communication networks.13 Most of these networks are implemented as in-
terconnected sets of SONET rings (because of the restoration properties of rings).
Grooming switches act as cross-connects that link multiple rings together and as
add-drop multiplexers that multiplex slower feeds onto and off of the ring.

The configuration of a TDM switch typically changes slowly except during pro-
tection events. New STS-1 circuits are provisioned at a rate of at most a few per
minute. However, when a fault occurs in the network (for example, a backhoe cuts
a fiber bundle), a large fraction of the 3,456 connections in a VC2002 may need to
be switched within a few milliseconds to avoid interruption of service.

A TDM switch can take advantage of the fact that the input and output streams
are multiplexed by implementing the first and third stages of a Clos network in
the time domain, as shown in Figure 6.21. The figure shows how the 2-input by
4-time slot example of Figure 6.20 can be realized without the complexity of an
8 × 8 crossbar switch. Instead, a three-stage Clos network in which m=4, n=4 and

12. A single 51.83-Gbits/s STS-1 may contain 28 1.5-Mbits/s T1 or DS1 channels, each of which in turn
carries 24 64-Kbits/s DS0 channels, each of which carries one phone call.

13. Although people think of the Internet as being implemented with packet routers, these routers exist only
at the edges and are connected by TDM circuits between these endpoints.

6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch 139

B

B A E C

H D F ATSI

Crossbar
switch

TSI

TSI TSI

A C E

A B C D

E F G H

A B C D

F H E

FA H D

(b)

Time
switch

A

B

C

D

Switch
t0

Switch
t1

A

B

C

D

Switch
t2

Switch
t3

Time
switch

E

F

G

H

F

H

E

Time
switch

H

D

F

A

A

F

H

D

Time
switch

B

A

E

C

A

B

C

E

(a)

Figure 6.21 A time-space-time (TST) TDM switch implementation for the example of Figure 6.20. (a) Con-
ceptually, the inputs are switched by two 4 × 4 switches in the time domain, then, in each of
four time slots t0 to t3, the outputs of the two input switches are switched by a 2 × 2 space
switch. Finally, a pair of output time switches reorders the outputs. (b) The input and output
time switches are implemented by TSIs. The four 2 × 2 switches in (a) are implemented by a
single 2 × 2 switch operated with a different configuration on each time slot.

r = 2 is realized. The r = 2 4 × 4 (n × m) input and output switches are im-
plemented as time-slot interchangers (TSIs) and the m = 4 2 × 2 (r × r)
middle switches are implemented as a single time-multiplexed 2 × 2 switch. A TSI
is a 2n entry memory. While half of the entries (n entries) are being filled by the
input stream in order, an output stream is created by reading the other half of the
entries in an arbitrary order (as required to realize the input switch configuration).
Each time n entries are filled by the input stream, the process repeats, with the
output stream reading out these entries, while the input stream fills the other half —
which were just read out. Because the outputs of the TSIs in Figure 6.21(b) are time
multiplexed, the four 2 × 2 switches of Figure 6.21(a) can be realized by a single
switch. In each of the four time slots, the switch acts as the middle stage for that
time slot.

140 C H A P T E R 6 Non-Blocking Networks

TSI 0
48

TSI 1
48

96

96

TSI 71
48 96

72 x 72 x 96
time slot
crossbar

TSI 0
48

TSI 1
48

96

96

TSI 71
4896

Config RAM
Config
RAMs

Config
RAMs

Time slot
6 6 6

Figure 6.22 Block diagram of the VC2002. The switch consists of 72 48 × 96 input TSIs, a 72 × 72 space
switch that is reconfigured for each of the 96 logical time slots, and 72 96 × 48 output TSIs.
The configuration of the crossbar switch and the time slot output from each interchanger are
controlled by configuration RAMs addressed by the current time slot.

Figure 6.22 shows a block diagram of the VC2002.14 Like the example of
Figure 6.21, the VC2002 uses a three-stage TST Clos network. However, in this
case, the Clos has (m, n, r) = (96, 48, 72). There are 72 input channels with 48 time
slots each. To make the switch strictly non-blocking for unicast traffic and rearrange-
ably non-blocking for dual-cast traffic (fanout = 2), the switch has a speedup of two.
There are 96 logical middle stages for 48 inputs to each input switch.15 The switch
is controlled by a set of configuration memories addressed by the current timestep.
For each timestep, the configuration memories specify which location (time slot) to
read from each input TSI, which input port should be connected to each output port
of the switch, and which location to read from each output TSI.

The VC2002 is scheduled by assigning a middle stage switch (time slot) to each
STS-1 call that must traverse the switch. Because theVC2002 is strictly non-blocking
for unicast traffic, the middle-stage switch assignments can be performed using the
intersection method of Figure 6.8 or by the looping algorithm of Figure 6.11. Dual-
cast traffic may be scheduled using the greedy algorithm of Figure 6.16. Alternatively,
dual-cast traffic may be scheduled using the looping algorithm by splitting each

14. The VC2002 also includes a SONET framer on each input and each output. The input framers align
the input streams and monitor and terminate SONET transport overhead. The output framers generate
transport overhead.

15. To keep clock rate manageable, the 96 time slot 72 × 72 switch is implemented as two 48 time-slot
switches, each running at the STS-48 byte rate (311 MHz).

6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch 141

dual-cast call into two unicast calls and splitting the middle stage switches into two
equal subsets. One unicast call is scheduled on each subset of middle switches. Since
each subset has m/2 = n switches, the subset is rearrangeble for these unicast calls.

In practice, the VC2002 can handle multicast calls of arbitrary fanout with very
low probability of blocking by splitting the calls as described in Section 6.3.5. We
leave the calculation of blocking probability for high fanout calls as Exercise 6.5.

A single VC2002 provides 180 Gbits/s of STS-1 grooming bandwidth, enough
to switch 3,456 STS-1s. If a larger grooming switch is needed, multiple VC2002s
can be connected in a Clos network as illustrated in Figure 6.23. The figure shows
how 120 VC2002s can be connected in a folded Clos configuration to switch up to
4.3 Tbits/s (1,728 STS-48s or 82,944 STS-1s). Each of the 72 chips in the first rank
acts as both a 24 × 48× STS-48 first-stage input switch and as a 48 × 24× STS-48
third-stage output switch. Each of the 48 chips in the second rank form 72 × 72×
STS-48 middle stage switch.

The system of Figure 6.23 is logically a five-stage Clos network. Since each chip is
internally a three-stage switch itself, it may appear that we have created a nine-stage

Stage 1/3
chip 1

24

24

48

Stage 2
chip 1

72

48 72

Stage 1/3
chip 2

24

24

Stage 2
chip 2

Stage 2
chip 48

Stage 1/3
chip 72

24

24

Figure 6.23 A folded Clos network using 120 VC2002s provides 4.3 Tbits/s of STS-1 grooming bandwidth.
A first rank contains 72 chips that each split their inputs and outputs to provide both a 24×48×
STS-48 input switch and a 48 × 24× STS-48 output switch. A second rank of 48 chips forms
48 72 × 72× STS-48 middle switches.

142 C H A P T E R 6 Non-Blocking Networks

network. However, we can ignore all but the outermost TSIs and view the network
as a TSSST network with a 48 × 48 TSI followed by a 24 × 48 space switch, then a
72×72 space switch, a 48×24 space switch, and a 48×48 TSI. The other four TSIs
along each path are left in the straight-through configuration. Exercise 6.6 examines
the possibilities of treating the network as a seven-stage TSTSTST.

To schedule our logical five-stage network, we start by considering the middle
three space-switch stages as 48 3,456 × 3,456 space switches, one for each time
slot. We assign each call to one of the 48 time slots by scheduling this (m, n, r) =
(48, 24, 3456) Clos. This solution then leaves 48 subproblems, one per time slot, of
assigning each call in that time slot to one of the 48 physical middle-stage switches.
For each subproblem, we schedule all calls in that middle-stage time slot on the
(m, n, r) = (48, 24, 72) Clos formed by the three space switches for a single time
slot.

6.7 Bibliographic Notes

The seminal paper on non-blocking networks was published by Clos in 1953 [37].
This paper introduced Clos networks and described the requirements for them to
be strictly non-blocking. Beneš, Slepian, and Duguid discovered that much smaller
Clos networks were rearrangeably non-blocking [17, 171, 64]. The looping algorithm
presented to find these arrangements can be traced back to König, who proved a
bipartite graph of maximum degree � can be edge-colored using � colors [103].
Several more efficient algorithms for edge-coloring are due to Cole [39, 40] and
matrix decomposition is addressed by Waksman [190]. Beneš’s classic 1965 book
[18] derives a bound for the number of crosspoints required to realize a rearrangeable
non-blocking network and introduces the Beneš network, a special form of a Clos
network, to realize this bound. Batcher’s 1968 paper introduced the bitonic sort and
the Batcher sorting network [14]. A detailed treatment of sorting networks can be
found in Knuth [102]. Multicast in Clos networks was first considered by Masson and
Jordan [120] and has since been studied by many researchers. More recent results
include the near-optimal multicast scheduling algorithm of Yang and Masson [196].

6.8 Exercises

6.1 A 27-port Clos. Sketch a rearrangeable Clos network using 3 × 3 crossbar switches
that has exactly 27 ports.

6.2 Maximum size Clos networks. Using n × n crossbar switches as a building block, how
large a Clos can you build with k stages (k odd)? Assume that your Clos need only
be rearrangeable for unicast traffic.

6.3 Performance of the looping algorithm. Implement the looping algorithm described in
Figure 6.11. Run the algorithm for a (5,5,5) Clos network: start with an empty

6.8 Exercises 143

network (no connections) and add one randomly chosen connection at a time until
all input and output ports are occupied. We know that the maximum number of
rearrangements necessary for each connection is 2r − 2 = 8, but what is the aver-
age number of rearrangements required during your experiment? Now modify the
original algorithm and try to further reduce the average number of rearrangements.
Explain your changes and report the average number of rearrangements required
using the original and modified algorithms.

6.4 Batcher-banyan networks. Batcher-banyan networks are non-blocking networks built
from a Batcher stage, in which calls are are sorted by their output port, followed
by a banyan (butterfly) stage. Between the stages, a shuffle of the ordered calls is
performed — the call leaving port {an−1, an−2, . . . , a0} of the Batcher network enters
port {an−2, . . . , a0, an−1} of the banyan network. Prove that 2-ary n-flies (banyan
stages) can always route a shuffle of a set of ordered addresses without blocking.

6.5 Probabilistically non-blocking multicast. Estimate the probability of blocking when
routing a full set of randomly distributed calls with a fanout of four on a VC2002
(Section 6.6) when using the greedy algorithm.

6.6 A seven-stage time-space switch. In the 120-chip network of Figure 6.23, we ini-
tially considered the network as a five-stage TSSST switch and ignored the inter-
nal speedup of the VC2002. Now consider the network as a seven-stage TSTSTST
switch in which both TSIs on the first and third stages are used. How does this affect
what traffic patterns the network is able to route? How does this affect how you
schedule the network?

6.7 Proof of rearrangeability. Use Hall’s Theorem (below) to prove that a Clos network
with m ≥ n is rearrangeably non-blocking.

THEOREM
6.6

(Hall’s Theorem) Let A be a set and A1, A2, . . . , Ar be any r subsets of A. There
exists a set of distinct representatives a1, . . . , ar of A1, . . . , Ar such that ai ∈ Ai and
ai �= aj ∀i �= j , iff ∀k, 1 ≤ k ≤ r, the union of any k of the sets A1, . . . , Ar has at
least k elements.

6.8 Graph coloring with Euler partitions. The idea of an Euler partition [40] can be used to
improve the performance of the looping algorithm to find a bipartite edge-coloring.
Euler partitioning begins by finding an Euler circuit through the bipartite graph —
an Euler circuit is a path through the graph that starts and ends at the same node
and visits each edge exactly once. Then, the path is followed and alternate edges are
partitioned between two new bipartite graphs with the same number of nodes as the
original. For example, for a path that visits nodes {L1, R6, L3, R4, . . .}, where R and
L denote the left and right sides of the bipartite graph, the edge (L1, R6) is placed
in the first new graph, (R6, L3) in the second, (L3, R4) in the first, and so on. Notice
that the degree of the two new graphs is exactly half of the original. These new
graphs are then partitioned again, and this continues until we are left with graphs of
degree one, each of which is assigned a unique color.

144 C H A P T E R 6 Non-Blocking Networks

(a) For a bipartite graph in which the degree of all nodes is 2i , for some integer i,
prove that an Euler circuit always exists. Describe a simple algorithm to find
such a circuit.

(b) Find the asymptotic running time for an edge-coloring algorithm based on Euler
partitions for a graph with V nodes, each with degree 2i , for some integer i.
Compare this with the running time of the looping algorithm.

C H A P T E R 7

Slicing and Dicing

In this closing chapter of the section on topology, we briefly explore some pragmat-
ics of packaging a topology. We start by looking at concentrators and distributors.
Concentrators combine the traffic of several terminal nodes onto a single network
channel.They can be used when the traffic from any one terminal is too small to make
full use of a network channel. They are also effective in combining traffic from many
bursty terminals.When the ratio of peak to average traffic is large, using concentrators
results in lower serialization latency and a more cost-effective network.

Distributors are the opposite of concentrators. They take traffic from a single
node and distribute it across several network channels on a packet-by-packet basis.
Distributors are used when the traffic from a node is too large to be handled by
a single network channel. They increase serialization latency and reduce load bal-
ance, but in some cases are still useful to connect nodes that otherwise could not be
served.

There are three ways to slice a network node across multiple chips or modules:
bit slicing, dimension slicing, and channel slicing. With bit slicing, a w-bit-wide node
is divided across k w

k
-bit-wide slices, each slice packaged in a separate module. Each

slice contains a w
k

-bit-wide portion of the router datapath. Control information must
be distributed to all slices so they act in unison. This requires both additional pins to
distribute the control information and latency to allow time for this distribution.

With dimension slicing, the network node is sliced so that entire channels, such
as those associated with a dimension, are contained on each slice. With this approach,
additional data channels must be added between the slices to carry traffic that enters
on one slice but must leave on another.

Finally, with channel slicing, a w-bit-wide node is divided into k independent
nodes, each of which has w

k
-bit-wide channels. Unlike the bit-sliced approach, how-

ever, there are no connections between these sub-nodes. They form completely

145

146 C H A P T E R 7 Slicing and Dicing

separate networks. Often, a distributor is used at each terminal to distribute traffic
over these network slices.

7.1 Concentrators and Distributors

7.1.1 Concentrators

In some applications it is preferable to combine the load from several — say, M —
network terminals into a single channel. The M terminals then appear to the network
as a single large terminal. The device that performs this combining is called a concen-
trator. As illustrated in Figure 7.1 for the case where M = 4, a concentrator accepts
M bidirectional channels on the terminal side and combines these into a single bidi-
rectional channel on the network side. In addition to reducing the number of ports,
the concentrator may also reduce the total bandwidth. The concentration factor of
a concentrator is the ratio of bandwidth on the terminal side to bandwidth on the
network side and is given by kC = MbT

bN

where bT is the terminal channel bandwidth

and bN is the bandwidth of the channel on the network side of the concentrator.
Figure 7.2 shows how a concentrator is applied to a network. An 8-node ring

could directly serve 8 terminals, as shown in Figure 7.2(a). Placing 2:1 concentrators
between the terminals and the network, as shown in Figure 7.2(b), allows the same
8 terminals to be handled by a 4-node ring.

Concentrators are often used to combine multiple terminals that have bursty
traffic characteristics. Sharing the bandwidth on the network side of the concentra-
tor smooths the load from bursty sources and makes more efficient use of channel
bandwidth.

Consider, for example, an N=512-node multicomputer in which each node
presents an average 100 Mbits/s load to the network. However, when a node takes a
cache miss, it presents an instantaneousload of 1 Gbit/s to the network for a 128-ns

T1

T2

T3

T4
bT

bT

bT

bT

bN To network
port

C
on

ce
nt

ra
to

r

Figure 7.1 A 4:1 concentrator combines traffic to and from 4 terminal nodes, T1, . . . , T4, each with band-
width bT , onto a single channel to the network with bandwidth bN .

7.1 Concentrators and Distributors 147

0 1 2 3 4 5 6 7

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3 T4 T5 T6 T7

Conc Conc Conc Conc

0 1 2 3

(a)

(b)

Figure 7.2 Application of a 2:1 concentrator: (a) An 8-ary 1-cube (ring) network connects 8 terminals. (b)
The same 8 terminals are connected by a 4-ary 1-cube (ring) network preceded by four 2:1
concentrator.

period (L = 128 bits). To prevent serialization latency from increasing the memory
access time of the network, we must provide a 1-Gbit/s channel from each proces-
sor into the network. Without concentrators, we would build an 8-ary 3-cube with
1-Gbit/s channels to handle this load. The total pin bandwidth of the routers in this
network, a good estimate of cost, is 3Tbits/s. If we size the network instead to handle
the average bandwidth with worst-case traffic, we would use 200 Mbits/s channels
and incur a 5× increase in serialization latency, from 128 ns to 640 ns.

A more efficient approach to this 512-node network is to combine groups of
8 nodes with 8:1 concentrators that feed a 64-node 4-ary 3-cube network with
1-Gbit/s channels. A 2-Gbits/s channel connects each concentrator to one node of
this network to prevent this link from becoming a bottleneck.1 The concentrated
node now has an average bandwidth of 800 Mbits/s. Although the peak load of
the concentrated node is 8 Gbits/s, this peak is rarely attained.2 In only a tiny frac-
tion of the time are there more than two nodes transmitting, and the additional
delay during this small fraction of time is more than offset by the reduced diameter
of the network and the reduced serialization latency. If we size our network with
1-Gbit/s channels, the total pin bandwidth is 384 Gbits/s (a factor of 8 less than the

1. If pinout permits, we could combine the concentrator with the node router and eliminate this channel
entirely.

2. If we assume that the access patterns of the 8 nodes are independently distributed Poisson processes, the
probability of all 8 nodes transmitting simultaneously is 10−8.

148 C H A P T E R 7 Slicing and Dicing

unconcentrated network). If, on the other hand, we size the network to handle aver-
age bandwidth, we would use 800-Mbits/s channels and have a serialization latency
of 160 ns (a factor of 4 fewer than the unconcentrated network).

Concentrators are also used to facilitate packaging of a network. For example,
if 4 terminals are packaged together on a module (for example, a chip), it is often
convenient from a packaging perspective to combine the traffic from the 4 terminals
together using a concentrator and treat the module as a single network terminal.

7.1.2 Distributors

A distributor is the opposite of a concentrator. As illustrated in Figure 7.3, a distrib-
utor takes one high bandwidth channel and distributes its packets over several lower
bandwidth channels. Although at first glance it may appear that a distributor is just
a concentrator inserted backward, the functionality is different. Each packet travers-
ing a concentrator in the reverse direction must be delivered to a particular terminal,
the one to which it is addressed. A distributor, on the other hand, can arbitrarily dis-
tribute packets to network channels. The distribution may be random, round-robin,
or load balancing. In some cases, to maintain ordering, packets of the same class3 are
always distributed to the same network channel.

Distributors are used in several applications. They may be used to interface
a higher bandwidth module (such as a faster processor or higher-rate line card) with
an existing network that has a lower bandwidth by using multiple network ports. In
other applications, distributors are used to provide fault tolerance. Distributing the
load across two half-speed channels allows the network to gracefully degrade to half
performance if one channel fails.

T

bN

bT

bN

bN

bN

To network
ports

D
is

tr
ib

ut
or

Figure 7.3 A 1:4 distributor accepts packets from a single terminal node with bandwidth bT and distributes
the packets over 4 network channels, each with bandwidth bN . The distributor may deal out
the packets evenly over the 4 network channels or may load balance them based on packet
length or queue length.

3. For example, packets from the same flow in an IP router or packets that address the same cache block in
a multiprocessor.

7.2 Slicing and Dicing 149

Distributors are also used when the bandwidth of a channel is too high to easily
handle in a router. For example, if the clock rate is 500 MHz (2 ns period), packets are
8 bytes, and the router can handle at most 1 packet every 4 cycles, then the maximum
bandwidth that can be handled by this router is 8 bytes every 8 ns, or 1 Gbyte/s. If we
wish to attach a 4-Gbyte/s port to this network, we need to use a 1:4 distributor to
break up this traffic into lower bandwidth channels that are within the capabilities
of the router. After we break up the high-bandwidth traffic, we can insert the lower
bandwidth channels into multiple ports of one network or into parallel networks.
(This is called channel slicing — see Section 7.2.3.)

Adding distributors to a network adversely affects performance in two ways.
First, distribution increases serialization latency. The serialization latency of a packet
is L

b
at the bottleneck link, where b is the lowest. Thus, distributing a packet from

a terminal link with bandwidth bT to a network channel with bandwidth bN increases
the serialization latency by

bT

bN

. Queueing delays, which are related to serialization

latency, are also increased proportionally. Second, distribution reduces load balance.
The balance on the output channels of the distributor is never perfect. Also, if the
distributor is used to feed parallel networks, at any given point in time, a link of one
network may be overloaded, while the corresponding link on the parallel network
may be idle. In general, from a performance perspective, it is always better to share
resources. Thus, distribution hurts performance, but may aid implementability or
fault tolerance.

7.2 Slicing and Dicing

Occasionally, a network node does not fit entirely on a single module (chip or board).
This is most often due to pin limitations, but area can also be a consideration (espe-
cially for memory). In such cases, we need to divide the router across several chips,
a process that is called slicing. There are three approaches to slicing the router: bit
slicing, dimension slicing, and channel slicing.

7.2.1 Bit Slicing

Bit slicing, illustrated in Figure 7.4, is the most straightforward method of dividing
a network node across multiple chips. If each channel is w bits wide and we wish to
divide the node across m chips, we simply put w

m
bits of each channel on each chip.4

Figure 7.4, for example, shows an 8-bit-wide, 2-D node being sliced into two 4-bit-
wide modules. Each of the 8 channels is divided into a pair of 4-bit channels. Several
control lines (ctl) are used to pass information between the two router bit slices.

4. Of course, this assumes that w is evenly divisible by m.

150 C H A P T E R 7 Slicing and Dicing

ei[0:7] eo[0:7]

wi[0:7]wo[0:7]

ni
[0

:7
]

no
[0

:7
]

si
[0

:7
]

so
[0

:7
]

Network
node
[4:7]Network

node
[0:7]

ei[4:7]

wo[4:7]

no
[4

:7
]

si
[4

:7
]

ni
[4

:7
]

so
[4

:7
]

eo[0:3]

wi[0:3]

ni
[0

:3
]

so
[0

:3
]

ei[0:3]

wo[0:3]

eo[4:7]

wi[4:7]

no
[0

:3
]

si
[0

:3
]

(a) (b)

ctl

Network
node
[0:3]

Figure 7.4 Bit slicing: (a) A network node for a 2-D torus network with w = 8-bit-wide channels. Each direc-
tion (n-north, s-south, w-west, e-east) has both an 8-bit input channel (for example, ni[0:7]
is the north input) and an 8-bit output channel (for example, wo[0:7]is the west output).
(b) The same node sliced into 2 packages each with w = 4-bit-wide channels

The difficulty with bit slicing comes with control distribution and fault recovery.
Half of the bits of a flit arrive on network node[4:7], and the other half arrive on
network node[0:3]; yet the entire flit must be switched as a unit. To switch the
flit as a unit, both slices must have identical and complete control information. The
first problem encountered is distribution of header information. One approach is to
distribute all of the relevant bits of the header, which specify the route, destination,
virtual channel, and so on, to both slices. With this approach, all relevant bits of
the header must cross the control channel between the two chips. The cost of this
distribution is both pin overhead and latency. The pin overhead is exactly the ratio
of header bits to total flit bits. For small flit sizes, this overhead can be quite large,
25% or more. The latency overhead is also significant. Transmitting the header from
one chip to another can easily add two clocks to the packet latency in a typical
router.

The pin bandwidth overhead can be reduced somewhat by performing all of
the control on one of the bit slices and distributing the control decisions, and not the
header information, to the other slices. This approach, however, does not reduce the
latency penalty. The chip crossing still costs several clocks.

Another issue with bit slicing is error detection and recovery. Many routers per-
form error detection by computing a function, such as a cyclic redundancy check
(CRC) across all bits of the flit. In a bit-sliced router, such a check must be parti-
tioned across the slices and intermediate results exchanged between slices.

Problems also occur if the control state that is replicated across the bit slices
diverges — for example,due to a transient fault.A robust sliced router must constantly

7.2 Slicing and Dicing 151

ei[0:7] eo[0:7]

wi[0:7]wo[0:7]
ni

[0
:7

]
no

[0
:7

]

si
[0

:7
]

so
[0

:7
]

Network
node

east/west

Network
node

north/south

Figure 7.5 Dimension slicing: a 2-D node is partitioned into 2 one-dimensional nodes, one carrying north-
south traffic and one carrying east-west traffic. An inter-slice channel handles traffic that crosses
between these directions.

check to make sure this state remains synchronized and must be able to recover in
the event that the state diverges.

Despite the complexity of control distribution and error handling, bit slicing
works well in routers that have large flits over which this overhead can be amor-
tized. Bit slicing is particularly attractive with flow control methods that allow
the control to be pipelined ahead of the data, such as flit-reservation flow control
(Section 13.4).

7.2.2 Dimension Slicing

The control and error handling complexity of bit slicing can be avoided if a router
is sliced in a manner that keeps an entire flit together in a single slice. Dimension
slicing achieves this goal by dividing the router across its ports5 while keeping each
port intact on a single slice. In effect, each network node of degree d is partitioned
into a subnetwork of m nodes of degree d

m
+p, where the p additional ports per node

are required for inter-slice communication.
For example, Figure 7.5 shows the 2-D w = 8-bit-wide router of Figure 7.4(a)

sliced into 2 one-dimensional routers: one that handles north-south traffic and one
that handles east-west traffic. If further partitioning is required, this router could

5. It would be more accurate to call this method port slicing since it partitions across ports. The first appli-
cations of this method were applied to cube and mesh networks across dimensions — hence the name
dimension slicing.

152 C H A P T E R 7 Slicing and Dicing

be partitioned to run each of the four directions on a separate one-dimensional,
unidirectional router.

The channel or channels between the 2 one-dimensional routers must be sized
with enough bandwidth to handle all traffic that is switching from north-south to
east-west or vice versa. The amount of traffic needing to switch directions depends
greatly on the routing algorithm (Chapter 8). Routing algorithms, like dimension-
ordered routing, that favor straight-line travel over direction switching require much
less inter-router bandwidth than algorithms that permit arbitrary switching of
directions.

7.2.3 Channel Slicing

Both of the previous approaches to node partitioning require communication
between the partitions. Bit slicing requires control information to be exchanged and
dimension slicing requires a datapath between the partitions. Channel slicing elimi-
nates all communication between the partitions by splitting the entire network into
two completely separate networks. The only communication between the parallel
networks is at the terminals where distributors are used.

Channel slicing is illustrated in Figure 7.6. The w = 8-bit-wide network of
Figure 7.4(a) is replaced by two completely separate 4-bit-wide networks. There are
no connections between the two 4-bit-wide subnetworks except at the terminal links
where distributors are used to divide traffic across the two networks for transmission
and recombine the traffic at the destination.

ei[4:7]

wo[4:7]

no
[4

:7
]

si
[4

:7
]

ni
[4

:7
]

so
[4

:7
]

Network
node
[0:3]

Network
node
[4:7]

eo[0:3]

wi[0:3]

ni
[0

:3
]

so
[0

:3
]

ei[0:3]

wo[0:3]

eo[4:7]

wi[4:7]

no
[0

:3
]

si
[0

:3
]

Figure 7.6 Channel slicing: a w = 8-bit-wide 2-D network node is partitioned into two completely separate
w = 4-bit-wide nodes. There are no connections between the two 4-bit-wide nodes except on
the terminal links (not shown).

7.3 Slicing Multistage Networks 153

7.3 Slicing Multistage Networks

Slicing of multistage networks can be used to trade off serialization latency Ts (which
depends on channel width) against head latency Th (which depends on diameter),
allowing us to optimize the latency of the network by balancing these two compo-
nents. The technique is similar to that discussed in Section 5.2.2 for minimizing the
latency of a torus by selecting the dimension of the network to balance Ts and Th.
Channel slicing a multistage network also reduces total cost by reducing the number
of routing components and the total number of pins.

An N = kn node k-ary n-fly with w-bit-wide channels can be channel sliced
into x xk-ary n′-fly networks with w/x-bit-wide channels. For example, Figure 7.7
shows that cost and diameter can be reduced by replacing a binary 2-fly network
that has 2-bit wide channels with two 4-ary 1-fly networks that have serial (1-bit
wide) channels. The two networks have equal throughput and require switches with
equal pin count (eight signals). However, the channel-sliced 4-ary fly has a smaller
diameter and requires half the number of switch components as the binary fly.

Channel slicing a multistage k-ary n-fly network reduces the diameter of the
network from n + 1 to n′ + 1 where

n′ = logxk N = logxk kn = n

1 + logk x
.

As a result of this slicing, Ts increases by a factor of x and Th decreases by a factor of
1

1+logk x
. Using this expression for n′ and lumping our wire delay into tr gives

Ts = xL

b
,

Th = tr

(
n

1 + logk x

)
.

For example, consider an N = 4,096 node binary 12-fly with w = 32 bit-wide
channels, b=1 Gbit/s, tr=20 ns, and L=256-bit-long messages. Table 7.1 shows how
diameter n′, channel width w, and the two components of latency Ts and Th vary
as the slicing factor x is increased from 1 (no slicing, 32-bit-wide channels) to 32
(network sliced into serial channels) in powers of two. The latency data is plotted
in Figure 7.8. With no slicing, latency T of the binary cube is dominated by Th —
240 ns to propagate through n′ = 12 stages at 20 ns each. When we slice the network
into two networks of 16-bit channels (x = 2), we can now realize radix-4 switches
with the same pin count and hence can use two n′ = 6-stage networks. This halves
Th to 120 ns while doubling Ts to 16 ns — a good trade. Slicing into 4 networks with
8-bit channels (x = 4) gives the minimum latency of T = 112 ns with Th reduced
further to 80 ns (n′ = 4 stages). Beyond this point, the incremental increase in Ts ,
which doubles each time we double x, is larger than the incremental decrease in Th,
which decreases as the inverse log of x, and overall latency increases. The extreme
point of x = 32 parallel bit-serial n′ = 2 stage networks with radix k = 64 switches

154 C H A P T E R 7 Slicing and Dicing

2

2

2

2

2

2

2

2

2

2

2

2

(a)

(b)

Figure 7.7 Channel slicing a multistage network allows switches of a higher radix to be realized with the
same pin count. This reduces network diameter and cost at the expense of higher serialization
latency. (a) A binary 2-fly with w=2 channels has a diameter of 3 and uses switches that have 8
signals. (b) Two parallel 4-ary 1-flies with serial (w=1) channels have the same total bandwidth
and the same switch signal count, but a diameter of 2 and half the number of switches as the
binary 2-fly.

Table 7.1 Channel slicing to minimize latency in an N = 4,096 node butterfly network. With no slicing,
a binary 12-fly with 32-bit-wide channels is limited by header latency. At the other extreme,
slicing into 32 parallel 64-ary 2-flies with serial channels gives a network that is dominated by
serialization latency. Minimum latency is achieved when the two components of latency are
comparable, with 4 parallel 8-ary 4-flies with 8-bit-wide channels.

x k n′ w Ts Th T

1 2 12 32 8 ns 240 ns 248 ns
2 4 6 16 16 ns 120 ns 136 ns
4 8 4 8 32 ns 80 ns 112 ns
8 16 3 4 64 ns 60 ns 124 ns
16 32 3 2 128 ns 60 ns 188 ns
32 64 2 1 256 ns 40 ns 296 ns

7.4 Case Study: Bit Slicing in the Tiny Tera 155

1 10

Slicing factor

0

50

100

150

200

250

300

L
at

en
cy

 (
n

s)

Th
Ts
T

Figure 7.8 Plot of total latency T and its two components: serialization latency Ts and head latency Th as
a function of slicing factor x.

gives the largest latency of all configurations, dominated by Ts = 256. Although this
configuration has the highest latency, it has the lowest pin cost, since it has the lowest
diameter n′.

We have described the use of channel slicing in the context of butterfly networks,
but it can also be applied to other multistage networks, including Clos and Batcher
networks. We explore the slicing of Clos networks in Exercise 7.5. Also, while we
have described multistage network slicing using channel slicing, we can also slice
these networks using bit slicing. We explore this alternative in Exercise 7.6.

7.4 Case Study: Bit Slicing in the Tiny Tera

The Tiny Tera is a fast packet switch originally designed at Stanford University and
later commercialized by Abrizio [125].6 As indicated by its name, it provides 1Tbit/s
of aggregate bandwidth.7 The high-level architecture of the Tiny Tera switch is illus-
trated in Figure 7.9.As shown, theTinyTera is organized around a 32×32, 8-bit-wide
crossbar. Port cards provide both input and output buffering between the crossbar
and the physical interface to the outside network. Each port card communicates with
a central scheduler unit responsible for computing configurations for the crossbar.

6. Our discussion of the details of the Tiny Tera is based on the academic design from Stanford.
7. The bandwidth of a packet switch is often advertised as the sum of the input and output bandwidth

(aggregate bandwidth). It would be more accurate to say that this switch has 500 Gbits/s of throughput.

156 C H A P T E R 7 Slicing and Dicing

Input queues

Output queues

8x2 Gbits/s=16 Gbits/s

Port card 31

Port card 1

Port card 0

Physical interface
(1Tbit/s aggregate)

Scheduler

32 x 32 8-bit wide crossbar
2 Gbits/s

Figure 7.9 The Tiny Tera architecture, which uses 32 port cards, each with 32 Gbits/s of bandwidth to feed
a 32×32 8-bit-wide crossbar, achieves 1 Tbit/s of aggregate bandwidth. A centralized scheduler
communicates with the port cards to compute crossbar schedules, which are relayed back to
the port cards.

The configurations are relayed back to the port cards and appended to the packets
as they are passed to the crossbar.

The challenges of building the crossbar become apparent by considering the
number of pins it requires. First, the signals between the port cards and the crossbar
are differential and operate at 2 Gbits/s. Each port of the switch sends and receives
16 Gbits/s of data, so this requires a total of 16 signals, or 32 pins per port. Since
there are 32 ports to the crossbar, it requires a total of 1,024 high-speed pins. While
packages with this number of pins are available, we have not yet accounted for the
power and ground pins or the amount of power that each high-speed link dissipates.
So, based on its demanding requirements, the designers chose to bit slice the Tiny
Tera crossbar.

Figure 7.10 shows the bit slicing approach selected by the switch designers. The
crossbar is sliced into eight 32 × 32 1-bit-wide crossbars. Slicing reduces the pin
count to a more manageable 128 high-speed pins per chip and power dissipation
is also spread across these 8 chips. Although not shown here, the slicing is carried
through the port cards themselves where the input and output queues are bit sliced
and spread across several SRAMs.

Not only does the sliced design alleviate the many packaging issues in the Tiny
Tera, but it also improves flexibility. For example, additional crossbar slices can be

7.6 Exercises 157

port0_in[0]

port1_in[0]

port31_in[0]

2 Gbits/s signal (2 pins)

32 x 32 1-bit-wide
crossbar chip

(128 data pins)

port0_in[7]

port1_in[7]

port31_in[7]

32 x 32 1-bit-wide
crossbar chip

port0_out[7]

port1_out[7]

port31_out[7]

port0_out[0]

port1_out[0]

port31_out[0]

Figure 7.10 The bit sliced implementation of the Tiny Tera crossbar. The 8-bit-wide interface is cut into 8
slices, requiring only 128 pins per crossbar chip.

added to provide a fractional speedup to the switch or to improve reliability. If a
single chip crossbar had been employed, any increase in speedup or redundancy
would have required another entire crossbar.

7.5 Bibliographic Notes

Slicing, concentration, and distribution have a long history. Concentration has long
been used in the telephone network to account for the fact that most phones are on
the hook most of the time. The J-Machine router [138] (Section 5.5) was
dimension sliced with all three slices on a single chip. The Cray T3D [95] used a
similar organization with each slice on a separate ECL gate array. A bit sliced cross-
bar was used for the network of the MARS accelerator [3] as well as for the Tiny
Tera (Section 7.4) [125]. A bit sliced 3-D torus with six 4-bit slices was used in the
Avici TSR [49].

7.6 Exercises

7.1 Concentration in a torus.You need to connect 4,096 nodes that have a peak bandwidth
of 10 Gbits/s and an average bandwidth of 500 Mbits/s. Limiting yourself to torus
networks with the bisection bandwidth fixed at 2.56Tbits/s, compare alternative
networks in terms of concentrators, dimension, and radix. Assume each concentrator

158 C H A P T E R 7 Slicing and Dicing

and router node is packaged in a separate chip and each chip can have a total pin
bandwidth of up to 100 Gbits/s. Which topology offers the lowest pin bandwidth?
Which offers the lowest pin bandwidth without incurring additional serialization
latency?

7.2 Distributing traffic from a line card. Using distributors, suggest how you might con-
nect 64 40-Gbits/s line cards using a torus network composed of channels that do
not exceed 10 Gbits/s. The underlying network should support worst-case traffic
in which all nodes send across the bisection. Does this arrangement change the bi-
section bandwidth compared to a network in which the channels could operate at
40 Gbits/s?

7.3 Slicing a butterfly. Consider the partitioning of a radix-4 butterfly node with
w = 2-bit-wide channels into two modules using bit slicing, dimension (port) slicing,
and channel slicing. Flits are 64-bits, 16-bits of which are header information. Sketch
each partitioning, labeling all channel widths and the number of signals required per
chip, and qualitatively compare the latency in each case.

7.4 Sub-signal slicing. It it possible to choose a channel slicing factor such that the
resulting channels are less than one signal wide. To implement these channels, several
could be multiplexed onto a single physical signal. For example, if the channels are
sliced to one-half a signal, two channels would share one physical signal. Can this
level of slicing ever reduce zero-load latency? Explain why or why not.

7.5 Channel slicing a Clos network. Find the channel slicing factor x that gives the min-
imum latency for an N = 256 rearrangeable (m = n) Clos network built from
switches with 32 signals. Each node requires 8 Gbits/s of bandwidth, L = 128 bits,
tr=20 ns, and f =1 Gbit/s.

7.6 Bit slicing a 4,096 node butterfly. Consider a network that has the parameters of the
network of the first row of Table 7.1. Find the bit slicing of this network that gives
minimum zero-load latency. Assume that a 32-bit header is repeated in each bit
slice. (No control signals are required between slices.) Also, the full header must be
received before any of the router latency tr is experienced.

7.7 Header distribution in the Tiny Tera. In the bit-sliced Tiny Tera switch, crossbar con-
figurations are computed by the centralized scheduler and then redistributed to the
input ports. This header information is then duplicated and attached to each out-
going packet slice. However, for a port A, the packet leaving A does not contain its
destination port, but rather the address of the port writing to A (that is, configura-
tions are not described by where to write a packet, but rather from where to receive
one). Why does this result in a more efficient encoding? Hint:The Tiny Tera supports
multicast traffic.

C H A P T E R 8

Routing Basics

Routing involves selecting a path from a source node to a destination node in a
particular topology. Once we have a topology, or road map for our network, routing
is the next logical step: picking a route on the map that gets us to our destination.
Whereas a topology determines the ideal performance of a network, routing is one
of the two key factors that determine how much of this potential is realized. We
discuss the other key factor, flow control, in Chapters 12 and 13.

The routing algorithm used for a network is critical for several reasons. A good
routing algorithm balances load across the network channels even in the presence
of non-uniform traffic patterns such as permutation traffic. The more balanced the
channel load, the closer the throughput of the network is to ideal. Surprisingly, many
routers that have been built and are in use today do a poor job of balancing load.
Rather, the traffic between each pair of nodes follows a single, predetermined path.
As you would expect, non-uniform traffic patterns can induce large load misbalances
with this type of routing algorithm, giving suboptimal throughput. However, these
routing choices can be at least partially explained because most of these routers have
been designed to optimize a second important aspect of any routing algorithm: short
path lengths.

A well-designed routing algorithm also keeps path lengths as short as possible,
reducing the number of hops and the overall latency of a message. What might not
be immediately obvious is that, often, routing minimally (always choosing a shortest
path) is at odds with balancing load and maximizing throughput. In fact, for oblivious
routing algorithms, to improve load balance over all traffic patterns, we are forced to
increase the average path length of all messages. The converse is also true. This
tradeoff exists for oblivious algorithms because they do not factor the current traffic
pattern into the routing algorithm. We explore these algorithms in more detail in
Chapter 9.

159

160 C H A P T E R 8 Routing Basics

On the other hand, a clever designer might suggest an approach to offer the “best
of both worlds.” Instead of picking an algorithm independent of the traffic pattern,
as in oblivious algorithms, why not adapt to the current traffic conditions? Then we
could send traffic minimally for an “easy” traffic pattern such as uniform traffic, but
then could resort to non-minimal routing for “hard” non-uniform traffic patterns.
This simple idea forms the basis of adaptive routing algorithms, which we explore
in Chapter 10. The potential advantage of these algorithms is realizing both load
balance and locality (short path lengths). However, we will see that practical design
issues make achieving this goal challenging.

Another important aspect of a routing algorithm is its ability to work in the
presence of faults in the network. If a particular algorithm is hardwired into the
routers and a link or node fails, the entire system fails. However, if an algorithm can
be reprogrammed or adapt to the failure, the system can continue to operate with only
a slight loss in performance. Obviously, this is critical for systems with high-reliability
demands. Finally, routing interacts with the flow control of the network and careful
design of both is often required to avoid deadlocks and/or livelocks (Chapter 14).

Our discussion of routing begins below with a short example and a discussion of
routing taxonomy and an introduction to deterministic routing algorithms. We con-
tinue in Chapter 9 with a discussion of deterministic and oblivious routing, and then
adaptive routing in Chapter 10. We conclude with a discussion of routing mechanics
in Chapter 11.

8.1 A Routing Example

Consider the problem of routing on the 8-node ring network shown in Figure 8.1.
If we rule out backtracking , or revisiting a node in the network, the routing decision
here is binary. For each packet being sent from s to d, we can either send the packet
clockwise or counterclockwise around the ring starting at s and ending at d. Even
with this simple topology and only a binary decision to make, there are many possible
routing algorithms. Here are a few:

Greedy: Always send the packet in the shortest direction around the ring. For
example, always route from 0 to 3 in the clockwise direction and from 0 to 5 in
the counterclockwise direction. If the distance is the same in both directions, pick a
direction randomly.

Uniform random: Randomly pick a direction for each packet, with equal probability
of picking either direction.

1 2 3 4 5 6 70

Figure 8.1 An 8-node ring network.

8.1 A Routing Example 161

Weighted random: Randomly pick a direction for each packet, but weight the short
direction with probability 1 − �/8 and the long direction with �/8, where � is the
(minimum) distance between the source and destination.

Adaptive: Send the packet in the direction for which the local channel has the lowest
load. We may approximate load by either measuring the length of the queue serving
this channel or recording how many packets it has transmitted over the last T slots.
Note that this decision is applied once at the source because we have disallowed
backtracking.

Which algorithm gives the best worst-case throughput? The vast majority of
people pick the greedy algorithm.1 Perhaps this says something about human nature.
However, it turns out that the greedy algorithm does not give the best worst-case
throughput on this topology.

To see how greedy routing can get us into trouble, consider a tornado traffic
pattern in which each node i sends a packet to i + 3 mod 8, as shown in Figure 8.2.
The performance of the 4 routing algorithms described above on tornado traffic on
an 8-node ring is summarized in Table 8.1. With the greedy routing algorithm, all

1 2 3 4 5 6 70

Figure 8.2 Tornado traffic on an 8-node ring network. With greedy routing, all traffic moves in a clockwise
direction around the ring, leaving the counterclockwise channels idle.

Table 8.1 The throughput of several example routing algorithms
(as a fraction of capacity) for an 8-node ring on the
tornado traffic pattern.

Algorithm Throughput on Tornado

Greedy 0.33
Random 0.40
Weighted random 0.53
Adaptive 0.53

1. This problem of routing on a ring was given as a Ph.D. qualifying exam question in 2002, and over 90%
of the examinees initially picked the greedy algorithm.

162 C H A P T E R 8 Routing Basics

of the traffic routes in the clockwise direction around the ring, leaving all of the
counterclockwise channels idle and loading the clockwise channels with 3 units of
traffic — that is, γ = 3 — , which gives every terminal a throughput of � = b/3. With
random routing, the counterclockwise links become the bottleneck with a load of
γ = 5/2, since half of the traffic traverses 5 links in the counterclockwise direction.
This gives a throughput of 2b/5. Weighting the random decision sends 5/8 of the
traffic over 3 links and 3/8 of the traffic over 5 links for a load of γ = 15/8 in both
directions giving a throughput of 8b/15. Adaptive routing, with some assumptions
on how the adaptivity is implemented, will match this perfect load balance in the
steady state, giving the same throughput as weighted random routing.

This example has shown how the choice of routing function can significantly
affect load balance. However, worst-case throughput is only one of several possible
metrics a designer may wish to optimize. And as one would expect, different metrics
can lead to different conclusions about which of these four algorithms would be the
most appropriate. We explore some of these in Exercise 8.1.

8.2 Taxonomy of Routing Algorithms

We classify routing algorithms in terms of how they select between the set of possible
paths Rxy from source node x to destination node y.

Deterministic routing algorithms always choose the same path between x and y,
even if there are multiple possible paths (|Rxy | > 1). These algorithms ignore path
diversity of the underlying topology and hence do a very poor job of balancing load.
Despite this, they are quite common in practice because they are easy to implement
and easy to make deadlock-free.

Oblivious algorithms, which include deterministic algorithms as a subset, choose a
route without considering any information about the network’s present state. For
example, a random algorithm that uniformly distributes traffic across all of the paths
in Rxy is an oblivious algorithm.

Adaptive algorithms, adapt to the state of the network, using this state information
in making routing decisions. This information may include the status of a node or
link (up or down), the length of queues for network resources, and historical channel
load information.

The tornado example from the previous section includes examples of all three of
these types of routing.The greedy algorithm on the ring is an example of deterministic
routing. All packets between s and d travel in the same direction around the ring. The
uniform and weighted random routing schemes are examples of oblivious routing.
They choose between directions around the ring without taking into account the
state of the network. Finally, the adaptive algorithm makes its decision based on
channel load of the initial hop.

In these definitions, we described each type of routing algorithm over the set of
routes in Rxy — the minimal, or shortest path, routes from source to destination.

8.3 The Routing Relation 163

Therefore these algorithms are referred to as minimal. As we have already seen, it’s
often important to include non-minimal routes and in this case, routing functions
choose paths from the set of all minimal and non-minimal routes R′

xy . These algo-
rithms are refered to as non-minimal. Again, from our simple example on the ring,
the greedy algorithm is minimal, while randomized and adaptive algorithms are non-
minimal.

8.3 The Routing Relation

It is useful to represent the routing algorithm as a routing relation R and a selection
function ρ. R returns a set of paths (or channels for an incremental routing algorithm),
and ρ chooses between these paths (or channels) to select the route to be taken. With
this division of the algorithm, issues relating to channel dependencies and deadlock
deal with the relation R while issues relating to adaptivity deal with the selection
function ρ. We address deadlock in detail as part of Chapter 14.

Depending on whether our algorithm is incremental, and whether it is node-
based or channel-based, we define R in three different ways:

R : N × N �→ P(P) (8.1)

R : N × N �→ P(C) (8.2)

R : C × N �→ P(C) (8.3)

where P(X) denotes the power set, or the set of all subsets, of the set X. This notation
allows us to reflect the fact that a routing relation may return multiple paths or
channels, one of which is chosen by the selection function.

When the output of the routing relation is an entire path, as in Relation 8.1 —
the first of our three routing relations, the routing algorithm is referred to as all-
at-once. This name reflects exactly how the routing algorithm is used. When a packet
is injected into the network at the source node x destined to node y, the routing
relation is evaluated: U = R(x, y). Since U may be a set of routes, one is selected and
assigned to the packet. Of course, U does not have to include all possible routes R′

xy

or even all minimal routes Rxy , and in the case of a deterministic routing algorithm,
it returns only one (|U | = 1). Once the route is chosen, it is stored along with the
packet. As we will see in Chapter 11, all-at-once routing minimizes the time spent
evaluating the routing relation for each packet, but this advantage comes with the
overhead of carrying the routes inside the packets.

An alternate approach is incremental routing, where the relation returns a set of
possible channels. Instead of returning an entire path at once, the routing relation is
evaluated once per hop of the packet. The output of the relation is used to select
the next channel the packet follows. In Relation 8.2, the second form of the routing
relation, for example, the inputs to the relation are the packet’s current node w and
its destination y. Evaluating the relation gives us a set of channels D = R(w, y),
where each element of D is an outgoing channel from w or D ⊆ COw. The selec-
tion function is then used to choose the next channel used by the packet from D.
This incremental process is repeated until the packet reaches its final destination.

164 C H A P T E R 8 Routing Basics

Relation 8.3, the third relation, is also incremental and is used in a similar way. The
only difference is that the inputs to the function are the previous channel used by
the packet and its destination.

Compared to all-at-once routing, there is no overhead associated with carrying
the route along with a packet, but the routing relation may have to be evaluated many
times, which potentially increases the latency of a packet. Another important point is
that incremental algorithms cannot implement every routing strategy possible with
all-at-once routing. This is because we are using little or no history from a packet to
compute its next hop. For example, with an all-at-once algorithm, we could design
a routing algorithm for a 2-D mesh where packets are only routed vertically or
horizontal through a particular node. (No packets turn from a horizontal to vertical
dimension at this node.) However, this would be impossible with the second routing
relation (Relation 8.2) because there is no way to distinguish a packet that has arrived
from a vertical channel from one that arrived from a horizontal channel. Of course,
the third relation could alleviate this problem, but it still does not cover many all-
at-once algorithms. (See Exercise 8.2.)

The third form of the routing relation (Relation 8.3) is also incremental,but bases
the routing decision on a packet’s current channel c rather than its current node, w.
In this case, the routing relation takes the current channel c and the destination node
y and returns a set of channels D = R(c, y). Basing this decision on the channel c

over which a packet arrived at node w rather than on w itself provides just enough
history to decouple dependencies between channels, which is important for avoiding
deadlock (Chapter 14).

Whichever form of R we use, unless the routing is deterministic, it returns a set
of possible paths or channels. The selection function ρ is used to choose the element
of this set that will be used. If ρ uses no information about the network state in
making this choice, the routing will be oblivious. If, on the other hand, ρ bases the
choice on output channel availability, the routing will be adaptive.

8.4 Deterministic Routing

The simplest routing algorithms are deterministic — they send every packet from
source x to destination y over exactly the same route. The routing relation for a
deterministic routing algorithm is a function — R : N ×N �→ P , for example. As we
saw in Section 8.1, this lack of path diversity can create large load imbalances in the
network. In fact, there is a traffic pattern that causes large load imbalance for every
deterministic routing algorithm. So, for a designer interested in the worst case, these
algorithms would not be a first choice. However, deterministic algorithms still have
their merits.

Many early networks adopted deterministic routing because it was so simple
and inexpensive to implement. What may be surprising is that deterministic routing
continues to appear in networks today. This is especially true for irregular topolo-
gies, where designing good randomized or adaptive algorithms is more difficult. For

8.4 Deterministic Routing 165

almost2 any topology, it only makes sense to choose a minimal deterministic rout-
ing function. So, at least the path lengths will be short. For some topologies, simple
deterministic approaches actually load balance as well as any other minimal rout-
ing algorithm, including adaptive (Exercise 9.2). Finally, for networks in which the
ordering of messages between particular sort-destination pairs is important, deter-
ministic routing is often a simple way to provide this ordering. This is important, for
example, for certain cache coherence protocols.

In this section, we describe two of the most popular deterministic routing algo-
rithms: destination-tag routing on the butterfly and dimension-order routing for tori
and meshes.

8.4.1 Destination-Tag Routing in Butterfly Networks

In a k-ary n-fly network (see Section 4.1), the destination address interpreted as an
n-digit radix-k number is used directly to route a packet. Each digit of the address is
used in turn to select the output port at each step of the route, as if the address itself
was the routing header determined from a source-routing table. This is the routing
that we employed in the simple router of Chapter 2.

Figure 8.3 shows two examples of destination-tag routing. A route from source 3
to destination 5 is shown as a thick line in the binary 3-fly of Figure 8.3(a). Working
from left to right, each stage of the network uses one bit of the binary destination

0

1

2

3

4

5

6

7

00

01

02

03

10

11

12

13

20

21

22

23

0

1

2

3

4

5

6

7

(a) Routing from 3 to 5 in a 2-ary 3-fly

00

01

02

03

10

11

12

13

0

3

4

7

8

11

12

15

0

3

4

7

8

11

12

15

(b) Routing from 7 to 11 in a 4-ary 2-fly

Figure 8.3 Two examples of destination-tag routing: (a) Routing from source 3 to destination 5 in a 2-ary
3-fly. The destination address in binary, 5 = 1012 = down, up, down, selects the route. (b)
Routing from 7 to 11 in a 4-ary 2-fly. The destination address interpreted as quaternary digits,
11 = 10112 = 234, selects the route.

2. One exception is the strange group of topologies in which minimal routing is not optimal under uniform
traffic, as in Exercise 3.3.

166 C H A P T E R 8 Routing Basics

address 101 to select an output. The most significant 1 selects the lower output at
the first stage of switching, the 0 selects the upper output in the second stage, and
the least significant 1 selects the lower output in the final stage.

If we look back over our description of how we routed from 3 to 5, we never
actually used the source node’s address. In fact, starting from any source and using
the same 101 pattern of switch ports routes to destination 5 regardless of the source
node. It is also not difficult to convince yourself that the same fact holds for all of
the possible destinations. Therefore, destination-tag routing in k-ary n-fly networks
depends on the destination address only, not the starting position.

Figure 8.3(b) shows an example route in a higher-radix butterfly. The thick
line in this figure shows a route from node 7 to node 11 in a quaternary (radix-4)
2-fly network. As with the binary network, working from left to right the digits of the
destination address determine the output port at each stage of the network. With the
quaternary network, however, the destination address is interpreted as a quaternary
number 11 = 10112 = 234. The output ports of each router are numbered from the
top starting at zero. The destination address 234 selects port 2 (third from the top) of
the first router and port 3 (bottom) of the second router. As in the previous example,
this selection of ports selects destination 11 regardless of the starting point.

8.4.2 Dimension-Order Routing in Cube Networks

Dimension-order or e-cube routing is the analog of destination-tag routing for direct
k-ary n-cube networks (tori and meshes). Like destination-tag routing, the digits of
the destination address, interpreted as a radix-k number, are used one at a time to
direct the routing. Rather than selecting an output port at a given stage, however,
each digit is used to select a node in a given dimension. Unlike butterfly networks,
cube networks may require several hops to resolve each address digit before moving
on to the next digit.

As an example of dimension-order routing, consider a packet traveling from
node s = 03 to node d = 22 in the 6-ary 2-cube shown in Figure 8.4. Because each
dimension of a torus can be traversed in either the clockwise or counterclockwise
direction, the first step in e-cube routing is to compute the shortest or preferred
direction in each dimension. To find the preferred directions, we first compute a
relative address �i for each digit i of our source and destination addresses:

mi = di − si mod k

�i = mi −
{

0 if mi ≤ k/2,
k otherwise

.

This can then be used to compute our preferred directions:

DT,i =
{

0 if |�i | = k/2
sign(�i) otherwise

(8.4)

8.4 Deterministic Routing 167

00 01 02

10 11 12

20 21 22

03

13

23

30 31 32 33

04

14

24

05

15

25

34 35

40 41 42 43

50 51 52 53

44 45

54 55

Figure 8.4 An example of dimension-order routing in a 6-ary 2-cube. A packet is routed from node s = 03
to node d = 22 by first routing in the x dimension and then in the y dimension.

where the T indicates the function is for tori. Before discussing the zero case for
preferred direction, we return to our example.

Following the above formulas, the relative address is

m = (2, 2) − (0, 3) mod 6 = (2, 5)

� = (2, 5) − (0, 6) = (2, −1).

Thus, our preferred directions are

D = (+1, −1).

Once the preferred direction vector is computed, the packet is routed one dimen-
sion at a time. Within each dimension, the packet travels in the preferred direction
until it reaches the same coordinate as the destination in that dimension. In the
example in Figure 8.4, the packet starts at node s = 03 and moves in the negative
direction (decreasing addresses) in the x dimension. After one hop, at node 02, it
has reached the proper coordinate in the x dimension and hence starts routing in
the positive direction in the y dimension. The packet takes two more hops to reach
destination node 22.

Now consider the same routing problem with the destination moved slightly to
d = 32. Following the same procedure, we find that D = (0, −1). Routing in the

168 C H A P T E R 8 Routing Basics

x dimension remains the same, but for the y dimension the preferred direction is
Dy = 0. How do we route the packet in this case? By moving the destination node
to 32, routing in either the positive or negative direction in the y dimension requires
three hops. So, to balance load, it is important that traffic be evenly distributed in
the two directions. A simple approach for doing this is to abandon a deterministic
algorithm and randomly split the traffic equally between the positive and negative
y directions.3 It can also be easily verified by intuition or from Equation 8.4 that a
preferred direction of zero can occur only when k is even.

We have focused on the torus up to this point, but dimension-order routing
works similarly in the mesh. The lack of wraparound channels simplifies the choice
of the preferred directions, which in this case are also the only valid directions:

DM,i =
{

+1 if di > si

−1 otherwise.

Despite its generally poor load balancing properties, dimension-order routing has
been widely used in mesh and torus networks for two reasons. First, it is very simple
to implement. In particular, it allows the router to be dimension-sliced or partitioned
across dimensions. Second, it simplifies the problem of deadlock avoidance by pre-
venting any cycles of channel dependency between dimensions. However, deadlock
can still occur within a dimension. (See Chapter 14.)

8.5 Case Study: Dimension-Order Routing in the Cray T3D

Figure 8.5 shows a Cray T3D [95, 161], which connects up to 2,048 DEC Alpha
processing elements in a 3-D torus. The T3D is a shared-memory multiprocessor.
Each processing element includes a local memory but can access the local memory
of all other processing elements by forwarding load and store operations over the
torus network. Each pair of processing elements shares a single router via a network
interface.

The T3D network uses dimension-order routing and is implemented using a
dimension-sliced (Section 7.2.2) router, as shown in Figure 8.6. The router is re-
alized on three identical ECL gate arrays that route in the x, y, and z dimensions,
respectively. The overall design closely follows the organization of the J-Machine
router (Section 5.5). This partitioning is possible because of the dimension-order
routing. We consider a different partitioning in Exercise 8.6.

When a packet arrives from the network interface, the x router examines the
packet to determine if it must route in the +x dimension, the −x dimension, or,
if it is already at the destination x coordinate, proceed to the y router. Suppose the

3. In Exercise 8.9, we explore the cost of not balancing this load and deterministic ways to achieve this
balance.

8.5 Case Study: Dimension-Order Routing in the Cray T3D 169

Figure 8.5 A Cray T3D connects up to 2,048 DEC Alpha processors in a 3-D torus with shared memory.

packet is forwarded in the +x direction (along the xpOut channel). At each subse-
quent x router, the router checks the packet to see if it is at the proper x coordinate.
The packet is forwarded to the y router when it reaches the proper coordinate.
Otherwise, it continues to move in the +x direction.

Each T3D router channel has a bandwidth of 300 Mbytes/s and is carried over
a wire mat between modules. The channels each have 16 data bits and 8 control bits
and operate at 150 MHz, the same frequency as the original Alpha 21064 processors.
The wire mat is a harness of wires that are manually connected to the board edge
connectors to implement the torus topology. It is called a mat because it resembles
an irregularly woven fabric. Each data and control signal is carried as a differential
ECL signal over a twisted pair of wires in the wire mat.

170 C H A P T E R 8 Routing Basics

X Router

Y Router

Z Router

xm Out

xm In

ym Out

ym In

zm Out

zm In

xpOut

xp In

ypOut

yp In

zpOut

zp In

To
network
interface

From
network
interface

Figure 8.6 A T3D router is partitioned onto three identical ECL gate array chips, one for each of the x, y,
and z dimensions.

The Cray T3D includes a set of I/O nodes that connect to the network in only
the x and z dimensions. This makes the torus network a bit irregular. This seems
plausible since messages always start in x and end in z, but what happens when the
node sending the message differs from the address of the I/O node only in y? To
make the dimension-order routing still work, these nodes are given two addresses.
We examine this issue in Exercise 8.8.

8.6 Bibliographic Notes

The problem of routing tornado traffic and the weighted random solution is described
by Singh et al. [168].The different forms of the routing relation and their importance
in analyzing deadlock have been described by Dally [57] and Duato [60, 61, 62].
Destination-tag routing in butterfly networks was first described by Lawrie [110] and
e-cube routing in torus networks is due to Sullivan and Bashkow [179]. For degree
δ networks, Borodin and Hopcroft [28] and Kaklamanis et al. [91] show that some
traffic pattern can induce a channel load of at least (

√
N/δ) for any deterministic

routing algorithm.

8.7 Exercises 171

8.7 Exercises

8.1 Tradeoffs between routing algorithms. Reconsider the routing algorithms and network
from Section 8.1. Which algorithm would you choose to optimize for the following:

(a) Minimum message latency.
(b) Best throughput under uniform traffic.
(c) Highest average throughput over many permutation traffic patterns.

Limit your choice to one algorithm for each of the different criteria and defend your
choices.

8.2 Limitations of incremental routing. Describe a routing algorithm that could be specified
using the the path-based relation from Relation 8.1, but could not be expressed with
either of the incremental forms from Relations 8.2 and 8.3.

8.3 Header bits for incremental and all-at-once routing. Destination tag routing can be
implemented as either an incremental or all-at-once algorithm. Compute the num-
ber of bits that need to be stored along with the packet to implement each approach.
Does one approach require fewer bits? Does this relationship hold for minimal rout-
ing in a general topology? How is this related to the path diversity of the topology?

8.4 Backtracking in the ring. Suppose we allow backtracking in the routing example
of Section 8.1. Is it possible to develop an algorithm that gives better worst-case
throughput than the weighted random algorithm? If so, give such an algorithm; oth-
erwise, explain why no such algorithm exists.

8.5 Routing in a butterfly with extra stages. Describe a deterministic extension for
destination-tag routing to handle a k-ary n-fly with one or more extra stages. Suggest
a simple way to introduce randomization into this algorithm to improve load balance.

8.6 Direction-order routing in the Cray T3D. Suppose you rearrange the labels on the Cray
T3D router’s channels in Figure 8.6 so that the first router handles +x and +y, the
second router handles +z and −x, and the third router handles −y and −z. Describe
a routing algorithm that can work with this partitioning. Remember that once a
packet reaches each of the three routers, it can never return to the previous routers.

8.7 Advantages of direction-order routing. Consider the routing algorithm you derived
for Exercise 8.6. What advantages does this algorithm have over dimension-order
routing?

8.8 Routing to and from I/O nodes in the T3D. I/O nodes are added to a T3D network
only in the x and z dimensions by adding an additional x and/or z coordinate to a
3-cube. For example, suppose you have a 64-node 4-ary 3-cube with nodes addressed
from (0,0,0) to (3,3,3). An I/O node might be added with address (4,0,0) or (0,0,4).
Explain how you can assign each I/O node a pair of addresses so that it is always
possible to route from any node in the interior of the machine to the I/O node and
from the I/O node to any interior node using dimension-order routing.

172 C H A P T E R 8 Routing Basics

8.9 Balancing “halfway around” traffic in tori. For dimension-order routing, we discussed
the load balance issues that arise when a node is exactly halfway around a ring of
a torus. If we always chose the positive direction in this halfway case instead of
load-balancing, how would this affect the throughput of uniform traffic on a k-ary
n-cube with k even? What’s the worst-case throughput in this case? Express your
results in terms of fraction of capacity. Suggest a way to improve load balance for the
halfway case while maintaining a deterministic algorithm. Recalculate the uniform
and worst-case throughputs.

8.10 Minimal routing in CCCs. Design a near minimal routing algorithm for a general
CCC topology described in Exercise 5.8. Opt for simplicity rather than finding ex-
act minimal routes in all cases, but be sure that no path generated by the algorithm
is greater than the diameter Hmax = 2n + �n/2� − 2, as shown in [128]. Comment
on the load balance of your routing algorithm under uniform traffic.

C H A P T E R 9

Oblivious Routing

Oblivious routing, in which we route packets without regard for the state of the net-
work, is simple to implement and simple to analyze. While adding information about
network state can potentially improve routing performance, it also adds considerable
complexity and if not done carefully can lead to performance degradation.

The main tradeoff with oblivious routing is between locality and load balance. By
sending each packet first to a random node and from there directly to its destination,
Valiant’s randomized routing algorithm (Section 9.1) exactly balances the load of
any traffic pattern. However, this load balance comes at the expense of destroying
any locality in the traffic pattern — even nearest neighbor traffic gives no better
performance than worst-case traffic. Minimal oblivious routing (Section 9.2), on the
other hand, preserves locality and generally improves the average case throughput
of a network over all traffic patterns. However, on torus networks, any minimal
algorithm gives at most half the worst-case throughput of Valiant’s algorithm. We
also introduce load-balanced oblivious algorithms, which provide a middle point
between the minimal algorithm’s and Valiant’s approaches.

It is straightforward to analyze oblivious routing algorithms because they give
linear channel load functions. This linearity makes it easy to compute the channel
loads γ from the traffic pattern � and, hence, to compute the ideal throughput of
the routing algorithm on any traffic pattern. We shall also see in Section 9.4 that
this linearity makes it relatively easy to compute the worst-case traffic pattern for an
oblivious routing algorithm.

173

174 C H A P T E R 9 Oblivious Routing

9.1 Valiant’s Randomized Routing Algorithm

Load can be balanced for any traffic pattern on almost any topology1 using Valiant’s
algorithm, in which a packet sent from s to d is first sent from s to a randomly
chosen intermediate terminal node x and then from x to d.2 An arbitrary routing
algorithm can be used for each of the two phases, but in general a routing algorithm
that balances load under uniform traffic works best. So, for tori and mesh networks,
dimension-order routing is an appropriate choice, and for butterflies, destination-tag
routing works well. Then, regardless of the original traffic pattern, each phase of
Valiant’s algorithm appears to be uniform random traffic. Thus, Valiant’s algorithm
reduces the load of any traffic pattern to twice the load of random traffic or half the
capacity of a network.

9.1.1 Valiant’s Algorithm on Torus Topologies

Valiant’s algorithm gives good worst-case performance on k-ary n-cube networks at
the expense of locality. Each of the two random phases sends each packet an average
distance of k/4 in each of n dimensions for a total hop count over both phases of
nk/2. Thus, each link, on average, has a load of γ = k/4 and throughput of 4b/k.

This throughput is almost optimal, as demonstrated by the tornado traffic pat-
tern. Under tornado traffic, each packet must travel H = n(k/2−1) hops (for k even).
The channel load for this pattern under any routing algorithm must be at least

γ ≥ HminN

C
= n(k/2 − 1)N

2nN
= k

4
− 1

2
.

As k increases, this ideal channel load approaches the channel load induced by
Valiant’s algorithm and therefore Valiant’s algorithm is asymptotically optimal.

In contrast, any minimal algorithm will give a channel load of at least γ = k/2−1
on the clockwise channels and 0 on the counterclockwise channels under tornado
traffic. Because of this poor load balance, the throughput is at most b

(k/2−1)
≈ 2b/k.

Thus, no minimal routing algorithm can achieve a worst-case throughput of more
than about half of Valiant’s algorithm.

This good performance on worst-case traffic patterns, like tornado, comes at
the expense of locality, which is destroyed by randomization, and overhead, which is
added by routing in two passes. Nearest neighbor traffic, for example, which normally
requires one hop per packet, is reduced to two passes of random traffic, increasing hop
count from H = 1 to nk/2 and decreasing throughput. Applying Valiant’s algorithm

1. Valiant’s algorithm can be applied to any connected topology — a topology with at least one path between
each terminal pair. For example, butterflies are connected if the output terminals are connected to the
corresponding input terminals.

2. This is actually a simplification of Valiant’s original work, which required specialization per topology and
allowed a more rigorous analysis than presented here.

9.1 Valiant’s Randomized Routing Algorithm 175

00 01 02

10 11 12

20 21 22

03

13

23

30 31 32 33

04

14

24

05

15

25

34 35

40 41 42 43

50 51 52 53

44 45

54 55

Figure 9.1 An example of randomized routing (Valiant’s algorithm) on a 6-ary 2-cube. A packet is routed
from s = 00 to d = 12 in two phases. In the first phase, the packet is routed to randomly-
selected intermediate node x = 31, as shown with the dark bold lines. The second phase
delivers the packet from x = 31 to d = 12, as shown with the gray bold lines. Both phases use
dimension-order (e-cube) routing.

to random traffic halves throughput and doubles latency by replacing one phase of
random traffic with two phases.

Figure 9.1 shows an example of using Valiant’s algorithm to deliver a packet
from node s = 00 to node d = 12 in a 2-D radix-6 torus (6-ary 2-cube). The packet
is routed via randomly-selected intermediate node x = 31. During the first phase,
the packet uses dimension-order routing to travel from s = 00 to x = 31, taking
4 hops as shown by the dark bold lines. Then, during the second phase, the packet
routes from x = 31 to d = 12 taking an additional 3 hops. Randomized routing
takes 7 hops to reach the destination, which could have been reached in 3 hops by
a minimal routing algorithm.

9.1.2 Valiant’s Algorithm on Indirect Networks

Applying Valiant’s algorithm to a k-ary n-fly eliminates the bottlenecks caused
by certain traffic patterns, as described in Section 4.4. In fact, the two-pass
routing of Valiant’s algorithm is equivalent to logically duplicating the butterfly

176 C H A P T E R 9 Oblivious Routing

network — resulting in a Beneš network in which the first n stages share the hard-
ware with the last n stages. In this case Valiant’s algorithm is a method for routing the
resulting Beneš or Clos (if k �= 2) network by randomly selecting the middle stage
switch to be used by each packet. This random routing of Clos networks results in
well-balanced average load, but can result in instantaneous imbalance due to varia-
tion in the number of packets picking each intermediate node. (See Exercise 9.5.)
The flow control mechanism must have deep enough buffers to average out these
transient variations in load. Alternatively, adaptive routing can avoid this statistical
variation in load.

If oblivious routing is to be used on an indirect network, it is advantageous to
fold the network so the first and second passes of Valiant’s algorithm passes over
the nodes of the butterfly network in opposite directions. This folded arrangement
eliminates the need to connect corresponding source and destination nodes together
to forward packets between passes. More importantly, it enables efficient minimal
oblivious routing by allowing a packet to terminate the first phase of routing as soon
as it reaches a switch from which it can reach the ultimate destination node.

9.2 Minimal Oblivious Routing

Minimal oblivious routing attempts to achieve the load balance of randomized rout-
ing without giving up the locality by restricting routes to be minimal (shortest path).
While a non-minimal oblivious routing algorithm may choose any path in R′

xy to
route a packet from x to y, minimal oblivious routing restricts its choice to paths in
Rxy . For hierarchical topologies, minimal oblivious routing works extremely well —
it gives good load balance while preserving locality. We explore an example of this
for a fat-tree network in Section 9.2.1. In other networks, however, non-minimal
routing is required to balance load, as we have seen with tornado traffic in tori.

9.2.1 Minimal Oblivious Routing on a Folded Clos (Fat Tree)

Figure 9.2 shows an example of minimal oblivious routing on a 16-node folded Beneš
network with concentration (Section 6.4). This type of network is often called a fat
tree. The figure shows 16 terminal nodes along the left edge. Each terminal connects
to a 2:1 concentrator (Section 7.1.1) labeled with an address template that matches
its two terminal nodes. Each concentrator then connects to a terminal of an 8-port
radix-2 folded Clos network (Beneš network). Each node of the Beneš network is
labeled with the address template that matches all nodes reachable from the left
terminals of that node. Template bits set to X indicate don’t care and match with
both 0 and 1. For example, the node 00XX matches 0000 through 0011, nodes 0
through 3.

To route a packet from node s to node d, the packet is routed to a randomly
selected, nearest common ancestor x of s and d, and then from x to d. For example,

9.2 Minimal Oblivious Routing 177

000X
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

001X

010X

011X

100X

101X

110X

111X

00XX

01XX

0XXX
A

0XXX
B

10XX

11XX

1XXX
A

1XXX
B

XXXX
A

XXXX
B

XXXX
C

XXXX
D

Figure 9.2 Minimal oblivious routing on a folded Clos network (fat tree). A packet from source node s = 1
to destination node d = 6 is routed first to a randomly-selected, nearest common ancestor of
s and d, switch 0XXX-A or B, and then from this common ancestor switch to d = 6. Because
the network is folded, all channels are bidirectional.

to route from s = 1 to d = 6, switch nodes 0XXX-A and 0XXX-B are the two
nearest common ancestors of s and d. The packet may be routed either over the dark
bold path via 0XXX-A or over the gray bold path via 0XXX-B. In either case, the
route is a minimal route — taking six hops from s = 1 to d = 6.

This route can also be constructed incrementally. Initially, the packet proceeds to
the right, making random routing decisions between the upper right and lower right
ports of each switch node until it reaches a switch node with an address template
that matches d. Revisiting the example, the nodes labeled 0XXX are the first switch
nodes that match d = 6 = 0110. Once a match is made, the packet reverses direction
and routes to the left using partial destination-tag routing to select the unique path

178 C H A P T E R 9 Oblivious Routing

to d. The destination-tag routing uses only those bits of the destination address
corresponding to Xs in the switch template, since the other address bits are already
resolved at the common ancestor. In this case, the second phase of the route uses the
low three bits of d, 110 giving a route of down, down, up from 0XXX-A or B to
terminal d = 6.

By randomly choosing a common ancestor node, and hence routing randomly
during the first phase of the route, traffic from a given source/destination pair is
exactly balanced over the common ancestors and over the paths to these ancestors.
There is nothing to be gained by routing outside of this minimal subnetwork,bounded
on the right by the common ancestor nodes. Every route from s to d must start with
a path from s to a common ancestor x1 and must end with a path from a common
ancestor x2 (possibly the same as x1) to d. Any routing outside of this subnetwork
simply consumes bandwidth on other switches and channels without improving the
load balance within the subnetwork.

The Thinking Machines CM-5 (Section 10.6) uses an algorithm nearly identical
to the one described here, except that the first phase of routing is adaptive rather
than oblivious.

9.2.2 Minimal Oblivious Routing on a Torus

A minimal version ofValiant’s algorithm can be implemented on k-ary n-cube topolo-
gies by restricting the intermediate node, x, to lie in the minimal quadrant between s

and d. The minimal quadrant is the smallest n-dimensional subnetwork that contains
s and d as corner nodes.

Figure 9.3 gives an example of minimal oblivious routing from s = 00 to d = 21
(the same s and d as in Figure 9.1 on a 6-ary 2-cube). The first step is to compute
the relative address � = (2, 1) as in Section 8.4.2. The magnitude of � gives the
size of the minimal quadrant (in this example, 2 hops in the x dimension and 1 in
the y dimension). The preferred direction vector gives the position of the minimal
quadrant with respect to node s. In this case, D = (+1, +1), so the minimal quadrant
is above and to the right of s = 00.

Once the minimal quadrant has been identified, an intermediate node x is se-
lected from within the quadrant. The packet is then routed from s to x and then
from x to d using e-cube routing. In this case, there are six possibilities for x and
each is illustrated by the shaded nodes in Figure 9.3(b). The portion of each route
before the intermediate node is illustrated with bold solid lines and the portion after
the intermediate node is illustrated with gray solid lines. Note that the source and
destination themselves may be selected as intermediate nodes.

While there are six possible intermediate nodes, there are only three possible
routes in this case — corresponding to the three points at which the hop in the y

direction can be taken. The load is not distributed evenly across these routes. The
route that takes the y hop from 02 appears four times while the route that takes
the y hop from 00 appears only once. This imbalance can be partially corrected by
randomizing the order in which dimensions are traversed. The dashed gray lines in
Figure 9.3(b) show the paths taken when the routing is performed first in the y

9.2 Minimal Oblivious Routing 179

(a) Minimal quadrant

(b) Possible routes

00

01

02

10

11

12

20

21

22

03 13 23

30

31

32

33

04 14 24

05 15 25

34

35

40

41

42

43

50

51

52

53

44

45

54

55

00 10 20

01 11 21

00 10 20

01 11 21

00 10 20

01 11 21

00 10 20

01 11 21

00 10 20

01 11 21

00 10 20

01 11 21

Figure 9.3 Minimal oblivious routing on a 6-ary 2-cube from s = 00 to d = 21. (a) The route is restricted
to remain within the minimum quadrant — shown shaded. (b) With x-first routing there are
six possible routes, corresponding to the six possible intermediate nodes. Bold solid lines show
the route to the intermediate node and gray solid lines show the route from the intermediate
node to the destination. Dashed gray lines show the route taken if y-first routing is used.

180 C H A P T E R 9 Oblivious Routing

direction for each of the two phases when it differs from x-first routing. Randomly
selecting between x-first and y-first routing balances the load on the two end y

channels of the minimal quadrant (each are used in 5 of 12 routes), but the middle
channel is used only in 2 of the 12 routes.

Minimal oblivious routing on a torus does a great job of preserving locality. Near-
est neighbor traffic remains local with this routing algorithm, and random traffic is
not burdened with a halving of throughput. Unfortunately this locality is achieved at
the expense of worst-case performance. As explained above, patterns such as tornado
traffic will result in severe load imbalance.

9.3 Load-Balanced Oblivious Routing

A compromise can be struck between completely randomized routing (Valiant’s algo-
rithm) and minimal oblivious routing on a torus by randomly choosing the quadrant
to route in. By weighting the choice of quadrants by distance (as in Section 8.1)
we can exactly balance load for tornado traffic. In each dimension, i, we select the
short direction D′

i = Di with probability k−�i

k
and the long direction D′

i = −Di with
probability �i

k
. Once we have chosen direction vector D′, we route in the quadrant it

selects as in minimal oblivious routing. We randomly select an intermediate node in
the quadrant, route to that intermediate node, and then route from the intermediate
node to the destination. For each of the routing phases, the dimension order of the
routing is randomly selected.3 Routing during both phases always proceeds in the
direction specified by D′.

This load-balanced oblivious routing method is a compromise between locality
and worst-case throughput. On local traffic, it outperforms Valiant’s algorithm, be-
cause it routes in the short direction more frequently, but it does not perform as well
as minimal routing because it routes some packets through the non-minimal quad-
rants. Although load-balanced oblivious routing performs well for tornado traffic, its
worst-case throughput is much lower than Valiant’s algorithm.

9.4 Analysis of Oblivious Routing

Because an oblivious routing algorithm chooses a path independent of network state,
the load γc(sd) induced on channel c by one unit of load being sent from s to d (that
is, λsd = 1) is independent of the load being sent between any other node pairs. This
property allows us to solve for the load on a channel for a given algorithm and traffic
pattern by summing the contributions of each element of the traffic matrix:

γc =
∑
i,j

λij γc(ij). (9.1)

3. It suffices to randomly choose one of n rotations of the dimensions rather than to choose over all of the
n! permutations of dimensions.

9.4 Analysis of Oblivious Routing 181

For example, in Figure 9.3, when routing from s1 = 00 to d1 = 21 using x-first
routing in both phases, channel (10, 20) is used in two of the six possible routes,
so we have γ(10,20)(00,21) = 1/3. When routing from s2 = 10 to d2 = 31 channel
(10, 20) is used by four of the six possible routes so γ(10,20)(10,31) = 2/3.

Now, consider a traffic matrix with only two non-zero entries λ(00,21) =
λ(10,31) = 1. We can calculate γ(01,02) by summing the components due to the two
non-zero elements of the traffic matrix:

γ(10,20) = γ(10,20)(00,21) + γ(10,20)(10,31) = 1/3 + 2/3 = 1.

With oblivious routing, channel loads are linear. We compute the total load on a
channel due to a traffic pattern as the superposition of the loads due to the individual
elements of the traffic pattern. This linearity of channel load enables us to solve for
the worst-case traffic pattern by finding the traffic matrix that gives the highest
maximum channel load.

To compute the throughput achieved by a routing algorithm on a given traffic
pattern, we normalize the traffic matrix so the rows and columns sum to unity4 and
then compute a scale factor � so that a traffic matrix of �′ = �� exactly saturates
the critical channel. Our original traffic matrix � induces a maximal channel load
γmax(�), which may be larger than the channel bandwidth b. Thus, the throughput
and our scale factor is given by � = b

γmax(�)
. By linearity, this scale factor gives a

maximum channel load equal to the channel capacity: γmax(�′) = �γmax(�) = b.
To simplify our search for the worst-case traffic pattern, we first observe that

all worst-case traffic patterns are permutations. To see this, note that all normalized
traffic matrices can be expressed as the superposition of permutations:

� =
∑

i

wi	i, s.t.
∑

i

wi = 1. (9.2)

One of the permutations in this sum, say 	max, generates the largest maximum
channel load compared to the other permutations in the sum: ∀i, γmax(max) ≥
γmax(i). By linearity, we then know

γmax(�) =
∑

i

wiγmax(i) ≤ γmax(max). (9.3)

Hence, a permutation can always be a worst-case traffic pattern.
We can find the permutation that gives the highest channel load for a given

channel, c, by constructing a bipartite graph, as shown in Figure 9.4. On the left
side of the graph there is a vertex for every source node and on the right side of
the graph is a vertex for every destination node. There is an edge from every source

4. With a normalized traffic matrix, each source sends one unit of traffic and each destination receives one
unit of traffic. Such a matrix with unit row and column sums is often called a doubly stochastic matrix.

182 C H A P T E R 9 Oblivious Routing

γc (0,0)

γc (1,1)

γc (N-1, N-1)

γc (0,1)γc (1,0)

0

1

N -1

0

1

N -1

Source
nodes

Destination
nodes

Figure 9.4 To find the permutation that gives the maximum load on a channel c, a bipartite graph is
constructed with a left vertex for every source node and a right vertex for every destination
node. The edge from each source node s to each destination node d is labeled with γc(sd). A
matching of this graph describes a permutation 	 and the weight of the matching is the load
on c due to the permutation γc(). Thus, the maximum-weight matching of the graph gives
the permutation that gives the maximum load on c.

node s to every destination node d labeled with γc(sd), the load induced on c by
unit traffic from s to d. Any permutation 	 corresponds to a matching of this graph
where there is an edge from s to d iff πsd = 1. By linearity, the total load on c for this
permutation, γc(), is the weight of the matching, the sum of the edge weights over
the matching. Thus, by computing a maximum-weight matching on this graph, we
can find the permutation that generates the maximum load on c. We then repeat this
procedure for each channel in the network to find the permutation that generates
the maximum load over all of the channels.

Calculating the worst-case traffic pattern for a routing algorithm as described
above often gives worst-case throughput that is substantially lower than the worst of
the standard traffic patterns described in Section 3.2. Table 9.1 shows the throughput

Table 9.1 Throughput (as a fraction of capacity) of four routing algorithms on an 8-ary 2-cube on six
traffic patterns. The worst-case pattern is different for each routing algorithm.

Load e-cube Valiant Minimal Load-Balanced

Nearest neighbor 4.00 0.50 4.00 2.33
Uniform 1.00 0.50 1.00 0.76
Bit complement 0.50 0.50 0.40 0.42
Transpose 0.25 0.50 0.54 0.57
Tornado 0.33 0.50 0.33 0.53
Worst-case 0.25 0.50 0.21 0.31

9.5 Oblivious Routing in the Avici Terabit Switch Router 183

of four routing algorithms: e-cube, Valiant, minimal oblivious (Section 9.2.2), and
load-balanced oblivious (Section 9.3) on five standard traffic patterns and on the
worst-case traffic pattern for that particular algorithm. The worst-case traffic pat-
terns are different for each algorithm and reveal substantially lower throughputs
than the standard patterns for both the minimal oblivious and load-balanced routing
algorithms.

Testing routing algorithms by simulating them on several suspect traffic patterns,
as was the practice before the method described above was developed, can give
very misleading results for worst-case throughput. Unfortunately, because channel
load functions for adaptive routing algorithms are not linear, this method cannot be
applied to adaptive routing. At present, simulation on specific traffic patterns is the
only method we have for evaluating adaptive routing algorithms.

9.5 Case Study: Oblivious Routing in the Avici Terabit
Switch Router (TSR)

The Avici Terabit Switch Router (TSR) (Figure 9.5) is a scalable Internet router that
uses a 3-D torus interconnection network as a switch fabric to connect input line
cards to output line cards [34, 49, 50]. Each cabinet contains 40 5-Gbits/s line cards
connected as a 2 × 4 × 5 folded torus network. Up to 8 cabinets can be combined
to give machines with a total size of up to 320 nodes (8 × 8 × 5) for an aggregate
bandwidth of 1.6Tbits/s. Each line card provides 5 Gbits/s (full duplex — 5 Gbits/s
in and 5 Gbits/s out) of interface bandwidth typically to an OC-48 or OC-192
(2 cards) packet over SONET (POS) links.

A line card with a single OC-48 POS interface is shown in Figure 9.6. The 6 chips
(with heatsinks) along the bottom of the card comprise a bit-sliced torus router. The
router is 24 bits wide, 4-bits on each of the 6 chips. Each network link is 28 bits wide
(24 data plus 3 control and 1 clock) and operates at 400 MHz for a data rate of 9.6
Gbits/s (1.2 Gbytes/s).5 Each router connects to 12 such links, one input and one
output in each of 6 directions.

The Avici TSR is a notable router in many respects. In Section 15.7 we shall ex-
amine how it uses a virtual network for each output to provide service guarantees —
in particular to guarantee that traffic destined for one output does not interfere with
traffic destined for a different output. In this section, we will restrict our attention to
the oblivious routing algorithm employed by the TSR to balance load on the network
links.

The TSR network must provide non-stop routing even on irregular networks
that occur in partially populated routers or when one or more line cards fail or are
removed. To facilitate routing in such irregular, partial torus topologies, the TSR
employs source routing (Section 11.1.1). The sending node or source determines
the exact route in the form of a string of routing directions (such as +x, −y, +x, +z,

5. Later TSR systems have higher bandwidth line cards and higher bandwidth fabric links.

184 C H A P T E R 9 Oblivious Routing

Figure 9.5 The Avici TSR is a scalable Internet router that uses a 3-D torus interconnection network as its
switching fabric. Each cabinet holds 40 line cards, each of which provides up to 5 Gbits/s of
interface capacity, arranged as a 2 × 4 × 5 sub-torus. Additional cabinets can be added to scale
the machine to an 8 × 8 × 5 torus.

−y, −x). Each character of this string specifies one hop of the route from source to
destination. For example, +x specifies that the first hop is in the positive x direction.
A software process finds routes between each source s and each destination d through
the possibly irregular topology and stores these routes in a table. Each packet queries
the table in its source node s to find a route to its destination d. The route is appended
to the packet header and used at each step along the way to select the next direction.

Because there is no backpressure over the input SONET links, the TSR must
be able to route all traffic patterns without overloading any of its internal fabric

9.5 Oblivious Routing in the Avici Terabit Switch Router 185

Figure 9.6 A single OC-48 (2.488 Gbits/s) SONET line card is divided into two parts. The upper sub-card is
interface-specific. The lower main card is interface-independent. The six chips with heat sinks
along the bottom of the board comprise a 24-bit-wide torus router bit sliced four bits to each
chip.

channels — even in the presence of adversarial traffic. To satisfy this requirement,
the TSR balances the load on network channels under worst-case traffic by using
oblivious routing. Each packet that traverses the network from a source line card s

to a destination line card d randomly selects from one of 24 routes to d stored in a
routing table. Packets from the same flow are kept in order by making the random
selection of routes based on a flow identifier so that all packets in the flow choose the
same route.

To balance load on the 3 links out of s in the minimal quadrant for d, the 24 routes
in the table for d include 8 routes for each of the 3 initial directions. For example, if
s = (0, 0, 0) and d = (3, 2, 4), the minimal directions in a fully populated 8 × 8 × 5
system are +x, +y, and −z. The routing table will include 8 routes starting with each
of these 3 initial directions.

The details of the routing process are shown in Figure 9.7. A packet enters line
card s and is input to a route lookup and classification process. This process selects a
destination line card d for the packet and computes a flow identifier f for the packet.
All packets belonging to the same flow will have an identical flow identifier.6 The
flow ID is hashed to give a route selector r = hash(f) ∈ [0, 23]. The route table is
then indexed by 24d + r to select one of the 24 routes from s to d. The selected
route is appended to the packet header and used for routing.

6. In IP, a flow consists of packets with the same source address and port and destination address and port.

186 C H A P T E R 9 Oblivious Routing

dest flow ID

route lookup and
pkt classification

packet

hash

route sel

Route table

24
 r

ou
te

s
to

de
st+

selected route

selected route

+x,-y,+z,-x,...

Figure 9.7 The TSR routing table on each source node s stores 24 routes for each destination d, 8 routes
for each of 3 initial directions. To maintain packet order within a flow, the route to use for a
particular packet is selected by hashing the flow identifier for that packet.

The key to load balancing with a table-driven oblivious routing algorithm is to
construct a good table. If only a small number NR of routes are stored for each
(s, d) pair, these routes must be selected with care. One approach is to incrementally
construct the routing table by generating one route at a time. Each time a route is
generated it adds one unit of load to each channel that it uses. Each route is generated
by selecting from among the minimal paths the path with the lowest load — summed
across the channels in the path. We explore such route generation in Exercises 9.3
and 9.4.

9.6 Bibliographic Notes

Randomized routing was first described by Valiant [187]. The minimal oblivious
routing algorithm described in Section 9.2.2 is due to Nesson and Johnsson [135].
The load-balanced oblivious routing algorithm of Section 9.3 was introduced by
Singh et al. [168].Towles and Dally describe the worst-case analysis method for
oblivious routing [185].

9.7 Exercises 187

9.7 Exercises

9.1 Load-balanced routing under uniform traffic. Find a general expression for the channel
load induced by the load-balanced routing algorithm (Section 9.3) on a k-ary n-cube
under uniform traffic.

9.2 Worst-case optimally of dimension-order routing. Construct an argument as to why
dimension-order routing has optimal worst-case throughput (optimal within a con-
stant, additive term) for a minimal routing algorithm in 2-D tori. Does this argument
hold for n > 2?

9.3 Route generation in the Avici TSR. Write a program to build a source routing table, like
that of the Avici TSR, for an arbitrary topology network. Use the method discussed
at the end of Section 9.5 to build the table. Assume you have NR = 8 entries for
each (s, d) pair. Test your table by generating a number of random permutations and
determining the largest link load for these permutations. Now vary NR and determine
how load imbalance varies with the number of routes per (s, d) pair.

9.4 Iterative route generation in the Avici TSR. Perform the same analysis as in Exercise 9.3,
but this time write an iterative route generation program.After determining an initial
set of routes, use the channel loads from this initial set to generate a second set of
routes. Repeat this process for NI iterations. How does the performance of this
iterative algorithm compare to that of the single pass algorithm?

9.5 Instantaneous misbalance in the fat tree. Suppose we use Valiant’s algorithm on a
1,024-node folded 4-ary 5-fly (fat tree) in a batch mode. For each batch, each source
terminal chooses a random intermediate destination terminal. Let f (x) be the number
of source terminals that have chosen intermediate terminal x. What is the expected
value of max(f (x)) over all intermediate terminals x?

.
This Page Intentionally Left Blank

C H A P T E R 10

Adaptive Routing

An adaptive routing algorithm uses information about the network state, typically
queue occupancies, to select among alternative paths to deliver a packet. Because
routing depends on network state, an adaptive routing algorithm is intimately cou-
pled with the flow-control mechanism. This is in contrast to deterministic and obliv-
ious routing in which the routing algorithm and the flow control mechanisms are
largely orthogonal.

A good adaptive routing algorithm theoretically should outperform an oblivi-
ous routing algorithm, since it is using network state information not available to
the oblivious algorithm. In practice, however, many adaptive routing algorithms give
poor worst-case performance. This is largely due to the local nature of most practical
adaptive routing algorithms. Because they use only local network state information
(e.g., local queue lengths) in making routing decisions, they route in a manner that
balances local load but often results in global imbalance.

The local nature of practical adaptive routing also leads to delay in responding
to a change in traffic patterns. The queues between a decision point and the point
of congestion must become completely filled before the decision point can sense
the congestion. A flow control method that gives stiff backpressure (e.g., by using
shallow queues) is preferred with adaptive routing because it leads to more rapid
adaptation to remote congestion.

10.1 Adaptive Routing Basics

Many of the issues involved with adaptive routing can be illustrated by considering
the case of a simple 8-node ring, as shown in Figure 10.1. Node 5 is sending a con-
tinuous stream of packets to node 6, using all available bandwidth on channel (5,6).

189

190 C H A P T E R 10 Adaptive Routing

1 2 3 4 5 6 70

Figure 10.1 Adaptive routing on an 8-node ring. Node 3 wishes to send a packet to node 7 and can choose
between the solid path via nodes 4 through 6 or the dotted path via nodes 2 through 0. Node
3 has no way to know of the simultaneous traffic between nodes 5 and 6.

At the same time, node 3 wishes to send a packet to node 7. It can choose either the
clockwise route, denoted by a solid arrow, or the counterclockwise route, denoted by
a dotted arrow.

To you, the reader (with global, instantaneous knowledge of the network state),
it is obvious that the router at node 3 should choose the counterclockwise route
to avoid the contention on channel (5,6). However, a typical router at node 3
has no knowledge of the contention on channel (5,6). That contention affects the
queue on node 5, and in the absence of other traffic does not affect the queue on
node 3.

How does the adaptive routing algorithm sense the state of the network? This
is the key question in understanding adaptive routing. We can divide this question
into subquestions involving space and time: Does the algorithm use local or global
information? Does the algorithm use current or historical information? Of course, the
answers to these questions are not binary. Rather, there is a continuum between local
and global information and the currency of this information.

Almost all adaptive routers use flit-based or packet-based flow control (see Chap-
ter 12) and use the state of the flit or packet queues at the present node to estimate
the congestion on local links. They have no direct information on the state of links
elsewhere in the network. Thus, in Figure 10.1, if node 3 is sending an isolated packet
to node 7, its queues will not reflect the congestion on channel (5,6), and hence node
3 can do no better than choose randomly which route to take.

Routers are able to indirectly sense congestion elsewhere in the network through
backpressure. When the queues on one node fill up, a backpressure signal stops trans-
mission from the preceding node and hence causes the queues on that node to fill
as well. Backpressure propagates backward through the network in the direction
opposite traffic flow. However, backpressure propagates only in the presence of traf-
fic routing into the congestion. In the absence of traffic, there is no propagation of
backpressure and hence no information on remote congestion.

For example, in the case of Figure 10.1, the input queues on nodes 4 and 5
must be completely filled before node 3 senses the congestion on channel (5,6).
The situation is illustrated in Figure 10.2, where each dot over a channel denotes
some number of packets in the input buffer on the destination node of that
channel.

10.1 Adaptive Routing Basics 191

1 2 3 4 5 6 70

Figure 10.2 Node 3 senses the congestion on channel (5,6) only after the input buffers on nodes 4 and 5
are completely filled with packets, denoted by the dots in the figure.

This example demonstrates why adaptive routing performs better with stiff flow
control.1 Suppose each input queue can hold only F = 4 packets. Then node 3
will sense the congestion and begin routing in the other direction after sending just
8 packets. The network will be load-balanced relatively quickly, and only the first
8 packets will incur the higher latency of taking the congested path. If the input
queues have a capacity of F = 64 packets, on the other hand, then node 3 would
take 16 times as long to detect the congestion, and 16 times more packets would
suffer the higher latency of the congested path.

With a mild load imbalance, it takes even longer for congestion information to
propagate back to the source. If a channel is overloaded only by 10%, for example,
10 packets have to be sent over the congested path to back up one packet in the
input buffer before the channel. In such a case, it can take an extremely long time,
and many sub-optimally routed packets, for the source node to sense the congestion.

The example of Figure 10.1 also illustrates the problem of information currency
for adaptive routing. Suppose that just at the moment node 3 senses congestion on
channel (5,6) the traffic from 5 to 6 stops and is replaced by a flow of packets from 1
to 0. Node 3 would then mistakenly start routing packets into the newly congested
channel (1,0). The problem is that node 3 is acting on historical information about
the state of the network. It senses the state of channel (5,6) HF packets ago where
H = 2 is the hop count to the source node of the congested channel and F is the
capacity of the input buffer.

In topologies more complex than a ring, the adaptive routing decisions are made
at every step, not just at the source. However, the local nature of congestion informa-
tion still leads to sub-optimal routing, as illustrated in Figure 10.3. The figure shows
how a good local decision can lead to a bad global route. In this case, a packet is
traveling from s = 00 to d = 23. The path taken is highlighted in gray. The initial
hop is made north to node 01. At node 01, the link to the north is slightly congested
(congestion is denoted by the boldness of the line), so the packet next moves east to
11. After this move to the east, all paths north are highly congested, so the packet

1. In Chapter 12, we shall see how virtual channels can be used to provide high performance with shal-
low queue depths — each queue holding just enough flits to cover the round-trip latency of the credit
loop.

192 C H A P T E R 10 Adaptive Routing

10 20 3000

13 23 3303

12 22 3202

11 21 3101

Figure 10.3 A locally optimum decision leads to a globally sub-optimal route. A packet is routed from
s = 00 to d = 23 along the route highlighted in gray. To avoid the slight congestion on (01,02)
the packet is routed from 01 to 11, after which it is forced to traverse two highly congested
links.

is forced to traverse two highly congested links. The globally optimal route would
have been to go north at 01, traversing only a single slightly congested link.

10.2 Minimal Adaptive Routing

A minimal adaptive routing algorithm chooses among the minimum (shortest) routes
from source s to destination d, using information about the network state in mak-
ing the routing decision at each hop. At each hop, a routing function generates
a productive output vector that identifies which output channels of the current
node will move the current packet closer to its destination. Network state, typi-
cally queue length, is then used to select one of the productive output channels for
the next hop.

At node 01 in Figure 10.3, for example, two of the four output channels (+x, −x,

+y, −y) will move the packet closer to the destination, so the productive output vec-
tor is (1, 0, 1, 0). Of the two productive outputs, +x has lower congestion than +y,
so the packet is routed over +x to node 11.

Minimal adaptive routing is good at locally balancing channel load, but poor at
global load balance. The route from 00 to 12 in Figure 10.4 illustrates how local
congestion is avoided by adaptive routing. At node 01, both +x and +y are produc-
tive directions. The router chooses channel (01,11) to avoid the congested channel
(01,02), locally balancing the load out of node 01. Figure 10.3 illustrates how locally
adaptive routing is not able to avoid global congestion. As described above, the local

10.3 Fully Adaptive Routing 193

10 20 3000

13 23 3303

12 22 3202

11 21 3101

Figure 10.4 The route from 00 to 12 illustrates how adaptive routing avoids local congestion. The congestion
on channel (01,02) is avoided by adaptively routing to 11 from node 01. The route from 20 to
23 illustrates how congestion cannot be avoided when minimal routing results in only a single
productive output channel. The only minimal route includes the congested channel (21,22).

decision to traverse channel (01,11) rather than slightly congested channel (01,02)
leads to much greater congestion downstream.

As with any minimal routing algorithm, minimal adaptive routing algorithms are
unable to avoid congestion for source-destination pairs with no minimal path diver-
sity (|Rsd | = 1). This situation is illustrated in the route from 20 to 23 in Figure 10.4.
There is only a single productive direction at each hop,+y, so the packet cannot avoid
congested channel (21,22). We shall see below how non-minimal adaptive routing
avoids such bottlenecks.

While all of our examples in this section have involved torus networks, minimal
adaptive routing can be applied to any topology. For example, the folded Clos of
Figure 9.2 can be routed by adaptively routing to the right until a common ancestor
of s and d is encountered, and then deterministically routing to the left to reach
d. In this case, all outputs are productive during the right-going phase of the route,
but only a single output is productive during the left-going phase. This is, in fact,
exactly the routing method used by the data network of the Thinking Machines
CM-5 (Section 10.6).

10.3 Fully Adaptive Routing

With non-minimal, or fully adaptive, routing, we no longer restrict packets to travel
along a shortest path to the destination. Packets may be directed over channels that
increase the distance from the destination to avoid a congested or failed channel.

194 C H A P T E R 10 Adaptive Routing

For example, Figure 10.5 shows how adaptive routing can avoid congestion on the
route from 20 to 23 from Figure 10.4. At node 21, the packet is directed to node
31, increasing the distance to the destination from 2 to 3 hops, to avoid congested
channel (21,22). Directing a packet along such a non-productive channel is often
called misrouting.

A typical fully adaptive routing algorithm gives priority to the productive out-
puts, so packets are routed toward the destination in the absence of congestion, but
allows routing on unproductive outputs to increase path diversity. One possible algo-
rithm is as follows: For a given packet, if there is a productive output with a queue
length less than some threshold, the packet is routed to the productive output with
the shortest queue length. Otherwise, the packet is routed to the output with the
shortest queue length, productive or unproductive. Some algorithms limit the second
step to avoid selecting the channel that would send the packet back to the node from
which it just arrived (no U-turns) under the assumption that traversing a channel
and then the reverse channel is clearly counterproductive.

While fully adaptive routing provides additional path diversity that can be used
to avoid congestion, it can lead to livelock (see Section 14.5) unless measures are
taken to guarantee progress. Livelock occurs when a packet travels indefinitely in the
network without ever reaching its destination. With fully adaptive routing, this can
happen if a packet is misrouted on an unproductive channel at least half the time.
Figure 10.6 illustrates such an example of livelock.A packet from 00 to 03 encounters
congestion at 02 and is misrouted to 12, where it encounters more congestion and is
misrouted again to 11. This starts a cycle where the packet takes two steps forward,
from 11 to 02, followed by two steps back, from 02 to 11.

To avoid livelock, a fully adaptive routing algorithm must include some mech-
anism to guarantee progress over time. One approach is to allow misrouting only a

10 20 3000

13 23 3303

12 22 3202

11 21 3101

Figure 10.5 Fully adaptive routing may misroute packets to avoid congestion. At node 21 a packet destined
for 23 is misrouted to 31 to avoid congestion on link (21,22).

10.4 Load-Balanced Adaptive Routing 195

10 20 3000

13 23 3303

12 22 3202

11 21 3101

Figure 10.6 Fully adaptive routing can lead to livelock unless measures are taken to guarantee prog-
ress. Here, a packet being sent from 00 to 03 encounters congestion at 02 that sends it in
a loop.

fixed number of times. After misrouting M times, for example, the algorithm reverts
to minimum adaptive routing. This guarantees that if the packet starts H hops from
the destination, it will be delivered after traversing at most H +2M channels.Another
alternative is to allow the packet to misroute one hop for every H ′ > 1 productive
hops. Because this approach takes H ′ + 1 hops to reduce the distance to the destina-
tion by H ′ − 1, it is guaranteed to deliver the packet after H

(
H ′+1
H ′−1

)
hops. Another

approach, adopted by chaotic routing (Exercise 10.3), does not place a bound on
the number of hops needed to deliver the packet, but instead makes a probabilistic
argument that a packet will eventually be delivered.

In addition to potentially causing livelock, fully adaptive routing algorithms also
raise new possibilities for causing deadlock. We defer a discussion of these issues until
Chapter 14.

10.4 Load-Balanced Adaptive Routing

Adaptive routing algorithms have a difficult time achieving global load balance across
the channels of an interconnection network because they typically make routing
decisions based on entirely local information. One approach to overcome this prob-
lem is to employ a hybrid routing algorithm in which the quadrant to route in is
selected obliviously using the method of Section 9.3. Then adaptive routing without
backtracking is used within this quadrant to deliver the packet to its destination.
The oblivious selection of quadrant balances the load globally, whereas the adaptive
routing within the selected quadrant performs local balancing.

196 C H A P T E R 10 Adaptive Routing

This hybrid algorithm results in very good load balance, and hence very good
worst-case performance. Unfortunately, its performance on local traffic patterns is
not as good as a pure adaptive algorithm (minimal or fully adaptive) because, like the
oblivious algorithm of Section 9.3, it routes some of the packets the long way around
the network. Although, this routing algorithm is not minimal, and some packets take
the long way around, packets always make progress to their destinations. Once the
routing quadrant is selected, the number of hops required to reach the destination H

is determined and the packet is always delivered in exactly H hops. Hence, livelock
is not an issue with load-balanced adaptive routing.

10.5 Search-Based Routing

So far, we have restricted our attention to routing strategies that are both greedy and
conservative. They are greedy in the sense that they do not backtrack. Once they
have taken a channel, they keep it. They are conservative in that they send a packet
along just one path, rather than simultaneously broadcasting it over several paths.

One approach to non-greedy routing is to treat the routing problem as a search
problem. The packet is instructed to search for the best path to the destination. This
may involve the packet either backtracking once it finds a path blocked or congested,
or alternatively broadcasting headers along multiple paths and then transmitting the
data over the best of these paths.

Because they are both slow and make heavy use of resources, such search-based
routing algorithms are seldom used in practice to actually route packets. They are
useful, however, off line for finding paths in networks to build routing tables.

10.6 Case Study: Adaptive Routing in the Thinking
Machines CM-5

Figure 10.7 shows a photograph of theThinking Machines Connection-Machine CM-
5 [114, 199]. This machine was the last connection machine built and was the first
(and only) multiple instruction, multiple data (MIMD) machine built by Thinking
Machines. The earlier CM-1 and CM-2 were bit-serial, single-instruction multiple-
data (SIMD) parallel computers. The CM-5 consisted of up to 16K processing nodes,
each of which contained a 32-MHz SPARC processor and a 4-wide vector unit. The
machine included three separate interconnection networks: a data network, a control
network, and a diagnostic network. The CM-5 is an interesting machine from many
perspectives, including a cameo appearance in the movie Jurassic Park; however, we
will focus on its data network.

As shown in Figure 10.8, the CM-5 data network uses a folded Clos topology with
duplex connections to the processors and 2:1 concentration in the first two stages of
switches. Each channel in the figure is 20 Mbytes/s (4 bits wide at 40 MHz) in each

10.6 Case Study: Adaptive Routing in the Thinking Machines CM-5 197

Figure 10.7 A Thinking Machine CM-5 included up to 16K processing nodes. Each node incorporated a
32-MHz SPARC processor and a vector floating-point unit. The nodes were connected by a
folded Clos (fat tree) network.

direction and employs differential signaling.2 Each switch in the figure is a single chip
8 × 8 byte-wide router implemented in a 1 μm CMOS standard-cell technology.3

The channels connecting the first two levels of the network are implemented using

2. In addition to the 4 data bits in each direction, there is one flow control bit in each direction to apply
backpressure when packets are blocked.

3. With 4 connections on each side, at first glance the switches in Figure 10.8 look like 4 × 4 switches.
However, it is important to remember that, unlike a butterfly network where each link is unidirectional,
each connection to the switches in Figure 10.8 is bidirectional. Hence, each of these switches is an 8 × 8
crossbar with 8 inputs and 8 outputs.

198 C H A P T E R 10 Adaptive Routing

Processing
nodes

Level 1
switches

Level 2
switches

T
o

ot
he

r
6

le
ve

l 3
 s

w
itc

he
s

F
ro

m
 o

th
er

 3
 1

6-
no

de
 s

ub
ne

ts
F

ro
m

 o
th

er
 3

16
-n

od
e

su
bn

et
s

Level 3
switches

Figure 10.8 The CM-5 topology is a folded Clos (fat tree) network built from 8 × 8 switches, each with 4
upstream (right) ports and 4 downstream (left) ports. Each processing node is connected to 2
first-level switches. To provide a net 4:1 concentration, only 2 of the upstream ports are used
on the first 2 ranks of switches. Starting with the third level of switches, all 4 upstream ports
are used.

10.6 Case Study: Adaptive Routing in the Thinking Machines CM-5 199

backplanes. Higher level channels are realized with cables that are either 9 feet or
26 feet in length.

Each processing node is connected to two separate switches via a pair of chan-
nels, giving an aggregate per-node interface bandwidth of 40 Mbytes/s. This duplex
connection makes the network single-point fault tolerant. If a single router connected
to a processing node fails, the processing node can continue to send and receive mes-
sages via its second channel. Each processor injects messages into the network via
a memory-mapped interface. Messages can contain up to 5 32-bit words of data.4

The two level-1 switches attached to a group of 4 processing elements logically act
as a single node and collectively connect to each of 4 different level-2 switches.
Similarly, the 4 level-2 switches in the figure collectively connect to each of 8 differ-
ent level-3 switches (only 2 of which are shown). The topology is arranged so that
a switch at level i can access 4i nodes by sending messages only downstream (to
the left).

The CM-5 routes messages in the manner described in Section 9.2.1, except that
the upstream routing is adaptive rather than oblivious.5 A message from node s to
node d is routed in two phases. The message is first routed upstream (right) until
it reaches a switch that is a common ancestor of s and d. This upstream routing is
adaptive with the message choosing randomly among the idle upstream links. After
reaching a common ancestor, the message is routed deterministically downstream
(left) along the unique path to d using destination-tag routing.

A message in the CM-5 has the format shown in Figure 10.9. The message is
divided into 4-bit flits. One flit is delivered each cycle over the 4-bit data channel as
long as the sending node has a credit. The first flit of the message is a height flit that
specifies the height h for this message: how high (how far right) in the network the
message must travel to reach a common ancestor of s and d. Following the height
flit are �h/2� route flits, each containing two two-bit route fields. Each route field
specifies one step of the downstream route. The remainder of the flits in the message
have to do with the payload and are not relevant for routing.

The upstream routing phase is controlled by the height field h of the message
header. As an upstream message enters each router, h is compared to level l of the
router. If l < h, the upstream phase continues by randomly selecting an idle upstream
link to forward the message. If all links are busy, the message is blocked until a link
becomes idle. When a message reaches a router where l = h, the common ancestor
of s and d has been found and the downstream phase of routing begins.

At each step of the downstream route, one route field of the leading route flit
r is consumed and then the height h is decremented. Decrementing h at each hop
serves two useful purposes. First, this maintains the invariant that there are always
�h/2� route flits following the head flit, since we decrement h as we consume route
flits. Second, the LSB of h serves to select which route field in r to use for output
port selection. If h is even, the left route field of r is used to select the downstream

4. This 5-word maximum message length was recognized as a limitation, and later versions of the machine
allowed up to 18-word messages.

5. We explore the performance differences of the two approaches in Exercises 10.4 and 10.5.

200 C H A P T E R 10 Adaptive Routing

Height

Route

Length

Tag

Data

Check

4 bits/flit

Route

Route

H
ei

gh
t/

2
ro

ut
e

fli
ts

Data

Data

8
x

Le
ng

th

da
ta

 fl
its

Figure 10.9 Format of a CM-5 message. Routing is controlled by a height field and a down route field.
The 4-bit height field indicates how far upstream the message should propagate to reach an
ancestor of the destination. The down route field is a suffix of the destination address and
specifies the path from this ancestor to the destination node — two bits per level.

output port and h is decremented. If h is odd, the right route field of r is used to
select the downstream port, h is decremented, and r is discarded. At the next hop
h is again even and routing continues with the left route field of the next route flit.
When the message arrives at the destination, h = 0 and all of the routing flits have
been consumed.

The adaptivity of the upstream routing is governed by the flit-level blocking
flow control (Section 13.2) employed by the CM-5. To regulate flow over channels,
the CM-5 router employs a variant of on/off flow control (Section 13.3). When
there is space in an input port buffer, the receiving router sends the sending router
a token. The sender can use this token to send a flit immediately but cannot bank
the tokens (as in credit-based flow control). If there is no flit to send, the token
expires. When the buffer is full, no tokens are sent and traffic is blocked. Each CM-5
output port has a buffer large enough to hold one 5-word message (18-word mes-
sage in later versions). Recall that during the upstream routing phase, the packet
is randomly assigned to an idle upstream output port. An upstream port is con-
sidered idle, and eligible to be assigned to a new message, if its output buffer is
empty. If no upstream port is idle, the packet is blocked in place — holding its
input buffer busy, and, in turn, blocking packets further downstream. Because the
router waits until an output buffer can accept an entire message before assign-
ing the message to that output port, a message can never be blocked across the
router’s switch.

10.8 Exercises 201

10.7 Bibliographic Notes

Much of the development of adaptive routing is closely tied to the flow control mech-
anisms needed to avoid deadlock and livelock. Early adaptive routing algorithms in-
clude those of Linder and Harden [118], Chien [36],Aoki and Dally [48], and Allen
et al. [8]. Duato’s protocol [61] enabled a family of adaptive routing algorithms
including the one used in the Cray T3E [162]. Chaos routing (Exercise 10.3) was in-
troduced by Konstantinidou and Snyder [104] and further explored by Bolding [26].
Minimal adaptive routing on a fat tree was used in the CM-5 and is described by
Leiserson [114]. Boppana and Chalasani [27] present a comparison of several routing
approaches and show that pratical, adaptive algorithms can be beaten by determin-
istic algorithms on some metrics.

10.8 Exercises

10.1 Advantage of minimal adaptive routing in a mesh. Find a permutation traffic pattern
where minimal adaptive routing (Section 10.2) outperforms minimal oblivious rout-
ing (Section 9.2) in a 4 × 4 mesh network. Compute γmax for both algorithms in
the steady state. (Assume enough time has passed for backpressure information to
propagate through the network.)

10.2 Comparing minimal and load-balanced adaptive routing.Find a permutation traffic pat-
tern for which load-balanced adaptive routing (Section 10.4) outperforms minimal
adaptive routing (Section 10.2) and a second traffic pattern for which minimal out-
performs load-balanced.

10.3 Livelock freedom of chaotic routing. Chaotic routing is a deflection routing scheme. If
multiple packets are contending for the same channel, the routers randomly grant
that channel to one of the contenting packets. Any packets that lose this allocation
are misrouted to any free output port. (This port may be non-productive.) Because
the routers have the same number of input and output ports, it is always possible
to match incoming packets to some output. Explain why this approach is proba-
bilistically livelock-free by showing the probability that a packet does not reach its
destination in T cycles approaches zero as T increases.

10.4 Adaptive and oblivious routing in a fat tree. Consider a 256-node folded Clos (fat tree)
network constructed from 8 × 8 crossbar switches that uses dropping flow control.
Which algorithm has a lower dropping probability? How do both dropping proba-
bilities change with the traffic pattern?

10.5 Worst-case traffic in CM-5 network. Find a worst-case traffic pattern for the random-
ized oblivious routing algorithm (Section 9.2.1) for the CM-5 network. Compare
the throughput of adaptive and oblivious routing on this traffic pattern.

10.6 Simulation.Explore tradeoff between buffer depth and response time of adaptive
routing in an 8-ary 2-cube network. Alternate between two traffic permutations ev-
ery T cycles and plot the average packet latency as a function of time. How does the
amount of buffering per node affect the shape of this plot?

.
This Page Intentionally Left Blank

C H A P T E R 11

Routing Mechanics

The term routing mechanics refers to the mechanism used to implement any routing
algorithm: deterministic, oblivious, or adaptive. Many routers use routing tables either
at the source or at each hop along the route to implement the routing algorithm.
With a single entry per destination, a table is restricted to deterministic routing, but
oblivious and adaptive routing can be implemented by providing multiple table en-
tries for each destination. An alternative to tables is algorithmic routing, in which
specialized hardware computes the route or next hop of a packet at runtime. How-
ever, algorithmic routing is usually restricted to simple routing algorithms and regular
topologies.

11.1 Table-Based Routing

Recall Relations 8.1 through 8.3 from Section 8.3, which describe any routing
algorithm

R : N × N �→ P(P)

R : N × N �→ P(C)

R : C × N �→ P(C).

Any of the three forms of the routing relation may be implemented using a table.
The value of the relation for each pair of inputs is stored in the table and the table
is indexed by the inputs. For example, for the first form of the routing relation, the
set of paths for each pair of nodes is stored in the table, and the table is indexed by
the source and destination node. Only that portion of the table that is needed on a
particular node need be stored on that node. For example, at node x, only the part
of the table for the source node (or current node) x needs to be stored.

203

204 C H A P T E R 11 Routing Mechanics

The major advantage of table-based routing is generality. Subject to capacity
constraints, a routing table can support any routing relation on any topology. A rout-
ing chip that uses table-based routing can be used in different topologies by simply
reprogramming the contents of the table.

In the remainder of this section we look at the two extremes of table-based
routing. With source-table routing, we directly implement the all-at-once routing
relation by looking up the entire route at the source. With node-table routing, we
perform incremental routing by looking up the hop-by-hop routing relation at each
node along the route. There exists, of course, a continuum of points in between, with
each table lookup returning a portion of the path.

11.1.1 Source Routing

With source routing, all routing decisions for a packet are made entirely in the source
terminal by table lookup of a precomputed route. Each source node contains a table
of routes, at least one per destination. To route a packet, the table is indexed using the
packet destination to look up the appropriate route or set of routes. If a set is returned,
additional state is used to select one route from the set in an oblivious or adaptive
manner. This route is then prepended to the packet and used to rapidly steer the
packet through the network along the selected path with no further computation.
Because of its speed, simplicity, and scalability, source routing is one of the most
widely used routing methods for deterministic and oblivious routing. Source table
routing is not often used to implement adaptive routing because it does not provide
a mechanism to take advantage of network state information at intermediate hops
along the route.

Table 11.1 shows a source routing table for node 00 of the 4 × 2 torus network
of Figure 11.1. The table contains two routes for each destination in the network.
Each route in the table specifies a path from this source to a particular destination as
a string of port selectors, one for each channel along the path. The port selectors in
this case come from a five-symbol alphabet (NEWSX) encoded as 3-bit binary

Table 11.1 Source routing table for node 00 of 4 × 2 torus network of Figure 11.1.

Destination Route 0 Route 1

00 X X
10 EX WWWX
20 EEX WWX
30 WX EEEX
01 NX SX
11 NEX ENX
21 NEEX WWNX
31 NWX WNX

11.1 Table-Based Routing 205

00 01 02

10 11 12

03

13

Figure 11.1 Network for source routing example of Table 11.1.

numbers. The first four symbols select one of the four output ports of a router
(by compass direction) and the final symbol (X) specifies the exit port of the router.

Consider, for example, routing a packet from node 00 to node 21 in the network
of Figure 11.1. At the source, the routing table, Table 11.1, is indexed with the
packet’s destination, 21, to determine the precomputed routes. Two routes, NEEX
and WWNX, are returned from this lookup, and the source arbitrarily selects the
first route, NEEX. This routing string is then digested one symbol at a time to steer
the packet through the network. The first character, N, selects the north output port
of the router at node 00 and is stripped off, passing the remainder of the string, EEX,
on to node 01. At node 01, the east port is selected and EX is passed on to node 11.
The east port is again selected at node 11 and the final character, X, is passed to node
21. At node 21, the X symbol selects the exit port of the router, steering the packet
into the input queue of node 21.

Source routing has several advantages compared to many of the alternatives
described in the rest of this chapter. The foremost advantage is speed. After the
initial table lookup and route selection in the source, no further time is spent on
routing. As each packet arrives at a router, it can immediately select its output port
without any computation or memory reference. The routing delay (see Chapter 16)
component of per-hop latency is zero. In addition to being fast, source routing results
in a simple router design. There is no need for any routing logic or tables in each
router.

Source routing is topology independent. It can route packets in any strongly
connected topology subject only to the limitations of the number of router ports,
the size of the source table, and the maximum length of a route. Using the four-
port routers from the network of Figure 11.1, for example, one can wire an arbitrary
degree-four network and route packets in it using source routing.

Routers that use source routing can be used in arbitrary-sized networks because
the only limitations on network size, table size, and route length are determined by
the source. This is advantageous, as it permits a single router design to be used in
networks of arbitrary size without burdening a small network with a cost proportional
to the largest network. The expense of supporting a large network is moved to the
terminals where it need not be provided in the small network.

206 C H A P T E R 11 Routing Mechanics

N N E N
E N N W

N W N N
- - X N

(a) At start of route

N N E
E N N W

N W N N
- - X N

P

(b) After first hop

- - F
E N N W

N W N N
- - X N

-

(c) After four hops

- - F
- - P E

N W N N
- - X N

-

(d) After seven hops

N W N N
- - X N

(e) After eight hops

- - X N

(f) After twelve hops

- - F-

Figure 11.2 Arbitrary length encoding of source routes.

For a router to provide arbitrary scalability, it must be able to handle arbitrary-
length routes. While routes are by definition arbitrary-length strings terminated by
the exit port selector symbol, X, an encoding is required to pack these arbitrary-
length strings into fixed-length routing phits and flits.

One method of encoding arbitrary-length source routes is illustrated in
Figure 11.2. This example assumes a router with 16-bit phits, 32-bit flits, and up
to 13 router ports. There are four 4-bit port selectors packed in each 16-bit phit and
8 selectors in each flit. To facilitate packing, we introduce two new port selection
symbols, P and F, to denote phit continuation and flit continuation, respectively.

Figure 11.2(a) shows a 13-hop route (NENNWNNENNWNN) encoded into
two flits. In each phit, the port selectors are interpreted from right to left. There are
no continuation selectors in the original route. These are shifted in during subsequent
steps of the route, as shown in Figure 11.2(b–f). After taking the first hop to the
north, the lead flit is shifted right four bits to discard the first port selector, and a phit
continuation selector, P, is shifted into the most significant position as illustrated in
Figure 11.2(b).After four hops, the router encounters a phit with a P in the rightmost
port selector. This P instructs the router to strip off the leading phit and append a
flit continuation phit (F) to the end of the current flit (Figure 11.2[c]). After eight
hops, the router encounters the flit continuation port selector, which instructs it to
discard the current flit and continue processing port selectors starting with the next
flit (Figure 11.2[e]). Processing continues in this manner across multiple phits and
flits until an exit port selector, X, is encountered. A route of arbitrary length can be
encoded in this manner by continuing over an arbitrary number of flits and phits.

The use of continuation port selectors enables us to process an arbitrary length
route while dealing with only a single phit at a time. Because the leading phit output
at each stage depends only on the leading phit input to that stage, it can be generated
and output before the second phit arrives.

To handle arbitrary-length routes, the routing table in the source terminal must be
designed to efficiently store arbitrary-length strings. This can be accomplished using

11.1 Table-Based Routing 207

Dest Route 1 Route 2

E X E X W W X N E N E X N N X

Figure 11.3 A routing table organized with one level of indirection to permit efficient encoding of variable-
length source routes. The destination indexes a table of pointers into a string of concatenated
source routes. The upper pointer points at a source route that is a suffix of the source route
indexed by the lower pointer.

a single level of indirection, as illustrated in Figure 11.3. Indexing the table with the
destination returns one or more pointers, each of which point to a variable-length
route string. For the example shown in the figure, the destination selects the fourth
row of the table, which contains two pointers, one for each of two routes. The second
pointer locates the start of the route NENEX. Note that all routes are terminated by
an X symbol. A route that is a suffix of another route can be represented by a pointer
into the first route’s string, requiring no additional storage. For example, the second
row of the table’s first route locates the string NEX, which is a suffix of the second
route from row 4. This organization requires an extra memory access to look up a
route. However, it is more storage efficient for all but the shortest routes because it
avoids the storage waste associated with rounding up all routes to a maximum length.
A compromise is to store the first few hops of the route in the table itself along with a
pointer to the rest of the route. This organization avoids the extra memory reference
for short routes while retaining the efficiency of indirection for long routes.

A source routing table may associate several routes with each destination.
Table 11.1, for example, stores two routes to each destination. As described above
with respect to oblivious and adaptive routing, providing multiple routes between a
given source and destination has several advantages:

Fault tolerance: If some of the routes are edge disjoint, connection between the two
nodes is maintained even if one or more channels between the nodes fail.

Load balance: The traffic between this pair of nodes is distributed over several net-
work paths, balancing the load in the network across a broad range of traffic patterns.

Distribution: When the destination used to index the table is a logical destination,
such as a service rather than a particular server, the multiple routes may in fact lead to
multiple destinations. In this case, the routing table serves to distribute traffic among
the servers providing a particular service.

208 C H A P T E R 11 Routing Mechanics

When a routing table stores multiple routes for each destination, a route selection
method is required to choose the route to be followed by each packet. When packet
ordering is not a requirement, using a pseudo-random number generator works well
to randomly distribute traffic over the routes. If there is a one-to-one correspon-
dence between routes and table entries, and the random numbers are uniformly
distributed, each route is equally likely to be selected and traffic will be balanced
across the routes. In general, different destinations have different numbers of routes,
while the table stores a fixed number of routes, so it is not usually possible to ar-
range for a one-to-one correspondence. For arbitrary numbers of routes, load balance
can be approximated as closely as desired by using a very large number of table
entries. If there are M routes, and N table entries, then each route is stored in k or
k + 1 entries, where k = �N/M� and the difference in load between two routes is
bounded by 1

N
.

Another approach is to directly encode route probabilities as a binary field stored
with each route. A logic circuit can then combine these probabilities with a random
number to select among the routes. This approach allows arbitrary probability dis-
tributions to be encoded and is considerably more storage efficient than replicating
table entries.

In some cases, we are required to maintain ordering among certain packets trav-
eling through the network. Preserving the order of the packets in a message may be
needed if the protocol is not able to reorder packets during assembly. Also, some pro-
tocols — for example, cache coherence protocols — depend on message order being
preserved for correctness. A set of packets that must have its order preserved is called
a flow and each packet of the flow is usually labeled by a flow identifier. This may be
a combination of fields in the packet header that identify the protocol and type of
packet. By hashing the flow identifier to generate the route selector rather than using
a random number, we can ensure that all of the packets of a flow follow the same
route and thus (assuming FIFO queueing) remain in order. However, if flows are not
distributed uniformly, this approach may skew the probability of taking a particular
route. Section 9.5 describes how flows are ordered in the randomized, table-based
routing of the Avici TSR.

11.1.2 Node-Table Routing

Table-based routing can also be performed by storing the routing table in the
routing nodes rather than in the terminals. Node-table routing is more appropriate
for adaptive routing algorithms because it enables the use of per-hop network state
information to select among several possible next-hops at each stage of the route.
Using node rather than source tables significantly reduces the total storage required to
hold routing tables because each node needs to hold only the next hop of the route
to each destination rather than the entire route. However, this economy of stor-
age comes at the expense of a significant performance penalty and restrictions on
routing. With this arrangement, when a packet arrives at a router, a table lookup
must be performed before the output port for the packet can be selected. As with

11.1 Table-Based Routing 209

source routers, the input port on which a packet arrives may be used in addition to
the destination to select the table entry during the lookup. Performing a lookup at ev-
ery step of the route, rather than just at the source, significantly increases the latency
for a packet to pass through a router. Scalability is also sacrificed, since every node
must contain a table large enough to hold the next hop to all of the destinations in
the largest possible network. Also, with this approach, it is impossible to give packets
from two different source nodes, x and y, destined for the same node, z, arriving at
an intermediate node, w, over the same channel two different routes from w to z.
This is easy to do with source routing.

Table 11.2 shows a possible set of node routing tables for the network of
Figure 11.1. The table for each node is shown in two adjacent columns under the
node number. There is a row for each destination. For each node and destination, two
possible next hops are listed to allow for some adaptivity in routing. For example, if
a packet is at node 01 and its destination is node 13, it may route in either the N or
E direction. Note that some of the next hops actually move a packet further from
its destination. These misroutes are shown in bold.

Livelock (see Section 14.5) may be a problem with node-table routing. It is
possible to load the node tables with entries that direct packets in never-ending
cycles. Consider, for example, a packet passing through node 00 destined for node
11. If the entry for (00 → 11) is N, directing the packet to 10 and the entry for (10 →
11) is S, the packet will wind up in a cycle between 00 and 10, never making progress
to its destination. This is not a problem with source routing, since the fixed-length
source route implies a finite number of hops before a packet reaches its destination. It
can be avoided with node-table routing by careful construction of the routing tables.

Node table routing facilitates local adaptation of routes. A node can locally redi-
rect traffic without coordinating with other nodes if one output link from a node
becomes congested or fails. If a routing table includes multiple entries for each des-
tination, as in the case of Table 11.2, this can be accomplished by simply biasing the
selection of output ports based on congestion or availability. For example, if the N

Table 11.2 Node-routing table for the 4 × 2 torus network of Figure 11.1.

From

To 00 01 02 03 10 11 12 13

00 X X W N W E E N S N S W S W S E
01 E N X X W S E W S W S N S W S W
02 E W E N X X W N S W S E S N S W
03 W N E W E N X X S E S E S E S N
10 N S N W N W N E X X W N W E E N
11 N E N S N W N W E S X X W N E W
12 N E N E N S N W E W E N X X W N
13 N W N E N E N S W S E W E N X X

210 C H A P T E R 11 Routing Mechanics

Table 11.3 Hierarchical node-routing table for node 4448 of an 8-ary 3-cube.

Destination Next Hop Remarks

100 100 100 X This node
100 100 0XX W Nodes directly to west
100 100 11X E Nodes directly east
100 100 101 E Neighbor east
100 0XX XXX S Nodes south
100 11X XXX N Nodes north
100 101 XXX N Node one row north
0XX 0XX 0XX W Octant down, south, and west
0XX 0XX 1XX S Octant down, south, and east (or equal)
0XX 1XX XXX D Quadrant down and north (or equal)
11X XXX XXX U Half-space two or more planes above
101 XXX XXX U Plane immediately above

port out of node 00 in Table 11.2 becomes congested, a packet destined to node 10
would choose S for its next hop, rather than N.

In very large networks, node-tables may be organized in a hierarchical manner
to further reduce storage requirements.1 In such a table, each nearby node gets its
own next hop entry, small groups of remote nodes share entries, larger groups of
distant nodes share entries, and so on. One approach to hierarchical routing is to use
a content addressable memory (CAM) rather than a RAM to hold the routing table
in each node. For example, a CAM-based routing table for node 4448 in a 8-ary 3-
cube network is shown in Table 11.3. Each row of this table consists of a destination
group and the next hop for this group. The destination group is encoded as a 9-bit
address (3 bits each of x, y, and z) that may include “don’t care” symbols (X) in one
or more bits. A CAM that allows “don’t care” symbols is often referred to as ternary
CAM (TCAM).

Depending on the number of Xs in a destination, it may encode a single node or
a one-, two-, or 3-D group of contiguous nodes. For example, the first entry in the
table encodes a single node, node 100 100 100 (444), the node containing this table.
The next row encodes a one-dimensional array of nodes to the west of this node (440
to 443). A 2-D array of nodes (from 500 to 577) is encoded by the last entry of the
table, and several entries in the table encode 3-D groups of nodes.

In effect, a CAM-based node routing table is a programmable logic array that
computes the logical function for selecting the output port as a function of the
destination address. Each entry that selects a given output port —W, for example —
acts as a single product term (or implicant) in the logic equation that selects that

1. This is done, for example, in the SGI Spider chip [69]. See Exercise 11.4.

11.2 Algorithmic Routing 211

output. For the W output, there are two implicants in the equation corresponding
to the second and eighth rows of the table. Thus, by using a CAM, one can compress
an arbitrary node routing table by replacing all of the entries for a given output with
a smaller number of rows corresponding to a minimal sum-of-products realization
of that output’s function.

Node-table routing is the approach taken in most wide-area packet routers. This
is because it lends itself to the use of distributed algorithms to compute network
connectivity and routing. In interconnection networks, however, where nodes are
co-located, node table routing is usually inferior to source routing because of the
increased delay, unless the adaptivity is needed.

Source routing and node table routing represent two extremes in the space of
table-based routers. A node table router stores just the next hop of the route in the
table, whereas the source router stores the entire route. Of course, we can construct
an arbitrary number of points between these two extremes, where the table stores
the next M > 1 hops of the route. These intermediate solutions give local adaptivity
and hop latency between the two extremes. To date they have not been used in
practice, however, because they lack symmetry — a packet must perform different
actions at different nodes with a hybrid approach.

11.2 Algorithmic Routing

Instead of storing the routing relation in a table, we can compute it using an al-
gorithm. For speed, this algorithm is usually implemented as a combinational logic
circuit. Such algorithmic routing sacrifices the generality of table-based routing. The
algorithm is specific to one topology and to one routing strategy on that topology.
However, algorithmic routing is often more efficient in terms of both area and speed
than table-based routing. An algorithmic routing circuit can be as simple as a digit
selector that pulls out a digit of the destination address for destination-tag routing
(Section 8.4.1). Such a circuit is employed, for example, in the simple router of
Section 2.5.

An algorithmic routing circuit for routing in a 2-D torus is shown in Figure 11.4.
The circuit accepts a routing header including a sign bit for each dimension (sx and
sy) and a relative address (x and y) that specify the number of hops to the destination
in each dimension in the direction specified by the sign bit. The relative addresses are
input to zero checkers that generate the signals xdone and ydone. If the relative ad-
dress in a particular dimension is zero, the packet is done routing in that dimension.
The sign bits and the done signals are then input to an array of five AND gates that
determine which directions are productive in the sense that they will move the packet
closer to the destination. For example, the gate second from the left determines that if
xdone= 0, indicating that we are not done routing in the x dimension,and sx= 0, in-
dicating that we are traveling in the +x direction, then the +x direction is productive.
The 5-bit productive direction vector has a bit set for each direction that advances
the packet toward the destination. This vector is input to a route selection block that
selects one of the directions for routing and outputs a selected direction vector.

212 C H A P T E R 11 Routing Mechanics

sx syx y

=0

Routing header

=0

–y+
y

–x+
x

ex
it

Productive
direction
vector

Route selection

–y+
y

–x+
x

ex
it

Selected
direction
vector

Queue lengths

ydone
xdone

Figure 11.4 An example of algorithmic routing logic. This circuit accepts direction bitssx andsy and distance
fields x and y from a packet routing header and generates a productive direction vector that
indicates which channels advance the packet toward the destination, and a selected direction
vector, a one-hot vector that selects one of the productive directions for routing.

The route selection block determines the type of routing performed by this
circuit. A minimal oblivious router can be implemented by randomly selecting one of
the active bits of the productive direction vector as the selected direction. Replacing
this random selection with one based on the length of the respective output queues
results in a minimal adaptive router. Allowing the selection to pick an unproductive
direction if all productive directions have queue lengths over some threshold results
in a fully adaptive router.

11.3 Case Study: Oblivious Source Routing in the IBM
Vulcan Network

The IBM SP1 and SP2 series of message-passing parallel computers is based on a mul-
tistage interconnection network that employs oblivious source routing. Figure 11.5
shows a photo of a 512-processor IBM SP2. Each cabinet or frame in the figure
holds 16 IBM RS6000 workstations (processing nodes) and one 32-port switch
module.

Both the SP1 and SP2 use an interconnection network based on 8 × 8 switch
chips controlled via source routing. Each of the eight bidirectional ports on the
switch is 8-bits wide in each direction and operates at 50 MHz. In addition to the
eight data lines in each direction there are two control lines, tag and token. The tag

11.3 Oblivious Source Routing in the IBM Vulcan Network 213

Figure 11.5 A 512-processor IBM SP2 system. Each cabinet, or frame, holds 16 RS6000 workstations and
one 32-port switch board.

line identifies valid flits, while the token line runs in the opposite direction to return
credits (for flow control) to the sending node. Latency through the switch is five
20 ns cycles.

Eight switch chips are arranged on a 32-port switch module in a two-stage bidi-
rectional network, as shown in Figure 11.6.2 The module provides 16 bidirectional
channels out each of two sides. All channels transmitted off the switch module are
carried as differential ECL signals. At the bottom level of an SP machine, 16 proces-
sor modules are connected to the 16 ports on 1 side of a switch module. These 17
modules are packaged together in a cabinet, or frame.

SP machines larger than 16 processors are composed of frames and switch mod-
ules. Small SP machines, up to 80 processors (5 frames), are constructed by directly
connecting frames to one another as illustrated in Figure 11.7 for 3- and 5-frame
arrangements. Larger machines use the frames as the first 2 stages of a folded Clos
network, and use switch modules to provide 16 × 16 intermediate stages and/or a
32-port final stage. For example, Figure 11.8 shows how a 512 processor machine is
constructed from 32 frames and 16 additional switch modules. Up to 8K-processor
machines can be constructed using two levels of switch modules.

2. For fault tolerance, each switch module contains 2 copies of this 32-port switching arrangement (16
switch chips total). One copy performs the switching, while the other copy shadows it to check for errors.

214 C H A P T E R 11 Routing Mechanics

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10
P11

P12

P13
P14

P15

(a) (b)

Figure 11.6 (a) A 32-port switch module is composed of eight 8 × 8 switches arranged in two ranks. All
links are bidirectional. (b) Each frame consists of 16 processing nodes and 1 switch module.

Frame

Fram
e Fr

am
e

8

8

8

Frame

4

4

4

4

4

4

Frame

F
ra

m
e

4

4

Frame

F
ram

e

4 4

(a) (b)

Figure 11.7 Small SP machines are realized by directly connecting frames. (a) A 48-processor (3-frame)
configuration. (b) An 80-processor (5-frame) arrangement.

Each node includes a source routing table (as described in Section 11.1.1). The
table includes four routes to each destination in the network.As shown in Figure 11.9,
when a packet arrives to be routed, it indexes the table using the packet destination
and the current value of a 2-bit packet counter. The packet counter is incremented
before use by the next packet. An 8-byte route descriptor is read from the table.
The first byte contains the number of valid routing flits N in the descriptor (0-7).

11.3 Oblivious Source Routing in the IBM Vulcan Network 215

F
ra

m
e

0

S
w

itc
h

m
od

ul
e

0

F
ra

m
e

31

S
w

itc
h

m
od

ul
e

15

F
ra

m
e

1

S
w

itc
h

m
od

ul
e

1

Figure 11.8 Larger SP machines are realized by connecting processor frames to switch modules that realize
a folded Clos interconnection network. Here, a 512-node (32-frame) machine is connected via
16 switch modules (32-port).

Dest

+
Packet
Count 2 Length RF 1 RF 2 RF 3 RF 4 RF 5 RF 6 RF 7

8 bytes

4
x

N
um

be
r

of
D

es
tin

at
io

ns

Figure 11.9 Source routing table for an IBM SP1/SP2. There are 4 routes for each destination. Each route
occupies 8 bytes in the table. A length byte indicates how many routing flit (RF) bytes should be
included in the route. Each RF byte encodes 2 hops of the route, as described in Figure 11.10.

The following N bytes contain the routing flits, each of which encodes 1 or 2 hops of
the route. A maximal length route descriptor contains 7 routing flits encoding up to
14 hops. These N routing flits are prepended to the packet to be used during routing.

An SP packet is shown in Figure 11.10. After an initial length flit, the packet
contains one or more routing flits followed by data flits. Each router examines the first
routing flit. If the selector bit, S, is a zero, the router uses the upper hop field of the flit
(bits 4−6) to select the output port and sets S. If S is a one, the second hop field (bits
0−2) is used, the route flit is discarded, and the length is decremented. Normally, the

216 C H A P T E R 11 Routing Mechanics

8 bits

Length

Hop2Hop1S

Hop4Hop3S

Hop nHop n-1S

Data

R
ou

tin
g

he
ad

er
1–

5
by

te
s

Data

Data

P
ay

lo
ad

0
–

25
4

by
te

sLe
ng

th
 b

yt
es

Figure 11.10 Packet format for an IBM SP1/SP2. Packets are divided into 8-bit flits. Each packet
starts with a length flit followed by one or more routing flits. The remainder of the
packet contains payload data. The length flit gives the overall length of the packet
in flits, including the length and routing flits. Each routing flit specifies the ouput
port (1 of 8) to be used for two hops. A selector bit S selects between the two hops
within the flit.

S bit is initially 0. However, to encode routes that have an odd number of hops, the
S bit of one of the routing flits — typically the last — must be set initially to 1. An
SP packet proceeds along the source-determined route toward its destination with
routing flits being consumed every two hops. When it arrives at its destination, it
contains only the length flit and the data flits — all routing flits have been discarded.
The length flit has been decremented with each routing flit dropped so at all points
in time it reflects the current length of the packet.

The routing table is constructed in a manner that balances load over the network
links and gives edge-disjoint paths [1]. For each node, the first route to each desti-
nation is determined by finding a minimum spanning tree for the network, assuming
that each edge initially has unit cost. The edge weights are then adjusted by adding a
small amount, ε, to the weight of each edge for each time it is used in a route. A new
minimum spanning tree is then computed and used to generate the second route to
each destination. The process is repeated for the third and fourth routes.

It is interesting to compare the IBM SP network to the networks of the CM-5
(Section 10.6) and the Avici TSR (Section 9.5). The SP network, in large configura-
tions, has a topology that is nearly identical to that of the CM-5. Both are built from
8 × 8 port switches using a folded Clos topology. The main difference in topology
is that there is no concentration in the SP networks, whereas CM-5 networks have
a factor of four concentration. The two networks take very different approaches to
routing in this common topology. The CM-5 uses adaptive routing on the upward
links to balance load dynamically. In contrast, the SP network routes obliviously

11.5 Exercises 217

using multiple source routes to statically balance load. We examine this tradeoff in
Exercise 11.9.3

While the CM-5 and the SP have a common topology and differ in routing, the
TSR and the SP have very similar routing but apply this routing method to very dif-
ferent topologies. Both the TSR and the SP use oblivious source routing in which the
source tables maintain a number of alternative routes to each destination: 4 in the SP
and 24 in theTSR.They differ in that the SP selects the source route by using a packet
counter, whereas the TSR selects the source route by hashing a flow identifier — this
keeps related packets on the same route and hence in order. Both construct the al-
ternative routes in the routing tables in a manner that statically balances load over
the network channels. It is interesting that this technique of oblivious source routing
is applicable to topologies as different as an irregular 3-D torus and a folded Clos
network. A major strength of source routing is its topology independence.

11.4 Bibliographic Notes

Table-based routing is popular in implementation due to its flexibility and simplicity.
As mentioned in Section 11.3, the IBM SP1 and SP2 networks [178, 176] use source
routing tables, as does the Avici TSR (Section 9.5). However, for larger networks,
source tables can become prohibitive in size. Many networks, such as the SGI Spi-
der [69], InfiniBand [150], and the Internet, adopt node-tables for this reason. In
addition, many node-table implementations use hierarchical routing, as introduced
by McQuillan [127] and analyzed in detail by Kleinrock and Kamoun [100], to fur-
ther reduce table size. The hierarchical routing mechanism used in the SGI Spider
is considered in Exercise 11.4 . Another approach for reducing table size is interval
routing (see Exercise 11.5), which was developed by Santoaro and Khatib [158],
extended by van Leeuwen and Tan [188], and has been implemented in the INMOS
Transputer [86]. CAMs are common in the implementation of routing tables as dis-
cribed by Pei and Zukowski [147] and McAuley and Francis [122]. Tries, introduced
by Fredkin [68], are also popular for routing tables especially in IP routers. Pei and
Zukowski [147] describe the design of tries in hardware and Doeringer et al. [59]
give an extension of tries for efficient use in IP lookup.

11.5 Exercises

11.1 Compression of source routes. In the source routes presented in the chapter, each port
selector symbol (N,S,E,W,and X) was encoded with three bits. Suggest an alternative
encoding to reduce the average length (in bits) required to represent a source route.
Justify your encoding in terms of “typical” routes that might occur on a torus. Also,

3. Later versions of the SP machines used adaptive source routing on the uplinks.

218 C H A P T E R 11 Routing Mechanics

compare the original three bits per symbol with your encoding on the following
routes:

(a) NNNNNEEEX
(b) WNEENWWWWWNX
(c) SSEESSX

11.2 CAM-based routing tables. Consider a node-table at node 34 of an 8-ary 2-cube topol-
ogy. How many table entries are required if it is stored in a RAM? How much reduc-
tion is possible by storing the table in a CAM instead? List the entries for the CAM.

11.3 Minimal adaptive route selection logic. Sketch the logic required for the route selection
block (Figure 11.4) with minimal adaptive routing. Design the logic to choose the
productive path with the shortest downstream queues.

11.4 Hierarchical routing in the SGI Spider. The SGI Spider uses a hierarchical node-table
with two levels: a meta-table and a local table. The ID of each node in the network is
split into both a meta address (upper bits) and a local address (lower bits).To compute
its next hop, a packet first checks if its meta-address matches the meta-address of
the current node. If not, the next hop is retrieved from the meta-table, indexed by
the meta-address of the packet’s destination. If the meta-addresses match, the next
hop is retrieved from the local table, indexed by the local address of the packet.
Conceptually, the meta-address is used to move a packet to the correct “region” of
the network, while the local address moves the packet to its exact destination. How
much smaller could the routing tables for a 2-D torus network be if two bits of the
node IDs are used in the meta-address of this approach?

11.5 Linear interval routing in a mesh network. Interval routing seeks to reduce the size
of routing tables by labeling the outgoing edges of a node with non-overlapping
intervals. Figure 11.11 shows an example of a linear interval labeling: each channel
is labeled with an interval [x, y], indicating all packets destined to a node d, such
that x ≤ d ≤ y, should follow this channel. So, for example, to route from node 3 to
node 1, a packet first follows the west channel from node 3 because the destination
node falls in west channel’s interval. Similarly, the next hop would take the packet

1 3

0 2

[0,1]

[0,1]

[0][1] [3]

[2,3]

[2,3]

[2]

Figure 11.11 A topology and a linear interval labeling. A packet is routed hop-by-hop by choosing
outgoing channels that contain the packet’s destination node in their interval.

11.5 Exercises 219

from node 1 to its destination, node 0. Find a linear interval labeling for a 4×4 mesh
network. (Assign the numbers 0 through 15 to the destination nodes.)

11.6 Route generation for the IBM SP2. Write a program to compute spanning trees in a
512-node IBM SP2 network. Use these trees to generate a routing table that has four
nodes per destination.

11.7 Load balance of spanning tree routes. Using the routing table you generated in Ex-
ercise 11.6 to compute the channel loads for a number of random permutations
traversing the machine. How balanced is the load?

11.8 Adaptive routing on the IBM SP network. Later versions of the SP network employed
adaptive source routing, which allowed CM-5-like adaptation on the uplinks and then
source routing on the downlinks. Explain how this might work. Develop a route
encoding that supports such adaptive source routing and that fits into the general
framework of the SP network.

11.9 Simulation. Compare the performance of CM-5-like adaptive routing to IBM SP-like
oblivious routing on a 512-node SP network.

.
This Page Intentionally Left Blank

C H A P T E R 12

Flow Control Basics

Flow control determines how a network’s resources, such as channel bandwidth,
buffer capacity, and control state, are allocated to packets traversing the network.
A good flow-control method allocates these resources in an efficient manner so the
network achieves a high fraction of its ideal bandwidth and delivers packets with
low, predictable latency.1 A poor flow-control method, on the other hand, wastes
bandwidth by leaving resources idle and doing unproductive work with other re-
sources. This results in a network, like the one we examined in Chapter 2, in which
only a tiny fraction of the ideal bandwidth is realized and that has high and variable
latency.

One can view flow control as either a problem of resource allocation or one
of contention resolution. From the resource allocation perspective, resources in the
form of channels, buffers, and state must be allocated to each packet as it advances
from the source to the destination. The same process can be viewed as one of resolv-
ing contention. For example, two packets arriving on different inputs of a router at
the same time may both desire the same output. In this situation, the flow-control
mechanism resolves this contention, allocating the channel to one packet and some-
how dealing with the other, blocked packet.

The simplest flow-control mechanisms are bufferless and, rather than temporar-
ily storing blocked packets, they either drop or misroute these packets. The next
step up in complexity and efficiency is circuit switching, where only packet head-
ers are buffered. In circuit switching, the header of a packet traverses the net-
work ahead of any packet payload, reserving the appropriate resources along the

1. This assumes that the routing method does a good job load-balancing traffic and routes packets over
nearly minimal distance paths.

221

222 C H A P T E R 12 Flow Control Basics

path. If the header cannot immediately allocate a resource at a particular node, it
simply waits at that node until the resource becomes free. Once the entire path, or
circuit, has been reserved, data may be sent over the circuit until it is torn down by
deallocating the channels. All of these flow-control mechanisms are rather inefficient
because they waste costly channel bandwidth to avoid using relatively inexpensive
storage space.

More efficient flow control can be achieved by buffering data while it waits to
acquire network resources. Buffering decouples the allocation of adjacent channels
in time. This decoupling reduces the constraints on allocation and results in more
efficient operation. This buffering can be done either in units of packets, as with
store-and-forward and cut-through flow control, or at the finer granularity of flits, as
in the case of wormhole or virtual-channel flow control. By breaking large, variable-
length packets into smaller, fixed-sized flits, the amount of storage needed at any
particular node can be greatly reduced. Allocating resources in units of flits also
facilitates creating multiple virtual channels per physical channel in the network,
which can alleviate blocking and increase throughput.

We start our discussion of flow control in this chapter by discussing the flow
control problem (Section 12.1), bufferless flow control (Section 12.2), and circuit
switching (Section 12.3). In Chapter 13, we continue our exploration of flow control
by discussing buffered flow-control methods. In these two chapters we deal only
with allocation of resources in the network. As we shall see Chapter 14, there are
additional constraints on allocation to ensure that the network remains deadlock-free.
There is also a related problem to manage resources, in particular buffer memory, at
the endpoints. Such end-to-end flow control employs similar principles but is not
discussed here.

12.1 Resources and Allocation Units

To traverse an interconnection network, a message must be allocated resources: chan-
nel bandwidth, buffer capacity, and control state. Figure 12.1 illustrates these re-
sources in a single node of a network. When a packet arrives at a node, it must first
be allocated some control state. Depending on the flow control method, there may
be a single control state per channel or, if an input can be shared between multiple
packets simultaneously, there may be many sets of state. The control state tracks
the resources allocated to the packet within the node and the state of the packet’s
traversal across the node. To advance to the next node, the packet must be allo-
cated bandwidth on an output channel of the node. In some networks, allocating
bandwidth on the output, or forward, channel also allocates bandwidth on a reverse
channel traveling in the opposite direction. The reverse channel is typically used to
carry acknowledgments and communicate flow control information from the receiv-
ing node. Finally, as the packet arrives at a node, it is temporarily held in buffer while
awaiting channel bandwidth. All flow control methods include allocation of control
state and channel bandwidth. However, some methods, which we will discuss in
Section 12.2, do not allocate buffers.

12.1 Resources and Allocation Units 223

Control state

Buffer capacity

Channel bandwidth

Figure 12.1 Resources within one network node allocated by a flow control method: control state records the
allocation of channels and buffers to a packet and the current state of the packet in traversing
the node. Channel bandwidth advances flits of the packet from this node to the next. Buffers
hold flits of the packet while they are waiting for channel bandwidth.

To improve the efficiency of this resource allocation, we divide a message into
packets for the allocation of control state and into flow control digits (flits) for the
allocation of channel bandwidth and buffer capacity.

Figure 12.2 shows the units in which network resources are allocated. At the
top level, a message is a logically contiguous group of bits that are delivered from a
source terminal to a destination terminal. Because messages may be arbitrarily long,
resources are not directly allocated to messages. Instead,messages are divided into one
or more packets that have a restricted maximum length. By restricting the length of a
packet, the size and time duration of a resource allocation is also restricted, which is
often important for the performance and functionality of a flow control mechanism.

A packet is the basic unit of routing and sequencing. Control state is allocated to
packets. As illustrated in Figure 12.2, a packet consists of a segment of a message to
which a packet header is prepended. The packet header includes routing information
(RI) and, if needed, a sequence number (SN). The routing information is used to
determine the route taken by the packet from source to destination. As described in
Chapter 8, the routing information may consist of a destination field or a source route,
for example. The sequence number is needed to reorder the packets of a message
if they may get out of order in transit. This may occur, for example, if different

224 C H A P T E R 12 Flow Control Basics

Message

Packet RI SN

Header

Head flit
Tail flit

VCFlit

Body flit

Type

Phit
Head, body,
tail, or H&T

Figure 12.2 Units of resource allocation. Messages are divided into packets for allocation of control state.
Each packet includes routing information (RI) and a sequence number (SN). Packets are further
divided into flits for allocation of buffer capacity and channel bandwidth. Flits include no routing
or sequencing information beyond that carried in the packet, but may include a virtual-channel
identifier (VCID) to record the assignment of packets to control state.

packets follow different paths between the source and destination. If packets can be
guaranteed to remain in order, the sequence number is not needed.

A packet may be further divided into flow control digits or flits. A flit is the basic
unit of bandwidth and storage allocation used by most flow control methods. Flits
carry no routing and sequencing information and thus must follow the same path
and remain in order. However, flits may contain a virtual-channel identifier (VCID)
to identify which packet the flit belongs to in systems where multiple packets may
be in transit over a single physical channel at the same time.

The position of a flit in a packet determines whether it is a head flit, body flit,
tail flit, or a combination of these. A head flit is the first flit of a packet and carries
the packet’s routing information. A head flit is followed by zero or more body flits
and a tail flit. In a very short packet, there may be no body flits, and in the extreme
case where a packet is a single flit, the head flit may also be a tail flit. As a packet
traverses a network, the head flit allocates channel state for the packet and the tail
flit deallocates it. Body and tail flits have no routing or sequencing information and
thus must follow the head flit along its route and remain in order.

A flit is itself subdivided into one or more physical transfer digits or phits. A
phit is the unit of information that is transferred across a channel in a single clock
cycle. Although no resources are allocated in units of phits, a link level protocol must
interpret the phits on the channel to find the boundaries between flits.

Why bother to break packets into flits? One could do all allocation: channel state,
buffer capacity, and channel bandwidth in units of packets. In fact, we will examine
several flow control policies that do just this. These policies, however, suffer from
conflicting constraints on the choice of packet size. On one hand, we would like to

12.2 Bufferless Flow Control 225

make packets very large to amortize the overhead of routing and sequencing. On the
other hand, we would like to make packets very small to permit efficient, fine-grained
resource allocation and minimize blocking latency. Introducing flits eliminates this
conflict. We can achieve low overhead by making packets relatively large and also
achieve efficient resource utilization by making flits very small.

There are no hard and fast rules about sizes. However, phits are typically be-
tween 1 bit and 64 bits in size, with 8 bits being typical. Flits usually range from
16 bits (2 bytes) to 512 bits (64 bytes), with 64 bits (8 bytes) being typical. Finally,
packets usually range from 128 bits (16 bytes) to 512 Kbits (64 Kbytes), with 1 Kbit
(128 bytes) being typical. With these typical sizes, there are eight 8-bit phits to a
64-bit flit, and sixteen 64-bit flits to a 1-Kbit packet.

12.2 Bufferless Flow Control

The simplest forms of flow control use no buffering and simply act to allocate channel
state and bandwidth to competing packets. In these cases, the flow-control method
must perform an arbitration to decide which packet gets the channel it has requested.
After the arbitration, the winning packet advances over this channel. The arbitration
method must also decide how to dispose of any packets that did not get their re-
quested destination. Since there are no buffers, we cannot hold the losing packets
until their channels become free. Instead, we must either drop them or misroute
them.

For example, consider the situation in Figure 12.3(a).Two packets,A and B,arrive
at a bufferless network node and both request output channel zero. Figure 12.3(b)
shows how a dropping flow control method, similar to that used in Chapter 2, han-
dles this conflict. In this case, A wins the arbitration and advances over the out-
put link. Packet B, on the other hand, loses the arbitration and is discarded. Any
resources, such as channel bandwidth, that are expended advancing packet B to
this point are wasted. Packet B must be retransmitted from its source, which we
assume has a buffered copy, repeating the effort already expended getting the packet
to this point in the network. Also, some acknowledgment mechanism is required
to inform the source when B has been received successfully or when it needs to
be retransmitted. Alternatively, packet B may be misrouted to the other output, as
shown in Figure 12.3(c). In this case, there must be sufficient path diversity and an
appropriate routing mechanism to route packet B to its destination from this point.

A time-space diagram for the dropping flow control policy of Figure 12.3(b),
using explicit negative acknowledgments or nacks (N), is shown in Figure 12.4. This
diagram is similar to a Gantt chart in that it shows the utilization of resources (chan-
nels) on the vertical axis plotted against time on the horizontal axis. The figure shows
a five-flit packet being sent along a four-hop route. The vertical axis shows the for-
ward (F) and reverse (R) directions of the four channels (0–3). The horizontal axis
shows the flit cycle (0–17). In the figure, the first transmission of the packet is unable
to allocate channel 3 and is dropped. A nack triggers a retransmission of the packet,
which succeeds.

226 C H A P T E R 12 Flow Control Basics

0AA

(a)

0

(b)

A

0BB B

AA

BB

A

B

AA

BB

0A A

0

1
(c)

A

B

AA

BB

0A A

0B B

Figure 12.3 Bufferless flow control: (a) Two packets, A and B, arrive at a network node. Both request
output channel 0. (b) Dropping flow control: A acquires channel 0 and B is dropped. B must
be retransmitted from the source. (c) Misrouting: A acquires channel 0 and B is misrouted onto
channel 1. Later in the network, B must be rerouted for it to reach its correct destination.

A packet delivery begins in flit cycle 0 with the head flit (H) of the packet
traversing channel 0. The body flits (B) follow on cycles 1 through 3 and the tail flit
(T) follows on cycle 4. In this case, the tail flit does not deallocate channel 0, as the
packet must retain ownership of the channel until it receives an acknowledgment
(positive or negative). During cycles 1 and 2, the head flit traverses channels 1 and 2,
respectively.After traversing channel 2, however, the head flit encounters contention,
is unable to acquire channel 3, and is dropped. To signal this failure, the router at
the far end of channel 2 sends a nack along the reverse direction of channel 2 during
cycle 3. The nack traverses the reverse direction of channels 1 and 0 on cycles 4
and 5, respectively, arriving at the source at the end of cycle 5. As the nack arrives
at each node, it releases the resources held by that node, making them available for
other packets. For example, in cycle 4, the nack arrives at the near end of cha-
nnel 1. At that point, the packet releases the forward and reverse directions of
channel 1.

12.2 Bufferless Flow Control 227

H

N

B B B T

C
ha

nn
el

0

1

2

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

H B B B

H B
N

N
F

R

F

R

F

R

3 F

R

H B B B T

H B B B T

H B B B T

H B B B T
A

A

A

A

Figure 12.4 Time-space diagram showing dropping flow control with explicit negative acknowledgment.
Time is shown on the horizontal axis in cycles. Space is shown on the vertical axis in channels.
Forward and reverse channels for each link are shown on alternating lines. A five-flit packet is
transmitted across channel 0 in cycle 0 and proceeds across channels 1 and 2. It is unable to
acquire channel 3 in cycle 3 and thus is dropped. A negative acknowledgment or nack (N) is
transmitted across reverse channel 2 in cycle 3. The arrival of this nack triggers a retransmission
of the packet, starting in cycle 6. The last flit of the packet is received at the destination in cycle
13 and an acknowledgment is sent along the reverse channels in cycle 14.

After the nack is received by the source, the packet is retransmitted starting
in cycle 6. The retransmitted packet is able to acquire all four of the channels
needed to reach the destination. The head flit reaches the destination during cycle
9 and the tail arrives during cycle 13. After the tail is received, an acknowledgment
(A) is sent along the reverse channel in cycle 14 and arrives at the source in cy-
cle 17. As the acknowledgment arrives at each node, it frees the resources held by
that node.

The dropping flow control we implemented in Chapter 2 does not use explicit
negative acknowledgments. Rather, it uses a timeout to detect when a packet is
dropped, as illustrated in Figure 12.5. As before, the packet fails to acquire channel 3
on the first transmission. In this case, however, a nack is not sent. Instead, the packet
continues its transmission across channels 0 through 2. On each of these channels,
the tail flit deallocates the resources held by the packet as it leaves the node. Thus,
channels 0, 1, and 2 become free during cycles 5, 6, and 7, respectively.

H B B B T

C
h

a
n

n
e

l 0
1
2

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3

H B B B T

A

H B B B T
H B B B T

H B B B T
H B B B T

H B B B T
A

A
A

18 19 20 21 22 23

timeout

Figure 12.5 Time-space diagram showing dropping flow control without explicit nack: A 5-flit packet is
transmitted starting in cycle 0 and proceeds across channels 0, 1, and 2. The packet is unable
to acquire channel 3 in cycle 3 and is dropped at this point. However, the preceding channels
continue to transmit the packet until the tail flit is received. A timeout triggers a retransmis-
sion of the packet in cycle 12. The tail flit of the packet is received during cycle 19 and an
acknowledgment is sent starting in cycle 20.

228 C H A P T E R 12 Flow Control Basics

After a timeout has elapsed without the source receiving an acknowledgment,
it retransmits the packet starting in cycle 12. This time the packet is successfully
received during cycles 15 through 19. An acknowledgment is sent in cycle 20, arriv-
ing in cycle 23. Since no resources are held after the tail flit passes, the acknowledg-
ment must compete for the reverse channels and may itself be dropped. In this case,
the packet will be retransmitted even though it was correctly received the first time.
Some mechanism, which would typically employs sequence numbers, is needed at
the receiver to delete such duplicate packets, ensuring that every packet is received
exactly once.

Although simple,dropping flow control is very inefficient because it uses valuable
bandwidth transmitting packets that are later dropped. A method of calculating the
throughput of dropping flow control (without explicit nacks) is given in Chapter 2.

While misrouting, as in Figure 12.3(c), does not drop packets, it wastes band-
width by sending packets in the wrong direction. In some cases, this leads to insta-
bility, where the throughput of the network drops after the offered traffic reaches
a point. Misrouting also applies only to networks that have sufficient path diversity
for a packet to be able to reach the destination after being misrouted. A butterfly
network, for example, cannot use misrouting, since one incorrect hop will prevent a
packet from ever reaching its destination. In networks like tori that do have sufficient
path diversity, livelock is an issue when misrouting is used. If a packet misroutes too
often, it may never get closer to its destination. Any flow control policy that involves
misrouting should include some provable guarantee of forward progress to ensure
that every packet eventually gets delivered.

12.3 Circuit Switching

Circuit switching is a form of bufferless flow control that operates by first allocating
channels to form a circuit from source to destination and then sending one or more
packets along this circuit. When no further packets need to be sent, the circuit is
deallocated. As illustrated in Figure 12.6, the process involves four phases. During
the first phase (cycles 0–4), a request (R) propagates from the source to the des-
tination and allocates channels. In this example, no contention is encountered and
the request reaches the destination without delay. After the circuit is allocated, an
acknowledgment (A) is transmitted back to the source during the second phase (cy-
cles 6–10). Once the acknowledgment is received, the circuit is established and can
handle an arbitrary number and size of data packets with no further control. In the
example, two four-flit packets are sent, each followed by three idle cycles. Finally,
when no further data needs to be sent, a tail flit (T) is sent to deallocate the channels
(cycles 26–30), freeing these channels for use in other circuits.

Circuit switching differs from dropping flow control in that if the request flit
is blocked, it is held in place rather than dropped. This situation is illustrated in
Figure 12.7, which is identical to Figure 12.6 except that the request is delayed
four cycles before it is able to allocate channel 3. During this period, the head flit
is blocked. It is held in the router at the near end of channel 3 and it rearbitrates

12.3 Circuit Switching 229

R
R

R
R

R A
A

A
A

A D D D D
D D D D

D D D D
D D D D

D D D DC
ha

nn
el

0
1
2
3
4

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
T

T
T

T

24 25 26 27 28 29 30

D D D D
D D D D

D D D D
D D D D

D D D D

Figure 12.6 Time-space diagram showing transmission of two 4-flit packets over a 5-hop route using circuit
switching with no contention. For this example, tr = 1 cycle, and D = 0. The transmission
proceeds in 4 phases. First, a request (R) is sent to the destination to acquire the channel state at
each hop of the route. Second, when the request reaches the destination, an acknowledgment
(A) is returned along a reverse channel to the source. Third, when the acknowledgment reaches
the source, the data flits (D) are sent over the reserved channel. As long as the channel (circuit)
is open, additional packets may be sent. Finally, a tail flit (T) deallocates the reserved channels
as it passes.

for access to channel 3 each cycle. Eventually (in this case, in cycle 7), the head
flit acquires channel 3 and proceeds with allocation of the circuit. So, compared
to dropping flow control, circuit switching has the advantage that it never wastes
resources by dropping a packet. Because it buffers the header at each hop, it always
makes forward progress. However, circuit switching does have two weaknesses that
make it less attractive than buffered flow control methods: high latency and low
throughput.

From the time-space diagram of Figures 12.6 and 12.7 one can see that the
zero-load latency of a single packet using circuit switching is

T0 = 3Htr + L

b
,

ignoring wire latency. The first term reflects the time required to set up the channel
(not including contention) and deliver the head flit, the second term is serialization
latency, the third term is the time of flight, and the final term is contention time. This
equation has three times the header latency given in Equation 3.11 because the path
from source to destination must be traversed three times to deliver the packet: once
in each direction to set up the circuit and then again to deliver the first flit. These

R
R

R
R

R A
A

A
A

A D D D D
D D D D

D D D D
D D D D

D D D DC
ha

nn
el

0
1
2
3
4

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
T

T
T

T

24 25 26 27 28 29 30

D D D D
D D D D

D D D D
D D D D

D D D D

31 32 33 34

Figure 12.7 Time-space diagram showing circuit switching with contention. For this example, tr = 1 cycle,
and D = 0. The case is identical to that of Figure 12.6 except that the request is blocked for 4
cycles (cycles 3–6) before it is able to allocate channel 3.

230 C H A P T E R 12 Flow Control Basics

three traversals represent a significant increase in latency in the case of a single short
packet.2

Throughput also suffers in circuit switching because the period of time that a
channel is reserved is longer than the time it is active. In the case where a single
packet is sent, each channel is busy (held by the circuit) for

Tb0 = 2Htr + L

b
.

During the 2Htr setup time the channel is idle. It cannot be allocated to another
circuit and the current circuit is not yet ready to send data over it. The channel
bandwidth represented by this time is thus lost. For short-duration circuits, this is a
significant overhead.3

Circuit switching has the advantage of being very simple to implement. The
logic for a router differs only slightly from that of the dropping flow control router
described in Chapter 2. A register is added to each input to hold a request in the
event of contention and a reverse path is added.

12.4 Bibliographic Notes

Circuit switching has its origins in telephony, but is not commonly used in modern
interconnection networks. Dropping flow control, while inefficient, is simple and
was used in the BBN Butterfly (Section 4.5) and its follow-on, the BBN Monarch
(Section 23.4). Misrouting packets, also refered to as deflection or hot-potato routing,
was introduced by Baran [12] and was used in both the HEP Multiprocessor [174]
and the Tera Computer System [9].

12.5 Exercises

12.1 Dropping flow control with explicit nacks. Consider the dropping flow control technique
with explicit nacks discussed in Section 12.2 and shown in Figure 12.4. Compute an
upper-bound on the throughput (as a fraction of capacity) of a network using this
flow control method. Assume a maximum packet length of F flits, an average hop
count of Havg, uniform traffic, and a symmetric topology.

12.2 Timeout interval for dropping flow control. Consider the dropping flow control tech-
nique with timeout discussed in Section 12.2 and shown in Figure 12.5. Assuming
that the maximum packet length is F flits and each hop of the network requires one

2. In the absence of contention, this disadvantage can be eliminated by using optimistic circuit switching.
See Exercise 12.4.

3. Some of this overhead can be eliminated, in the absence of contention, by having the circuit setup request
reserve the channel for future use rather than claiming it immediately. See Exercise 12.5.

12.5 Exercises 231

flit time (cycle), give an expression for the minimum timeout interval in terms of
these parameters and the network’s diameter.

12.3 Livelock with dropping flow control and timeout. In dropping flow control with a time-
out mechanism, the reverse channels for acknowledgments are not reserved and
therefore the acknowledgments themselves may be dropped because of contention.
Explain the livelock issues associated with this and suggest a simple solution.

12.4 Optimistic circuit switching. An optimistic circuit switching technique could lower
zero-load latency by speculatively sending the data along with the header as the
circuit is being set up. If the header becomes blocked, the data is dropped and a nack
is send back along the partially reserved circuit. Otherwise, the data can be deliver
to the destination immediately after the circuit is established. Draw two time-space
diagrams of optimistic circuit switching for when the speculative data is and is not
dropped. Assume tr = 1 cycle and D = 0. Can optimistic circuit switching reduce
the number of cycles that channels are reserved but idle? If so, by how much?

12.5 Reservation circuit switching. Consider a flow control method similar to circuit switch-
ing but where the request message reserves each channel for a fixed period of time
in the future (for example, for 10 cycles starting in 15 cycles). At each router along
the path, if the request can be accommodated a reservation is made. If the request
cannot be accommodated a nack is sent that cancels all previous recommendations
for the connection, and the request is retried. If a request reaches the destination,
an acknowledgement is sent back to the source, confirming all reservations. Draw
a time-space diagram of a situation that demonstrates the advantage of reservation
circuit switching over conventional circuit switching.

.
This Page Intentionally Left Blank

C H A P T E R 13

Buffered Flow Control

Adding buffers to our networks results in significantly more efficient flow control.
This is because a buffer decouples the allocation of adjacent channels. Without a
buffer, the two channels must be allocated to a packet (or flit) during consecutive
cycles, or the packet must be dropped or misrouted. There is nowhere else for the
packet to go. Adding a buffer gives us a place to store the packet (or flit) while waiting
for the second channel, allowing the allocation of the second channel to be delayed
without complications.

Once we add buffers to an interconnection network,our flow control mechanism
must allocate buffers as well as channel bandwidth. Moreover, we have a choice
as to the granularity at which we allocate each of these resources. As depicted in
Figure 13.1, we can allocate either buffers or channel bandwidth in units of flits or
packets.As shown in the figure,most flow control mechanisms allocate both resources
at the same granularity. If we allocate both channel bandwidth and buffers in units of
packets, we have packet-buffer flow control, either store-and-forward flow control
or cut-through flow control, which will be described further in Section 13.1.

If we allocate both bandwidth and buffers in units of flits, we have flit-buffer
flow control, which we will describe in Section 13.2. Allocating storage in units of
flits rather than packets has three major advantages. It reduces the storage required
for correct operation of a router, it provides stiffer backpressure from a point of
congestion to the source, and it enables more efficient use of storage.

The off-diagonal entries in Figure 13.1 are not commonly used. Consider first
allocating channels to packets but buffers to flits.This will not work. Sufficient buffer-
ing to hold the entire packet must be allocated before transmitting a packet across a
channel. The case where we allocate buffers to packets and channel bandwidth to
flits is possible, but not common. Exercise 13.1explores this type of flow control in
more detail.

233

234 C H A P T E R 13 Buffered Flow Control

Channel allocated in units of

Packets Flits
B

uf
fe

r
al

lo
ca

te
d

in
 u

ni
ts

 o
f

P
ac

ke
ts

F
lit

s

Packet-buffer
flow control

Flit-buffer
flow controlNot possible

See
Exercise13.1

Figure 13.1 Buffered flow control methods can be classified based on their granularity of channel bandwidth
allocation and of buffer allocation.

This chapter explores buffered flow control in detail. We start by describing
packet-buffer flow control (Section 13.1) and flit-buffer flow control (Section 13.2).
Next, we present methods for managing buffers and signaling backpressure in
Section 13.3. Finally, we present flit-reservation flow control (Section 13.4), which
separates the control and data portions of packets to improve allocation efficiency.

13.1 Packet-Buffer Flow Control

We can allocate our channel bandwidth much more efficiently if we add buffers
to our routing nodes. Storing a flit (or a packet) in a buffer allows us to decouple
allocation of the input channel to a flit from the allocation of the output channel
to a flit. For example, a flit can be transferred over the input channel on cycle i and
stored in a buffer for a number of cycles j until the output channel is successfully
allocated on cycle i + j . Without a buffer, the flit arriving on cycle i would have to
be transmitted on cycle i + 1, misrouted, or dropped. Adding a buffer prevents the
waste of the channel bandwidth caused by dropping or misrouting packets or the
idle time inherent in circuit switching. As a result, we can approach 100% channel
utilization with buffered flow control.

Buffers and channel bandwidth can be allocated to either flits or packets. We
start by considering two flow control methods, store-and-forward and cut-through, that
allocate both of these resources to packets. In Section 13.2, we see how allocating
buffers and channel bandwidth to flits rather than packets results in more efficient
buffer usage and can reduce contention latency.

With store-and-forward flow control, each node along a route waits until a packet
has been completely received (stored) and then forwards the packet to the next node.
The packet must be allocated two resources before it can be forwarded: a packet-
sized buffer on the far side of the channel and exclusive use of the channel. Once
the entire packet has arrived at a node and these two resources are acquired, the
packet is forwarded to the next node. While waiting to acquire resources, if they are

13.1 Packet-Buffer Flow Control 235

not immediately available, no channels are being held idle and only a single packet
buffer on the current node is occupied.

A time-space diagram showing store-and-forward flow control is shown in
Figure 13.2. The figure shows a 5-flit1 packet being forwarded over a 4-hop route
with no contention. At each step of the route the entire packet is forwarded over
one channel before proceeding to the next channel.

The major drawback of store-and-forward flow control is its very high latency.
Since the packet is completely received at one node before it can begin moving to
the next node, serialization latency is experienced at each hop. Therefore, the overall
latency of a packet is

T0 = H

(
tr + L

b

)
.

Cut-through flow control2 overcomes the latency penalty of store-and-forward
flow control by forwarding a packet as soon as the header is received and resources
(buffer and channel) are acquired, without waiting for the entire packet to be
received . As with store-and-forward flow control, cut-through flow control allo-
cates both buffers and channel bandwidth in units of packets. It differs only in that
transmission over each hop is started as soon as possible without waiting for the
entire packet to be received.

Figure 13.3 shows a time-space diagram of cut-through flow control forwarding
a 5-flit3 packet over a 4-hop route without contention (Figure 13.3[a]) and with
contention (Figure 13.3[b]). The figure shows how transmission over each hop is
started as soon as the header is received as long as a buffer and a channel are available.

H B B B T

C
ha

nn
el

0
1
2

Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3

H B B B T
H B B B T

H B B B T

17 18 19

Figure 13.2 Time-space diagram showing store-and-forward flow control used to send a 5-flit packet over
4 channels. For this example, tr = 1 cycle and D = 0. At each channel, a buffer is allocated to
the packet and the entire packet is transmitted over the channel before proceeding to the next
channel.

1. With store-and-forward flow control, packets are not divided into flits. We show the division here for
consistency with the presentation of other flow control methods.

2. This method is often called virtual cut-through. We shorten the name here to avoid confusion with virtual-
channel flow control.

3. As with store-and-forward, cut-through does not divide packets into flits. We show the division here for
consistency.

236 C H A P T E R 13 Buffered Flow Control

H B B B T

C
h

a
n

n
e

l 0
1
2

Cycle
0 1 2 3 4 5 6 7

3

H B B B T
H B B B T

H B B B T

H B B B T

C
h

a
n

n
e

l 0
1
2

Cycle
0 1 2 3 4 5 6 7 8 9 10

3

H B B B T
H B B B T

H B B B T

(a)

(b)

Figure 13.3 Time-space diagram showing cut-through flow control sending a 5-flit packet over 4 channels.
For this example, tr = 1 cycle and D = 0. (a) The packet proceeds without contention. An
entire packet buffer is allocated to the packet at each hop; however, each flit of the packet is
forwarded as soon as it is received, resulting in decreased latency. (b) The packet encounters
contention for three cycles before it is able to allocate channel 2. As the buffer is large enough
to hold the entire packet, transmission over channel 1 proceeds regardless of this contention.

In the first case, the resources are immediately available and the header is forwarded
as soon as its received. In the second case, the packet must wait three cycles to acquire
channel 2. During this time transmission continues over channel 1 and the data is
buffered.

By transmitting packets as soon as possible, cut-through flow control reduces the
latency from the product of the hop count and the serialization latency to the sum
of these terms:

T0 = Htr + L

b
.

At this point, cut-through flow control may seem like an ideal method. It gives
very high channel utilization by using buffers to decouple channel allocation. It also
achieves very low latency by forwarding packets as soon as possible. However, the
cut-through method, or any other packet-based method, has two serious shortcom-
ings. First, by allocating buffers in units of packets, it makes very inefficient use of
buffer storage. As we shall see, we can make much more effective use of storage
by allocating buffers in units of flits. This is particularly important when we need
multiple, independent buffer sets to reduce blocking or provide deadlock avoidance.
Second, by allocating channels in units of packets, contention latency is increased.
For example, a high-priority packet colliding with a low-priority packet must wait
for the entire low-priority packet to be transmitted before it can acquire the chan-
nel. In the next section, we will see how allocating resources in units of flits rather
than packets results in more efficient buffer use (and hence higher throughput) and
reduced contention latency.

13.2 Flit-Buffer Flow Control 237

13.2 Flit-Buffer Flow Control

13.2.1 Wormhole Flow Control

Wormhole flow control4 operates like cut-through, but with channel and buffers
allocated to flits rather than packets. When the head flit of a packet arrives at a node,
it must acquire three resources before it can be forwarded to the next node along
a route: a virtual channel (channel state) for the packet, one flit buffer, and one flit
of channel bandwidth. Body flits of a packet use the virtual channel acquired by the
head flit and hence need only acquire a flit buffer and a flit of channel bandwidth
to advance. The tail flit of a packet is handled like a body flit, but also releases the
virtual channel as it passes.

A virtual channel holds the state needed to coordinate the handling of the flits
of a packet over a channel. At a minimum, this state identifies the output channel of
the current node for the next hop of the route and the state of the virtual channel
(idle, waiting for resources, or active). The virtual channel may also include pointers
to the flits of the packet that are buffered on the current node and the number of
flit buffers available on the next node.

An example of a 4-flit packet being transported through a node using wormhole
flow control is shown in Figure 13.4. Figure 13.4(a–g) illustrates the forwarding
process cycle by cycle, and Figure 13.4(h) shows a time-space diagram summarizing
the entire process. The input virtual channel is originally in the idle state (I) when
the head flit arrives (a). The upper output channel is busy, allocated to the lower
input (L), so the input virtual channel enters the waiting state (W) and the head flit
is buffered while the first body flit arrives (b). The packet waits two more cycles for
the output virtual channel (c). During this time the second body flit is blocked and
cannot be forwarded across the input channel because no buffers are available to
hold this flit. When the output channel becomes available, the virtual channel enters
the active state (A), the header flit is forwarded and the second body flit is accepted.
The remaining flits of the packet proceed over the channel in subsequent cycles (e,
f, and g). As the tail flit of the packet is forwarded, it deallocates the input virtual
channel, returning it to the idle state (g).

Compared to cut-through flow control, wormhole flow control makes far more
efficient use of buffer space, as only a small number of flit buffers are required
per virtual channel.5 In contrast, cut-through flow control requires several pack-
ets of buffer space, which is typically at least an order of magnitude more storage
than wormhole flow control. This savings in buffer space, however, comes at the
expense of some throughput, since wormhole flow control may block a channel
mid-packet.

4. Historically, this method has been called “wormhole routing.” However, it is a flow control method and
has nothing to do with routing. Hence, we refer to this method as “wormhole flow control.”

5. Enough buffers should be provided to cover the round-trip latency and pipeline delay between the two
nodes. This is discussed in more detail in Sections 13.3 and 16.3.

238 C H A P T E R 13 Buffered Flow Control

I

BT B H
L

(a)

W U

BT B H
L

(b)

W U

BT B H
L

(c - 2 cycles)

A U

BT B H
U

(d)

A U

BT B H
U

(e)

A U

BT B
U

(f)

I

BT B H

(g)

B TBH

BH B T

Cycle

a b c c d e f g

(h)

In

Out

VC state Output

Flit buffers

Figure 13.4 Wormhole flow control: (a–g) a 4-flit packet routing through a node from the upper input port
to the upper output port, (h) a time-space diagram showing this process. In (a) the header arrives
at the node, while the virtual channel is in the idle state (I) and the desired upper (U) output
channel is busy — allocated to the lower (L) input. In (b) the header is buffered and the virtual
channel is in the waiting state (W), while the first body flit arrives. In (c) the header and first body
flit are buffered, while the virtual channel is still in the waiting state. In this state, which persists
for two cycles, the input channel is blocked. The second body flit cannot be transmitted, since
it cannot acquire a flit buffer. In (d) the output virtual channel becomes available and allocated
to this packet. The state moves to active (A) and the head is transmitted to the next node. The
body flits follow in (e) and (f). In (g) the tail flit is transmitted and frees the virtual channel,
returning it to the idle state.

13.2 Flit-Buffer Flow Control 239

Blocking may occur with wormhole flow control because the channel is owned
by a packet, but buffers are allocated on a flit-by-flit basis. When a flit cannot acquire
a buffer, as occurs in Figure 13.4(c), the channel goes idle. Even if there is another
packet that could potentially use the idle channel bandwidth, it cannot use it because
the idled packet owns the single virtual channel associated with this link. Even though
we are allocating channel bandwidth on a flit-by-flit basis, only the flits of one packet
can use this bandwidth.

13.2.2 Virtual-Channel Flow Control

Virtual-channel flow control, which associates several virtual channels (channel state
and flit buffers) with a single physical channel, overcomes the blocking problems of
wormhole flow control by allowing other packets to use the channel bandwidth that
would otherwise be left idle when a packet blocks. As in wormhole flow control, an
arriving head flit must allocate a virtual channel, a downstream flit buffer, and channel
bandwidth to advance. Subsequent body flits from the packet use the virtual channel
allocated by the header and still must allocate a flit buffer and channel bandwidth.
However, unlike wormhole flow control, these flits are not guaranteed access to
channel bandwidth because other virtual channels may be competing to transmit
flits of their packets across the same link.

Virtual channels allow packets to pass blocked packets, making use of otherwise
idle channel bandwidth, as illustrated in Figure 13.5. The figure shows 3 nodes of a
2-D, unidirectional torus network in a state where a packet B has entered node 1
from the north, acquired channel p from node 1 to node 2 and blocked. A second
packet A has entered node 1 from the west and needs to be routed east to node 3.
Figure 13.5(a) shows the situation using wormhole routing with just a single virtual
channel per physical channel. In this case, packet A is blocked at node 1 because it is
unable to acquire channel p. Physical channels p and q are both idle because packet
B is blocked and not using bandwidth. However, packet A is unable to use these idle
channels because it is unable to acquire the channel state held by B on node 2.

Figure 13.5(b) shows the same configuration with two virtual channels per phys-
ical channel. Each small square represents a complete virtual channel state: the chan-
nel state (idle, waiting, or active), the output virtual channel, and a flit buffer. In this
case, packet A is able to acquire the second virtual channel on node 2 and thus pro-
ceed to node 3, making use of channels p and q that were left idle with just a single
virtual channel per node.

The situation illustrated in Figure 13.5 is analogous to a stopped car (packet B)
on a single-lane road waiting to make a left turn onto a congested side road (south
exit of node 2). A second car (packet A) is blocked behind the first car and unable
to proceed even though the road ahead (channels p and q) is clear. Adding a virtual
channel is nearly analogous to adding a left turn lane to the road. With the left turn
lane, the arriving car (packet A) is able to pass the car waiting to turn (packet B)
and continue along the road. Also, just as adding a virtual channel does not add
bandwidth to the physical channel, a left turn lane does not increase the width of
the roads between intersections.

240 C H A P T E R 13 Buffered Flow Control

A

B

B

Blocked

Node 1 Node 2 Node 3

idle

A

B

Blocked

Node 1 Node 2 Node 3

B

A

A

idle(a)
Wormhole

(b)
Virtual

channel

chan p chan q

chan p chan q

Virtual
channel

Figure 13.5 (a) With wormhole flow control when a packet, B, blocks while holding the sole virtual channel
associated with channel p, channels p and q are idled even though packet A requires use of
these idle channels. (b) With virtual channel flow control, packet A is able to proceed over
channels p and q by using a second virtual channel associated with channel p on node 2.

As this simple example demonstrates, virtual-channel flow control decouples
the allocation of channel state from channel bandwidth. This decoupling prevents
a packet that acquires channel state and then blocks from holding channel band-
width idle. This permits virtual-channel flow control to achieve substantially higher
throughput than wormhole flow control. In fact, given the same total amount of
buffer space, virtual-channel flow control also outperforms cut-through flow control
because it is more efficient to allocate buffer space as multiple short virtual-channel
flit buffers than as a single large cut-through packet buffer.

An example in which packets on two virtual channels must share the bandwidth
of a single physical channel is illustrated in Figure 13.6. Here, packets A and B arrive
on inputs 1 and 2, respectively, and both acquire virtual channels associated with
the same output physical channel. The flits of the two packets are interleaved on the
output channel, each packet getting half of the flit cycles on the channel. Because the
packets are arriving on the inputs at full rate and leaving at half rate, the flit buffers
(each with a capacity of three flits) fill up, forcing the inputs to also throttle to half
rate. The gaps in the packets on the input do not imply an idle physical channel,
however, since another virtual channel can use these cycles.

When packets traveling on two virtual channels interleave flits on a single physical
channel, as shown in Figure 13.7, this physical channel becomes a bottleneck that

13.2 Flit-Buffer Flow Control 241

In1

In2

Out

AH A1 A2 A3 A4

BH B1 B2 B3 B4

AH BH A1 B1

21

2

1

2 3

2 3

1 3

A2 B2

A5 A6

B5

AT

B6

3 3 3 3 3

3 3 3 3 3

BT

A3 B3 A4 B4 A5 B5 A6 B6 AT BT

3 3 2 2 1 1

3 2 2 1 1

A downstream

B downstream

AH

BH

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

AT

BT

Figure 13.6 Two virtual channels interleave their flits on a single physical channel. Packet A arrives on input
1 at the same time that packet B arrives on input 2, and both request the same output. Both
packets acquire virtual channels associated with the output channel but must compete for
bandwidth on a flit-by-flit basis. With fair bandwidth allocation, the flits of the two packets are
interleaved. The numbers under the arriving flits show the number of flits in the corresponding
virtual channel’s input buffer, which has a capacity of 3 flits. When the input buffer is full,
arriving flits are blocked until room is made available by departing flits. On downstream links,
the flits of each packets are available only every other cycle.

1 2 3

Bottleneck link (p)
flits interleaved

Upstream links
blocking forces

half rate

Downstream links
supply forces half rate

Figure 13.7 Sharing bandwidth of a bottleneck link by two virtual channels reduces both upstream and
downstream bandwidth. Packet A (gray) and packet B (black) share bandwidth on bottleneck
link p. Each packet gets 50% of the link bandwidth. The topology and routes are the same as
in Figure 13.5. The supply of flits out of the bottleneck link limits these packets to use no more
than 50% of the bandwidth of links downstream of the bottleneck. Also, once the flit buffers
of the virtual channels on node 1 are filled, bandwidth upstream of the bottleneck channels is
reduced to 50% by blocking. Packets traveling on other virtual channels may use the bandwidth
left idle by the bottleneck.

242 C H A P T E R 13 Buffered Flow Control

affects the bandwidth of these packets both upstream and downstream. On the
downstream channels (south and east of node 2), the head flit propagates at full
rate, allocating virtual channels, but body flits follow only every other cycle. The
idle cycles are available for use by other packets. Similarly, once the flit buffers on
node 1 fill, blocking limits each packet to transmit flits only every other cycle on
the channels immediately upstream. This reduced bandwidth may cause the buffers
on the upstream nodes to fill, propagating the blocking and bandwidth reduction
further upstream. For long packets, this blocking can reach all the way back to the
source node. As with the downstream case, the idle cycles on the upstream channels
are available for use by other packets.

Fair bandwidth arbitration, which interleaves the flits of competing packets over
a channel (Figure 13.6) results in a higher average latency than winner-take-all band-
width allocation, which allocates all of the bandwidth to one packet until it is finished
or blocked before serving the other packets (Figure 13.8). With interleaving in our
2-packet example, both packets see a contention latency that effectively doubles
their serialization latency. With winner-take-all bandwidth arbitration, however, first
one packet gets all of the bandwidth and then the other packet gets all of the band-
width. The result is that one packet has no contention latency, while the other packet
sees a contention latency equal to the serialization latency of the first packet — the
same as with interleaving. Of course, if packet A blocks before it has finished trans-
mission, it would relinquish the channel and packet B would use the idle cycles.
Making bandwidth arbitration unfair reduces the average latency of virtual-channel
flow control with no throughput penalty.

The block diagram of Figure 13.9 illustrates the state that is replicated to imple-
ment virtual channels.6 The figure shows a router with two input ports, two output

In1

In2

Out

AH A1 A2 A3 A4

BH B1 B2 B3 B4

11

2 31 3

A5 A6

B5

AT

B6

3 3 3 3 3

BT

3 3 2 1

A downstream

B downstream

AH A1 A2 A3 A4 A5 A6 AT

11 11 11

3

BH B1 B2 B3 B4 B5 B6 BT

3 3

AH A1 A2 A3 A4 A5 A6 AT

BH B1 B2 B3 B4 B5 B6 BT

Figure 13.8 Packets A and B arrive at the same time on two virtual channels, sharing a single physical
channel, just as in Figure 13.6. With winner-take-all arbitration, however, packet A transmits
all of its flits before relinquishing the physical channel to packet B. As a result, the latency of
packet A is reduced by 7 cycles without affecting the latency of packet B.

6. The internal organization of virtual-channel routers is described in more detail in Chapter 16.

13.2 Flit-Buffer Flow Control 243

A 1

Virtual
channel

VC status

A 2

Output VC

Flit buffer

W

B B H

I

2

1

Input VC

1

2

3

4

1

2

3

4

Figure 13.9 Block diagram of a virtual channel router showing the state associated with each virtual channel.
Each input virtual channel includes the channel status, the output virtual channel allocated to
the current packet, and a flit buffer. Each output virtual channel identifies the input virtual
channel, if any, to which it is allocated. In this configuration, input virtual channel 1 is in the
active state forwarding a packet to output virtual channel 1. Similarly, input virtual channel
2 is forwarding a packet to output virtual channel 2. Input virtual channel 3, associated with
the lower physical channel, is waiting to be allocated an output virtual channel. Input virtual
channel 4 is idle, waiting for the arrival of a packet.

ports, and two virtual channels per physical channel. Each input virtual channel
includes a complete copy of all channel state including a status register (idle, waiting,
or active), a register that indicates the output virtual channel allocated to the current
packet, and a flit buffer.7 For each output virtual channel, a single status register
records whether the output virtual channel is assigned and, if assigned, the input
virtual channel to which it is assigned. The figure shows a configuration in which
input virtual channels 1 and 2, associated with the upper input port, are active,
forwarding packets to output virtual channels 1 and 2, associated with the upper
output port. Input virtual channel 3 is waiting to be allocated an output virtual
channel, and input virtual channel 4 is idle.

7. As we shall see in Section 17.1, the flit buffers of the virtual channels associated with a single input are
often combined into a single storage array, and in some cases have storage dynamically allocated from the
same pool.

244 C H A P T E R 13 Buffered Flow Control

Virtual-channel flow control organizes buffer storage in two dimensions (virtual
channels and flits per virtual channel), giving us a degree of freedom in allocating
buffers. Given a fixed number of flit buffers per router input, we can decide how
to allocate these buffers across the two dimensions. Figure 13.10 illustrates the case
where there are 16 flits of buffer storage per input. This storage can be organized
as a single virtual channel with 16 flits of storage, two 8-flit virtual channels, four
4-flit virtual channels, eight 2-flit virtual channels, or sixteen 1-flit virtual channels. In
general, there is little performance gained by making a virtual channel deeper than the
number of flits needed to cover the round-trip credit latency so that full throughput
can be achieved with a single virtual channel operating. (See Section 16.3.) Thus,
when increasing the buffer storage available, it is usually better to add more virtual
channels than to add flits to each virtual channel.8

Virtual channels are the Swiss-Army™ Knife of interconnection networks. They
are a utility tool that can be used to solve a wide variety of problems. As discussed
above, they can improve network performance by allowing active packets to pass
blocked packets.As we shall see in Chapter 14, they are widely used to avoid deadlock
in interconnection networks. They can be applied to combat both deadlock in the
network itself and deadlock due to dependencies in higher-level protocols. They
can be used to provide multiple levels of priority or service in an interconnection
network by separating different classes of traffic onto different virtual channels and
allocating bandwidth preferentially to the higher-priority traffic classes. They can
even be used to make a network non-interfering by segregating traffic with different
destinations.

(a) One 16-flit buffer

(b) Two 8-flit buffers

(c) Four 4-flit buffers

Figure 13.10 If 16 flits of buffer storage are available at an input port, the storage can be arranged as a
single virtual channel with a 16-flit queue as 2 virtual channels with 8-flit queues or as 4 virtual
channels with 4-flit queues.

8. This is not a hard and fast rule. The performance analysis of virtual-channel flow control is discussed in
more detail in Chapter 23

13.3 Buffer Management and Backpressure 245

13.3 Buffer Management and Backpressure

All of the flow control methods that use buffering need a means to communicate
the availability of buffers at the downstream nodes. Then the upstream nodes can
determine when a buffer is available to hold the next flit (or packet for store-and-
forward or cut-through) to be transmitted. This type of buffer management provides
backpressure by informing the upstream nodes when they must stop transmitting
flits because all of the downstream flit buffers are full. Three types of low-level
flow control mechanisms are in common use today to provide such backpressure:
credit-based, on/off, and ack/nack. We examine each of these in turn.

13.3.1 Credit-Based Flow Control

With credit-based flow control, the upstream router keeps a count of the number of
free flit buffers in each virtual channel downstream. Then, each time the upstream
router forwards a flit, thus consuming a downstream buffer, it decrements the appro-
priate count. If the count reaches zero, all of the downstream buffers are full and no
further flits can be forwarded until a buffer becomes available. Once the downstream
router forwards a flit and frees the associated buffer, it sends a credit to the upstream
router, causing a buffer count to be incremented.

A timeline illustrating credit-based flow control is shown in Figure 13.11. Just
before time t1, all buffers on the downstream end of the channel (at node 2) are full.
At time t1, node 2 sends a flit, freeing a buffer. A credit is sent to node 1 to signal
that this buffer is available. The credit arrives at time t2, and after a short processing
interval results in a flit being sent at time t3 and received at time t4. After a short
interval, this flit departs node 2 at time t5, again freeing a buffer and sending a credit
back to node 1.

The minimum time between the credit being sent at time t1 and a credit be-
ing sent for the same buffer at time t5 is the credit round-trip delay tcrt. This delay,
which includes a round-trip wire delay and additional processing time at both ends,
is a critical parameter of any router because it determines the maximum through-
put that can be supported by the flow control mechanism. If there were only a
single flit buffer on this virtual channel, each flit would have to wait for a credit
for this single buffer before being transmitted. This would restrict the maximum
throughput of the channel to be no more than one flit each tcrt. This corresponds
to a bit rate of Lf

tcrt
, where Lf is the length of a flit in bits. If there are F flit

buffers on this virtual channel, F flits could be sent before waiting for the credit
for the original buffer, giving a throughput of F flits per tcrt or FLf

tcrt
bits per second.

Thus, we see that to prevent low-level flow control from limiting throughput over a
channel with bandwidth b, we require:

F ≥ tcrtb

Lf

. (13.1)

246 C H A P T E R 13 Buffered Flow Control

Node 1 Node 2

Flit

Credit

P
ro

ce
ss

Credit
Flit

t1

t2

T
im

e

t3

t4

P
ro

ce
ss

t5 Flit
Credit

t cr
t

Figure 13.11 Timeline of credit-based flow control. At time t1 all buffers at the node 2 end of the channel
are full and node 2 sends a flit, freeing a buffer. At the same time, a credit for this buffer is sent
to node 1 and is received at t2. After a short processing delay, node 1 sends a flit to occupy the
buffer granted by the credit at t3, and this flit is received at t4. A short time after arrival, this
flit departs node 2 at t5, freeing the buffer again and hence generating another credit for node
1. The minimum time between successive credits for the same buffer is the credit round-trip
time tcrt.

Figure 13.12 illustrates the mechanics of credit-based flow control.The sequence
begins in Figure 13.12(a). Upstream node 1 has two credits for the virtual channel
shown on downstream node 2. In Figure 13.12(b) node 1 transmits the head flit and
decrements its credit count to 1. The head arrives at node 2 in Figure 13.12(c), and,
at the same time, node 1 sends the first body flit of the packet, decrementing its
credit count to zero. With no credits, node 1 can send no flits during Figure 13.12(d)
when the body flit arrives and (e) when node 2 transmits the head flit. Transmitting
the head flit frees a flit buffer, and node 2 sends a credit back to node 1 to grant it
use of this free buffer. The arrival of this credit in Figure 13.12(f) increments the
credit count on node 1 at the same time the body flit is transmitted upstream, and
a second credit is transmitted downstream by node 2. With a non-zero credit count,
node 1 is able to forward the tail flit and free the virtual channel by clearing the
input virtual channel field (Figure 13.12[g]). The tail flit is forwarded by node 2 in
Figure 13.12(h), returning a final credit that brings the count on node 1 back to 2 in
Figure 13.12(i).

A potential drawback of credit-based flow control is a one-to-one correspondence
between flits and credits. For each flit sent downstream, a corresponding credit is
eventually sent upstream. This requires a significant amount of upstream signaling
and, especially for small flits, can represent a large overhead.

13.3 Buffer Management and Backpressure 247

1 H1 I

Node 1 Node 2

0 B1

01

H

W

B H

W

01

B

A 1

Credit

(a)

(b)

(c)

(d)

11 A 1

Credit

(e)

1 T A 1

(f)

1 I

Credit

(g)

2 I

(h)

21

Input vc Credits

I

(i)

Node 1 Node 2

Figure 13.12 A sequence showing the operation of credit-based flow control. Each subfigure represents one
flit time. In (a) node 1 has two credits for the two downstream flit buffers of the virtual channel
on node 2. In (b) and (c) node 1 transmits two flits, a head and body, using both of these
credits. These flits arrive in (c) and (d), respectively, and are buffered. At this point node 1 has
no credits, making it unable to send additional flits. A credit for the head flit is returned in (e),
incrementing the credit count in (f) and causing the tail flit to be transmitted in (g). The body
credit is returned in (f) and the tail credit in (h), leaving node 1 in (i) again with two credits
(corresponding to the two empty flit buffers on node 2).

13.3.2 On/Off Flow Control

On/off flow control can greatly reduce the amount of upstream signaling in certain
cases. With this method the upstream state is a single control bit that represents
whether the upstream node is permitted to send (on) or not (off). A signal is sent
upstream only when it is necessary to change this state. An off signal is sent when
the control bit is on and the number of free buffers falls below the threshold Foff . If
the control bit is off and the number of free buffers rises above the threshold Fon, an
on signal is sent.

A timeline illustrating on/off flow control is illustrated in Figure 13.13. At time
to t1, node 1 sends a flit that causes the number of free buffers on node 2 to fall

248 C H A P T E R 13 Buffered Flow Control

Node 1 Node 2

Off

P
ro

ce
ss

t1

t2

T
im

e

t3

t4

t5

t rt

On

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

Flit

P
ro

ce
ss

t rt
t6

t7

t8

t9

Figure 13.13 Timeline of on/off flow control. The flit transmitted at t1 causes the free buffer count on node 2
to fall below its limit, Foff, which in turn causes node 2 to send an off signal back to node 1.
Before receiving this signal, node 1 transmits additional flits that node 2 buffers in the Foff
buffers that were free when the off signal was transmitted. At t6 the free buffer count on
node 2 rises above Fon, causing node 2 to send an on signal to node 1. During the interval
between sending this on signal at t6 and the receipt of the next flit from node 1 at t9, node 2
sends flits out of the F − Fon buffers that were full at t6.

13.3 Buffer Management and Backpressure 249

below Foff and thus triggers the transmission of an off signal at t2. At t3 the off signal
is received at node 1, and after a small processing delay, stops transmission of flits at
t4. In the time trt between t1 and t4, additional flits are sent. The lower limit must
be set so that

Foff ≥ trt b

Lf

(13.2)

to prevent these additional flits from overflowing the remaining flit buffers.
After sending a number of flits, node 2 clears sufficient buffers to bring the free

buffer count above Fon at t6 and sends an on signal to node 1. Node 1 receives this
signal at t7 and resumes sending flits at t8. The first flit triggered by the on signal
arrives at t9. To prevent node 2 from running out of flits to send between sending
the on signal at t6 and receiving a flit at t9, the on limit must be set so that

F − Fon ≥ trt b

Lf

. (13.3)

On/off flow control requires that the number of buffers be at least trt b
Lf

to work at all
or Equation 13.2 cannot be satisfied. To operate at full speed, twice this number of
buffers is required so that Equation 13.3 can also be satisfied (Fon ≥ Foff):

F ≥ Fon + trt b

Lf

≥ Foff + trt b

Lf

≥ 2trt b

Lf

.

With an adequate number of buffers, on/off flow control systems can operate with
very little upstream signaling.

13.3.3 Ack/Nack Flow Control

Both credit-based and on/off flow control require a round-trip delay trt between the
time a buffer becomes empty, triggering a credit or an on signal, and when a flit
arrives to occupy that buffer. Ack/nack flow control reduces the minimum of this
buffer vacancy time to zero and the average vacancy time to trt /2. Unfortunately
there is no net gain because buffers are held for an additional trt waiting for an
acknowledgment, making ack/nack flow control less efficient in its use of buffers
than credit-based flow control. It is also inefficient in its use of bandwidth which it
uses to send flits only to drop them when no buffer is available.

With ack/nack flow control, there is no state kept in the upstream node to indi-
cate buffer availability. The upstream node optimistically sends flits whenever they
become available.9 If the downstream node has a buffer available, it accepts the
flit and sends an acknowledge (ack) to the upstream node. If no buffers are avail-
able when the flit arrives, the downstream node drops the flit and sends a negative

9. Because of this behavior, ack/nack flow control is often referred to as optimistic flow control.

250 C H A P T E R 13 Buffered Flow Control

acknowledgment (nack). The upstream node holds onto each flit until it receives an
ack. If it receives a nack, it retransmits the flit.

In systems where multiple flits may be in flight at the same time, the correspon-
dence between acks or nacks and flits is maintained by ordering — acks and nacks
are received in the same order as the flits to which they correspond. In such systems,
however, nacking a flit leads to flits being received out of order at the downstream
node. The downstream node must then reorder the flits by holding the later flits until
the earlier flits are successfully retransmitted.

The timeline of Figure 13.14 illustrates ack/nack flow control. At time t1, node
1 sends flit 1 to node 2, not knowing that no buffers are available. This flit arrives at
time t2, at which time node 2 sends a nack back to node 1. At the same time, node
1 begins sending flit 2 to node 2. At time t3, node 1 receives the nack, but before it
can be processed starts sending flit 3 to node 2. It has to wait until the transmission
of flit 3 is completed, at t4, to retransmit flit 1. Flit 1 is finally received at t5 after flits
2 and 3. Node 2 must buffer flits 2 and 3 until flit 1 is received to avoid transmitting
the flits out of order.

Because of its buffer and bandwidth inefficiency, ack/nack flow control is rarely
used. Rather, credit-based flow control is typically used in systems with small num-
bers of buffers, and on/off flow control is employed in most systems that have large
numbers of flit buffers.

Node 1 Node 2

Flit

Nack

P
ro

ce
ss

Flit 1

t1

t2

T
im

e

t4

t5

Flit 1

t3

Ack

Flit 2

Flit 3 Flit

Ack Flit

Ack

Figure 13.14 Timeline of ack/nack flow control. Flit 1 is not accepted by node 2, which returns a nack to
sending node 1. Node 2 then accepts flits 2 and 3 from node 1 and responds to each by sending
an ack to node 1. After flit 3 has been completed, node 1 responds to the nack by retransmitting
flit 1. Node 2 cannot send flits 2 or 3 onward until flit 1 is received. It must transmit flits in order.

13.4 Flit-Reservation Flow Control 251

13.4 Flit-Reservation Flow Control

While traditional wormhole networks greatly reduce the latency of sending packets
through an interconnection network, the idealized view of router behavior can differ
significantly from a pipelined hardware implementation. Pipelining breaks the stages
of flit routing into several smaller steps, which increases the hop time. Accounting
for these pipelining delays and propagation latencies gives an accurate view of buffer
utilization.

An example of buffer utilization for a wormhole network with credit-based flow
control is shown in Figure 13.15. Initially, a flit is sent from the current node to the
next node in a packet’s route. The flit occupies the buffer until it is forwarded to its
next hop; then a credit is sent along the reverse channel to the current node, which
takes a wire propagation time Tw,credit. The credit is processed by the current node,
experiencing a credit pipeline delay, and is then ready for use by another flit. Once
this flit receives the credit, it must traverse the flit pipeline before accessing the
channel. Finally, the flit propagates across the channel in Tw,data and occupies the
buffer. As shown in the figure, the actual buffer usage represents a small fraction
of the overall time. The remaining time required to recycle the credit and issue
another flit to occupy the buffer is called the turnaround time. Lower buffer uti-
lization reduces network throughput because fewer buffers are available for bypass-
ing blocked messages and absorbing traffic variations. Flit-reservation flow control
can reduce turnaround time to zero and hide the flit pipeline delay in a practical
implementation.

Flit-reservation hides the overhead associated with a pipelined router implemen-
tation by separating the control and data networks. Control flits race ahead of the data
flits to reserve network resources. As the data flits arrive, they have already been allo-
cated an outgoing virtual channel and can proceed with little overhead. Reservation

Tw,data

Flit departs
current node

Flit arrives
at next node

Flit departs
next node

and credits
sent

Tw,credit

Actual
buffer
usage

Credit
processed;
freed buffer
allocated to

next flitCredit
received at

current
node

Credit
pipeline
delay

Flit arrives
at next node
and reuses

buffer

Flit
pipeline
delay

Turnaround time

Figure 13.15 An illustration of realistic delays on buffer utilization in a typical wormhole router. As the buffer
turnaround time increases, the fraction of time a buffer is actually in use decreases.

252 C H A P T E R 13 Buffered Flow Control

also streamlines the delivery of credits, allowing zero turnaround time for buffers.
Of course, it is not always possible to reserve resources in advance, especially in
the case of heavy congestion. In these situations, data flits simply wait at the router
until resources have been reserved — the same behavior of a standard wormhole
router.

A flit-reservation packet is shown in Figure 13.16. As shown, the control portion
of the flit is separated from the data portion. The control head flit holds the same
information as a typical virtual channel flow control head flit: a type field (control
head), a virtual channel, and routing information. An additional field td0 shows the
time offset to the first data flit. This data offset couples control flits to their associated
data flits. So, for example, when a control flit arrives at a node at time t = 3 with
td0 = 2, the router knows that the associated data flit will be arriving on the data
network at time t = 3 + td0 = 5. By knowing the future arrival time of the data,
the router can start reserving resources to the data before its actual arrival. Since the
router knows when a particular data flit is arriving, no control fields are required in
the data flits themselves.

Since packets can contain an arbitrary number of data flits and the control head
flit has only a limited number of data offset fields (one, in this case), additional
control body flits can follow the head flit. The control body flits are analogous to body
flits in a typical wormhole router, and they contain additional data offset fields. In
Figure 13.16, for example, the control body flits have two additional data offset fields,
allowing two data flits per control body flit.

13.4.1 A Flit-Reservation Router

A flit-reservation router is shown in Figure 13.17. Before we describe the detailed
operation of the modules in the router, the basic operation of the router is discussed.
Control flits arrive in the router and are immediately passed to the routing logic.When
a control head flit arrives at the routing logic, its output virtual channel (next hop) is
computed and associated with the incoming virtual channel. As subsequent control
body flits arrive for that virtual channel, they are marked with the same output
channel as the control head flit. All control flits then proceed through a switch to

Packet

VCType RI td0

d0Data flits

Control head
flit

Control flits

VCType td1

Control body/
tail flit

td2

d1 d2

Figure 13.16 A flit-reservation packet showing the separation between control flits and data flit. Control flits
are associated with particular data flits by an offset in their arrival times (e.g., for a control head
flit arriving a time t , its associated data flit d0 arrives at time t + td0).

13.4 Flit-Reservation Flow Control 253

Routing
logic

Output
scheduler

Input
scheduler

Output
reservation

tableInput
reservation

table

Control
flits in

Credits
out

Data
flits in

Input buffer
pool

Control
flits out

Credits
in

Data
flits out

wr rd

Figure 13.17 A flit-reservation flow control architecture. Only a single input and single output are shown for
simplicity (per input and per output structures separated by the dashed line).

their output port. Up to this point, control flits are processed identically to flits in a
standard virtual channel router.

After a control flit reaches its output port, it passes through the output scheduler
before being forwarded to its next hop. The output scheduler is responsible for
reserving buffer space at the next hop for each of a control flit’s associated data
flits, which are given by the data offset fields. A schedule of the next router’s buffer
usage is kept in the output reservation table, which is continually updated by incoming
credits. Once the output scheduler has allocated all of a control flit’s associated data
flits and marked those reservations in the output reservation table, the control flit is
forwarded to its next hop.

The input reservation table provides the connection between control flits and
their data flits within the router. As a control flit passes through the routing logic,
its destination is also marked in the input reservation table. Additionally, each of
the data offset fields of the control flit is marked in this table. Once a flit has been
scheduled for departure by the output scheduler, this information is passed back to
the input scheduler associated with the input the flit arrived on. This allows the input
scheduler to know on which cycles flits have been scheduled to depart, indicating
when their buffers will become free.

13.4.2 Output Scheduling

The output scheduler is responsible for determining the future departure time of
each data flit associated with each control flit. For a data flit to depart, the physical
output channel must be reserved and the output scheduler must also ensure that

254 C H A P T E R 13 Buffered Flow Control

Output channel
Time

East
channel Free buffers on

next node

Free buffers on
next node

Channel busy

8

2

11

0

10

1

9

1

12

1

15

4

14

3

13

2

17

4

16

4

Output channel
Time

East
channel

Channel busy

8

2

11

0

10

1

9

1

12

0

15

3

14

2

13

1

17

3

16

3

(a)

(b)

Figure 13.18 The output reservation table. (a) Example state. (b) Updated state of the table after scheduling a
new data flit arriving on cycle 9. Cycle 12 is the first available departure time, since the channel
is busy on cycle 10 and no buffers are free on cycle 11.

there will be sufficient buffer space in the next router to store the data flit. To track
the future output channel utilization and availability of buffers at the next hop, the
output scheduler maintains the output reservation table (Figure 13.18). This table
maintains both channel usage and buffer availability counts for a number of cycles
in the future.

An example state of the output reservation table is shown in Figure 13.18(a).
A new control flit arrives at time t = 0 and the arrival time of its data flit(s) are
determined. In this example, a single new data flit is indicated with td0 = 9.10 There-
fore, the data flit will arrive at cycle t + td0 = 9 destined to the east output. This
information is forwarded to the output scheduler and the input reservation table.
(The input reservation table is discussed in the next section.)

The output scheduler attempts to find an available departure time for the new
data flit. Cycle 10 is unavailable because the output channel is already marked as
busy. Cycle 11 is also unusable, but in this case, it is because there will be no free
buffers on the next hop. The first available cycle is 12, so the output scheduler
updates the output reservation table to indicate the channel as busy during cycle 12
(Figure 13.18[b]). Also, the flit occupies a buffer at the next node, so the number of
free buffers is decremented from cycle 12 onwards.11 This buffer will eventually be
added back to output reservation table count once the credit from the next router
returns, which is also discussed in the next section.

10. For simplicity, we consider the wire propagation times to be zero in this example.
11. Since the output scheduler does not know the departure time of the flit from the next router’s buffer,

the buffer is initially assumed to be occupied until further notice. For this same reason, the data flit in the
example could not depart on cycle 10 even if the output channel was free because there must be a free
buffer for every time step after that point.

13.4 Flit-Reservation Flow Control 255

Now that the output reservation is complete, the reservation information is
passed to an input scheduler. Once all the data flits associated with a control flit
are reserved, the control flit is forwarded to the next hop. However, the relative time
of its data flits may have changed in the output scheduling process, so its data offset
field(s) must be updated. If the control flit in our example departs the router and then
arrives at the next router at t = 2, then its td0 field is changed to 10. This is because
the data flit has been delayed an additional cycle relative to the control flit by the
output scheduler and its departure time is cycle 12 — therefore, td0 = 12 − 2 = 10.

13.4.3 Input Scheduling

The input scheduler and the input reservation table organize the movement of data
flits through the flit-reservation router. By accessing the data offset fields of incoming
control flits, the routing logic marks arrival times of data flits and their destination
port in the input reservation table (Figure 13.19). Once the data flit has been reserved
an output time by the output scheduler, this reservation information is passed back
to the input scheduler. The input scheduler updates the input reservation table with
the departure time and output port of the corresponding data flit. Also, the input
scheduler sends a credit to the previous router to indicate when the data flit’s buffer
is available again.

Continuing the example from the previous section, when the arrival time of the
new data flit (cycle 9) is decoded in the routing logic, this information is passed to the
input reservation table (Figure 13.19). The data flit arriving during cycle 9 is latched
at the beginning of cycle 10, so the arrival is marked in the table along with its output
channel. The remaining entries of the table remain undetermined at this point.

When the reservation information for the new data flit returns from the output
scheduler, the departure time of the flit is stored in the input reservation table. At
this time, a credit is sent to the previous node, indicating this departure on cycle
12. Although flit reservation guarantees the arriving data flit can be buffered, the
actual buffer location is not allocated until one cycle before the data flit arrives.
After allocation, the buffer in and buffer out fields in the table are written.

Input channel
Time

West
channel

Buffer in

Flit arriving?

8 11109 12 151413 1716

5

+2

5

E

Departure time

Buffer out

Output channel

Figure 13.19 The input reservation table. A flit arrives from the west channel and is stored in buffer 5 of the
input buffer pool in cycle 10. Two cycles later, the flit departs on the east channel of the router.

256 C H A P T E R 13 Buffered Flow Control

13.5 Bibliographic Notes

Cut-through flow control was introduced by Kermani and Kleinrock [94]. Cut-
through is an attractive solution for networks with small packets and has been used in
recent networks such as the Alpha 21364 [131]. Dally and Seitz introduced worm-
hole flow control, which was first implemented on the Torus Routing Chip [56].
These ideas were further refined by Dally, who also introduced virtual-channel flow
control [44, 47]. Both wormhole and virtual-channel flow control have appeared
in numerous networks — the Cray T3D [95] and T3E [162], the SGI Spider [69],
and the IBM SP networks [178, 176], for example. Flit-reservation flow control was
developed by Peh and Dally [145].

13.6 Exercises

13.1 Packet-buffer, flit-channel flow control. Consider a flow control method that allocates
buffers to packets, like cut-through flow control, but allocates channel bandwidth
to flits, like virtual-channel flow control. What are the advantages and disadvantages
of this approach? Construct an example and draw a time-space diagram for a case
in which this flow control scheme gives a different ordering of events than pure
cut-through flow control.

13.2 Overhead of credit-based flow control. Compute the overhead of credit-based flow
control as a fraction of the packet length L. Assume a flit size of Lf and V virtual
channels.

13.3 Flow control for a shared buffer pool. Consider a router where the flit buffers are shared
between all the inputs of the switch. That is, at any point in time, flits stored at each
input may occupy a portion of this shared buffer. To ensure fairness, some fraction of
this shared buffer is statically assigned to particular inputs, but the remaining fraction
is partitioned dynamically. Describe a buffer management technique to communicate
the state of this buffer to upstream nodes. Does the introduction of a shared buffer
increase the signaling overhead?

13.4 A single-ported input buffer pool. Consider a flit-reservation router whose input buffer
pool is single-ported (one read or write per cycle). Describe how to modify the router
described in Section 13.4 and what additional state, if any, is required in the router.

13.5 Synchronization issues in flit-reservation. The flit data in a flit-reservation router is
indentified only by its arrival relative to its control information. However, in a ple-
siochronous system, the clocks between routers may occasionally “slip,” causing the
insertion of an extra cycle of transmission delay. If ignored, these extra cycles would
change what data was associated with a particular control flit. Suggest a simple way
to solve this problem.

C H A P T E R 14

Deadlock and Livelock

Deadlock occurs in an interconnection network when a group of agents, usually pack-
ets, are unable to make progress because they are waiting on one another to release
resources, usually buffers or channels. If a sequence of waiting agents forms a cycle,
the network is deadlocked. As a simple example, consider the situation shown in
Figure 14.1. Connections A and B traversing a circuit-switched network each hold
two channels, but cannot proceed further until they acquire a third channel, cur-
rently held by the other connection. However, neither connection can release the
channel needed by the other until it completes its transmission. The connections are
deadlocked and will remain in this state until some intervention. Deadlock can occur
over various resources. In this example, the resource is a physical channel. It can also
be a virtual channel or a shared packet buffer.

Deadlock is catastrophic to a network. After a few resources are occupied by
deadlocked packets, other packets block on these resources, paralyzing network oper-
ation. To prevent this situation, networks must either use deadlock avoidance (meth-
ods that guarantee that a network cannot deadlock) or deadlock recovery (in which
deadlock is detected and corrected).Almost all modern networks use deadlock avoid-
ance, usually by imposing an order on the resources in question and insisting that
packets acquire these resources in order.

A closely related network pathology is livelock. In livelock, packets continue
to move through the network, but they do not make progress toward their desti-
nations. This becomes a concern, for example, when packets are allowed to take
non-minimal routes through the network — either a deterministic or probabilistic
guarantee must ensure that the number of misroutes of a packet away from its des-
tination is limited.

257

258 C H A P T E R 14 Deadlock and Livelock

0 1

23

u

v

w

xB A

Figure 14.1 Deadlock in a circuit-switched network. Connection A holds channels u and v but cannot make
progress until it acquires channel w. At the same time, connection B holds channels w and x but
cannot make progress until it acquires channel u. Neither connection will release the channel
needed by the other. Hence, they are deadlocked.

14.1 Deadlock

14.1.1 Agents and Resources

The agents and resources that are involved in deadlock differ depending on the type
of flow control employed, as shown in Table 14.1. For circuit switching, as shown
in Figure 14.1, the agents are connections and the resources are physical channels.
As a connection is set up, it acquires physical channels and will not release any
of them until after the connection is completed. Each connection may indefinitely
hold multiple channels, all of the channels along the path from source to destination.
With a packet-buffer flow control method (like store-and-forward or virtual cut-
through), the agents are packets and the resources are packet buffers. As the head
of the packet propagates through the network, it must acquire a packet buffer at
each node. At any given point in time, a packet may indefinitely hold only a single
packet buffer. Each time the packet acquires a new packet buffer, it releases the old
packet buffer a short, bounded time later. With a flit-buffer flow control method,
the agents are again packets, but the resources are virtual channels. As the head of

Table 14.1 Agents and resources causing deadlock for different flow control methods.

Flow Control Agent Resource Cardinality

Circuit switching Connection Physical channel Multiple
Packet-buffer Packet Packet buffer Single
Flit-buffer Packet Virtual channel Multiple

14.1 Deadlock 259

the packet advances, it allocates a virtual channel (control state and a number of
flit buffers) at each node. It may hold several virtual channels indefinitely, since if
the packet blocks, the buffer space in each virtual channel is not sufficient to hold
the entire packet.

14.1.2 Wait-For and Holds Relations

The agents and resources are related by wait-for and holds relations. Consider, for
example, the case of Figure 14.1. The wait-for and holds relationships for this case
are illustrated in Figure 14.2(a). Connection A holds (dotted arrows) channels u and
v and waits for (solid arrow) w. Similarly connection B also holds two channels and
waits for a third. If an agent holds a resource, then that resource is waiting on the
agent to release it. Thus, each holds relation induces a wait-for relation in the opposite
direction: holds(a, b) ⇒ waitfor(b, a). Redrawing the holds edges as wait-for edges
in the opposite direction gives the wait-for graph of Figure 14.2(b). The cycle in this
graph (shaded) shows that the configuration is deadlocked.

The cycle of Figure 14.2 consists of alternating edges between agents and
resources. The edges from an agent to a resource indicate that the agent is wait-
ing on that resource. The edges in the opposite direction indicate that the resource
is held by the indicated agent (and, hence, is waiting on that agent to be released).

Such a cycle will exist, and hence deadlock will occur, when:

1. Agents hold and do not release a resource while waiting for access to another.

2. A cycle exists between waiting agents, such that there exists a set of agents
A0, . . . , An−1, where agent Ai holds resource Ri while waiting on resource
R(i+1 mod n) for i = 0, . . . , n − 1.

H
oldsH

ol
ds

W
aits

for

H
oldsH

ol
ds

A B

u v w x

Waits
A B

u v w x

(a) (b)

Figure 14.2 Wait-for and holds relationships for the deadlock example of Figure 14.1. (a) Connections A
and B each hold two channels (dotted arrows) and wait for a third (solid arrows). (b) Each holds
relation implies a wait-for relation in the opposite direction. Redrawing the graph using only
wait-for relations reveals the wait-for cycle causing deadlock (shaded).

260 C H A P T E R 14 Deadlock and Livelock

14.1.3 Resource Dependences

For two resources Ri and Ri+1 to be two edges apart in the wait-for graph, it must be
possible for the agent Ai holding resource Ri to wait indefinitely on resource Ri+1.
Whenever it is possible for an agent holding Ri to wait on Ri+1, we say that a resource
dependence exists from Ri to Ri+1 and denote this as Ri � Ri+1. In the example of
Figure 14.1, we have u � v � w � x � u. Note that resource dependence (�) is a
transitive relation. If a � b and b � c, then a � c.

This cycle of resource dependences is illustrated in the resource (channel)
dependence graph of Figure 14.3. This graph has a vertex for each resource (in
this case, each channel) and edges between the vertices denote dependences — for
example, to denote that u � v we draw an edge from u to v.

Because the example of Figure 14.1 deals with circuit switching, the resources
are physical channels and our resource dependence graph is a physical channel
dependence graph. With packet-buffer flow control, we would use a packet-buffer
dependence graph. Similarly, with flit-buffer flow control, we would use a virtual-
channel dependence graph.

A cycle of resource dependences in a resource dependence graph (as in
Figure 14.3) indicates that it is possible for a deadlock to occur. For a deadlock
to actually occur requires that agents (connections) actually acquire some resource
and wait on others in a manner that generates a cycle in the wait-for graph. A cycle
in a resource dependence graph is a necessary but not sufficient condition for dead-
lock. A common strategy to avoid deadlock is to remove all cycles from the resource
dependence graph. This makes it impossible to form a cycle in the wait-for graph,
and thus impossible to deadlock the network.

14.1.4 Some Examples

Consider the four-node ring network of Figure 14.1 but using packet-buffer flow
control with a single packet buffer per node. In this case, the agents are packets
and the resources are packet buffers. The packet-buffer dependence graph for this
situation is shown in Figure 14.4 (a). A packet resident in the buffer on node 0
(B0) will not release this buffer until it acquires B1, so we have B0 � B1 and the
dependence graph has an edge between these two buffers.

u

v

w

x

Figure 14.3 Resource (channel) dependence graph for the example of Figure 14.1

14.1 Deadlock 261

B0 B1

B2B3

(a)

B0 B1 B2 B3

P0 P1 P2 P3

(b)

Figure 14.4 Dependence and wait-for graphs for packet-buffer flow control. (a) Resource (packet buffer)
dependence graph for the network of Figure 14.1 using packet-buffer flow control with a single
packet buffer per node. (b) Wait-for graph for a deadlocked configuration with four packets
holding four packet buffers.

The cycle in the packet buffer dependence graph indicates the potential for
deadlock in this network. To actually construct a deadlock situation in this case
requires four packets, P0, . . . , P3, each holding one buffer and waiting for the next.
The wait-for graph for this deadlocked configuration is shown in Figure 14.4(b).
Each buffer Bi waits on the packet that holds it, Pi , to release it. Each packet in turn
waits on buffer Bi+1 to advance around the ring. We cannot construct a cycle in this
wait-for graph with fewer than four packets, since the cycle in the buffer dependence
graph is of length four and, with packet-buffer flow control, each packet can hold
only a single buffer at a time.

Now consider the same four-node ring network, but using flit-buffer flow control
with a two virtual channels for each physical channel. We assume that a packet in
either virtual channel of one physical channel can choose either virtual channel of
the next physical channel to wait on. Once a packet has chosen one of the virtual
channels, it will continue to wait on this virtual channel, even if the other becomes
free.1 The virtual channel dependence graph for this case is shown in Figure 14.5(a).
Because a packet holding either of the virtual channels for one link can wait on either
of the virtual channels for the next link, there are edges between all adjacent channels
in this graph.

A wait-for graph showing a deadlocked configuration of this flit-buffer network
is shown in Figure 14.5(b). The situation is analagous to that shown in Figure 14.2,
but with packets and virtual channels instead of connections and physical channels.
Packet P0 holds virtual channels u0 and v0 and is waiting for w0. At the same time,
P1 holds w0 and x0 and is waiting for v0. The “1” virtual channels are not used
at all. If packet P0 were allowed to use either w0 or w1, this configuration would
not represent a deadlock. A deadlocked configuration of this network when packets
are allowed to use any unclaimed virtual channel at each hop requires four packets.
Generating this configuration is left as Exercise 14.1.

1. We leave the construction of a deadlocked configuration for the case where the packet takes the first free
virtual channel as Exercise 14.1 .

262 C H A P T E R 14 Deadlock and Livelock

u1

u0

v0 v1

w1

w0

x1 x0

x0 x1u0 u1 v0 v1 w0 w1

P0 P1

(a) (b)

Figure 14.5 Dependence and wait-for graphs for flit-buffer flow control. (a) Resource (virtual channel) de-
pendence graph for the network of Figure 14.1 using flit-buffer flow control with two virtual
channels per physical channel. (b) Wait-for graph for a deadlocked configuration with two
packets holding two virtual channels each.

14.1.5 High-Level (Protocol) Deadlock

Deadlock may be caused by dependences external to the network. For example,
consider the case shown in Figure 14.6. The top network channel is waiting for the
server to remove a request packet from the network. The server in turn has limited
buffering and thus cannot accept the request packet until the lower channel accepts
a reply packet from the server’s output buffer. In effect, the upper channel is waiting
on the lower channel due to the external sever. This edge of the wait-for graph is
due not to the network itself, but to the server. Deadlock caused by wait-for loops
that include such external edges are often called high-level deadlock or protocol
deadlock.

In a shared-memory multiprocessor, for example, such an external wait-for edge
may be caused by the memory server at each node, which accepts memory read and
write request packets, reads or writes the local memory as requested, and sends
a response packet back to the requesting node. If the server has limited internal

Server

Node

Request

Reply

Network

wait-for

Figure 14.6 Implicit resource dependence in a request-reply system.

14.2 Deadlock Avoidance 263

buffering, the situation is exactly as depicted in Figure 14.6 and the channel into the
server may have to wait on the channel out of the server. The effect of these external
wait-for edges can be eliminated by using different logical networks (employing
disjoint resource sets — for example, separate virtual channels or packet buffers) to
handle requests and replies. The situation can become even more complex in cache-
coherent, shared memory machines where a single transaction may traverse two or
three servers (directory, current owner, directory) in sequence before returning the
final reply. Here separate logical networks are often employed at each step of the
transaction.Using these separate logical networks to avoid protocol deadlock is a
special case of resource ordering, as described in Section 14.2.

14.2 Deadlock Avoidance

Deadlock can be avoided by eliminating cycles in the resource dependence graph.
This can be accomplished by imposing a partial order on the resources and then
insisting that an agent allocate resources in ascending order. Deadlocks are there-
fore avoided because any cycle must contain at least one agent holding a higher-
numbered resource waiting for a lower-numbered resource, and this is not allowed
by the ordered allocation. While a partial order suffices to eliminate cycles, and
hence deadlocks, for simplicity we often impose a total order on the resources by
numbering them.

While all deadlock avoidance techniques use some form of resource ordering,
they differ in how the restrictions imposed by this resource ordering affect rout-
ing. With some approaches, resources can be allocated in order with no restric-
tions on routing. In other approaches, the number of required resources is reduced
at the expense of disallowing some routes that would otherwise violate resource
ordering.

With packet-buffer flow control, we have the advantage that there are typically
many packet buffers associated with each node. Similarly, there are typically many
virtual channels associated with each physical channel in systems using flit-buffer
flow control. With multiple resources per physical unit, we can achieve our ordering
by assigning different resources on the same physical unit (for example, different
packet buffers on a node) to different positions in the order. With circuit switching,
the resources are the physical units (channels) and thus each channel can appear
only at a single point in the ordering. Thus, to order resources with circuit switching,
we have no alternative but to restrict routing.

14.2.1 Resource Classes

Distance Classes: One approach to ordering resources (virtual channels or packet
buffers) is to group the resources into numbered classes and restrict allocation of
resources so that packets acquire resources from classes in ascending order. One
method of enforcing ascending resource allocation is to require a packet at distance
i from its source to allocate a resource from class i. At the source, we inject packets

264 C H A P T E R 14 Deadlock and Livelock

into resource class 0. At each hop, the packet acquires a resource of the next highest
class. With this system, a packet holding a packet-buffer from class i can wait on a
buffer only in class i + 1 (Figure 14.7).2 Similarly, a packet holding a virtual channel
in class i can only wait on virtual channels in higher numbered classes. Packets only
travel uphill in terms of resource classes as they travel through the network. Because
a packet holding a resource (packet-buffer or virtual channel) from class i can never
wait, directly or indirectly, on a resource in the same or lower numbered class, no
cycle in the resource dependence graph exists and hence deadlock cannot occur.

As a concrete example of distance classes, Figure 14.8 shows a four-node ring
network using buffer classes based on distance. Each node i has four buffers Bji ,
each of which holds packets that have traveled j hops so far. Packets in buffer Bji

are either delivered to the local node i or forwarded to buffer Bj+1,i+1 on node i.
This buffer structure leads to an acyclic buffer dependence graph that consists of
four spirals, and hence avoids deadlock.

To enforce the uphill-only resource allocation rule, each packet needs to
remember its previous resource class when it allocates its next resource. Thus, for
packet-buffer flow control with distance classes, the routing relation takes the form:

R : Q × N → Q

where Q is the set of all buffer classes in the network. A similar relation is used to
allocate virtual channels in a network with flit-buffer flow control. This hop-by-hop
routing relation allows us to express the uphill use of buffer classes.

Distance classes provide a very general way to order resources in any topology.
However, they do so at considerable expense — they require a number of packet
buffers (or virtual channels) proportional to the diameter of the network. For some

Node 1

Packet B

Packet A

A
A

Node 2

B

Node 3

B

A
B

A

Figure 14.7 An example of routing packets through several buffer classes. Each node contains five buffer
classes with the lowest class at the bottom of the buffers and the highest class at the top. As
packets A and B progress through the network, their buffer classes increase.

2. We could allow a packet to wait for any buffer class greater than the one it currently holds. If we do this,
however, we cannot guarantee that it will not run out of classes by skipping too many on the way up the
hill.

14.2 Deadlock Avoidance 265

B01

B11

B00

B10

B02

B12

B03

B13

Node 0

Node 2Node 3

B20

B30

B21

B31

B22

B32

B23

B33

Node 1

Figure 14.8 Distance classes applied to a four-node ring network. Each node i has four classes, with buffer
Bji handling traffic at node i that has taken j hops toward its destination.

networks, we can take advantage of the topology to reduce the number of buffer
classes significantly. For example, in a ring network, we can order resources by pro-
viding just two classes of resources.3

Figure 14.9 shows how buffer dependences can be made acyclic in a ring by
using dateline buffer classes. Each node i has two buffers, a “0” buffer B0i and a “1”
buffer B1i . A packet injected at source node s is initially placed in buffer B0s and
remains in the “0” buffers until it reaches the dateline between nodes 3 and 0. After
crossing the dateline, the packet is placed in “1” buffer B10 and remains in the “1”
buffer until it reaches its destination. Dividing the use of the two buffer classes based
on whether or not a packet has passed the dateline in effect converts the cycle of
buffer dependences into an acyclic spiral. Hence deadlock is avoided.

Dateline classes can also be applied to flit-buffer flow control. Figure 14.10 shows
the virtual channel dependence graph for an application of dateline classes to a four-
node ring with two virtual channels per physical channel. Each physical channel c

has two virtual channels c0 and c1. All packets start by using the “0” channels and
switch to the “1” channels only when they cross the dateline at node 3. To restrict
the selection of output virtual channel based on input virtual channel, this approach
requires that the routing function be of the form

R : C × N → C

3. We will see in Section 14.2.3 how to extend this method to handle arbitrary torus networks.

266 C H A P T E R 14 Deadlock and Livelock

B01

B11

B00

B10

B02

B12

B03

B13

Node 0

Node 2Node 3

Dateline

Node 1

Figure 14.9 With dateline buffer classes, each node i in a ring has two buffers B1i and B0i. A packet injected
on node s starts in buffer Bs0 and remains in the “0” buffers until it reaches the dateline between
nodes 3 and 0. After crossing the dateline, the packet is placed in buffer B10 and remains in
the “1” buffers until it reaches its destination.

where C here represents the set of virtual channels. Restricting the selection of virtual
channels here takes the cyclic channel dependence graph of Figure 14.5 and makes
it acyclic by removing a number of edges.

Overlapping Resource Classes: Restricting the use of resource classes, either according
to distance or datelines, while making the resource dependence graph acyclic, can
result in significant load imbalance. In Figure 14.10, for example, under uniform
traffic, more packets will use virtual channel v0 (5 routes) than will use v1 (1 route).
This load imbalance can adversely affect performance because some resources may
be left idle, while others are oversubscribed. Similarly, with distance classes, not every

u 1

u 0

v 0 v 1

w 1

w 0

x 1 x 0

Dat
eli

ne

Figure 14.10 Virtual channels divided into dateline classes. Each physical channel c on a four-node ring is
divided into two virtual channels c0 and c1. All packets start routing on the “0” virtual channels
and switch to the “1” virtual channels when they cross the dateline at node 3.

14.2 Deadlock Avoidance 267

route will use the maximum number of hops, so the higher numbered classes will
tend to have lower utilization.

One approach to reducing load imbalance is to overlap buffer classes. For
example, with dateline classes, suppose we have 32 packet buffers. We could
assign 16 buffers each to classes “0” and “1” as illustrated in Figure 14.11(a). However,
a better approach is to assign one buffer each for exclusive use by each class, and
allow the remaining 30 buffers to be used by either class as shown in Figure 14.11(b).
This approach reduces load imbalance by allowing most of the buffers to be used by
packets requiring either class.

It is important when overlapping classes, however, to never allow a packet to
wait on a busy resource in the overlap region. That is, the packet cannot select a busy
buffer that belongs to both classes — say, B11 — and then wait on B11. If it does so,
it might be waiting on a packet of the other class and hence cause a deadlock. To
avoid deadlock with overlapped classes, a packet must not select a particular buffer
to wait on until an idle buffer of the appropriate class is available. By waiting on
the class, the packet is waiting for any buffer in the class to become idle and thus
will eventually be satisfied by the one exclusive buffer in the class. If a non-exclusive
buffer becomes available sooner, that can boost performance, but it doesn’t alter the
correctness of waiting for the exclusive buffer.

14.2.2 Restricted Physical Routes

Although structuring the resources of a network into classes allows us to create a
deadlock-free network, this can, in some cases, require a large number of resources

B31

B30

B16

B15

B1

B0

C
la

ss
 1

C
la

ss
 0

B31

B30

B16

B15

B1

B0

C
la

ss
 1

C
la

ss
 0

(a) (b)

Figure 14.11 Two methods to partition 32 buffers into 2 classes. (a) Sixteen buffers are assigned to each class
with no overlap. (b) 31 buffers are assigned to each class with an overlap of 30 buffers. As
long as the overlap is not complete, the classes are still independent for purposes of deadlock
avoidance.

268 C H A P T E R 14 Deadlock and Livelock

to ensure no cyclic resource dependences. An alternative to structuring the resources
to accommodate all possible routes is to restrict the routing function. Placing appro-
priate restrictions on routing can remove enough dependences between resources so
that the resulting dependence graph is acyclic without requiring a large number of
resource classes.

Dimension Order (e-cube) Routing: One of the simplest restrictions on routing to
guarantee deadlock freedom is to employ dimension-order routing in k-ary n-meshes.
(See Section 8.4.2.) For example, consider a 2-D mesh. Within the first dimension x,
a packet traveling in the +x direction can only wait on a channel in the +x, +y, and
−y directions. Similarly, an −x packet waits only on the −x, +y, and −y directions.
In the second dimension, a +y packet can only wait on other +y channels and a −y

packet waits only on −y. These relationships can be used to enumerate the channels
of the network, guaranteeing freedom from deadlock.

An example enumeration for dimension-order routing is shown in Figure 14.12
for a 3 × 3 mesh. Right-going channels are numbered first, so that their values
increase to the right. Then the left, up, and down channels are numbered, respec-
tively. Now, any dimension-order route through the network follows increasingly
numbered channels. Similar enumerations work for an arbitrary number of dimen-
sions once a fixed dimension order is chosen.

The Turn Model: While dimension-order routing provides a way of restricting the
routing algorithm to prevent cyclic dependences in k-ary n-mesh networks, a more
general framework for restricting routing algorithms in mesh networks is the turn
model. In the turn model, possible deadlock cycles are defined in terms of the par-
ticular turns needed to create them. We will consider this model in two dimensions,
although it can be extended to an arbitrary number of dimensions. As shown in

1623

7

0

1219

6

1

1421

1722

9

2

1318

8

3

1520

11

4

10

5 10, 20

0, 1, 16

Figure 14.12 Enumeration of a 3×3 mesh in dimension-order routing. The channel order for two routes is
also shown.

14.2 Deadlock Avoidance 269

(a)

West-first North-last
Negative-

first Disallowed

(c)

(b)

Figure 14.13 The turn model for a two-dimension mesh network. (a) The two abstract cycles. (b) If the North
to West is eliminated (c) three possible routing algorithms can be created by eliminating another
turn in the other abstract cycle.

Figure 14.13(a), there are eight turns in a 2-D routing algorithm (+x to +y,+x to −y,
−x to +y, and so on), which can be combined to create two abstract cycles. By in-
spection, at least one turn from each of these two cycles must be eliminated to avoid
deadlock. Dimension-order routing, for example, eliminates two turns in each of the
cycles — those from any y dimension to any x dimension.

We can explore a set of routing functions that is less restrictive than dimension-
order routing by first eliminating one of the turns from the first abstract cycle.
Figure 14.13(b) shows the elimination of the North to West turn (that is, the turn
from +y to −x). Combining this with a turn elimination in the second cycle yields
three deadlock-free routing algorithms, as illustrated in Figure 14.13(c). The fourth
possible elimination is not deadlock-free, as explored in Exercise 14.3.

Each of the three choices yields a different routing algorithm. When the south-
to-west turn is eliminated, the west-first algorithm is generated. In west-first routing,
a packet must make all of its west hops before moving in any other direction. After
it turns from the west direction, it may route in any other direction except west.
Removing the north-to-east turn results in north-last routing. In north-last, a packet
may move freely between the directions except north. Once the packet turns north,
it must continue in the north direction until its destination. Finally, eliminating the
east-to-south turn gives negative-first routing. In negative-first routing, a packet must
move completely in the negative directions (south and west) before changing to the
positive directions (north and east). Once in the positive directions, the packet stays
there until it reaches its destination.

At first, it may appear that the turn model is doing something different — break-
ing deadlock by restricting turns rather than by imposing an ordering of resources.
This is not the case. Instead, by restricting turns, the turn model imposes a total order
on the network channels, but a different one than that induced by dimension-order
routing. Figure 14.14 shows the order imposed by the west-first turn model on the
channels of a 3 × 3 mesh network. The west-going channels are numbered first.

270 C H A P T E R 14 Deadlock and Livelock

2023

1

10

69

0

17

1316

2122

3

11

78

2

18

1415

5

12

4

19

Figure 14.14 Channel ordering induced by the west-first turn model.

The remaining channels are then numbered from west to east, with the north/south
channels in each column numbered in direction order.

The turn-model and dimension-order routing give two possibilities for restricting
a routing algorithm so that it is deadlock-free. However, there are still drawbacks to
these techniques. Restricting the routing function reduces the path diversity of the
network, which can diminish a network’s performance and fault tolerance. In the
case of dimension-order routing, the diversity is reduced to zero. Additionally, these
techniques cannot remove the channel cycles inherent in topologies such as the torus.

14.2.3 Hybrid Deadlock Avoidance

In the previous sections, we saw that deadlock-free networks can be designed by
either splitting network resources and enumerating these resources or appropriately
restricting the paths packets could take from source to destination. However, both of
these approaches have several drawbacks. The buffer-class approach required a large
amount of buffering per node, and restricting the routing algorithm led to reduced
path diversity and could not be employed on all topologies. As with many design
problems, the most practical solutions to deadlock avoidance combine features of
both approaches.

Torus Routing: We can use dimension-order routing to route deadlock free in a torus
by applying dateline classes to each dimension. In effect, the dateline classes turn
the torus into a mesh — from the point of view of resource dependence — and
dimension-order routing routes deadlock-free in the resulting mesh. For example,
with flit-buffer flow control, we provision two classes of virtual channels for each
physical channel. As a packet is injected into the network, it uses virtual channel 0.

14.2 Deadlock Avoidance 271

If the packet crosses a predefined dateline for each dimension, it is moved to virtual
channel 1. When a packet is done routing in a particular dimension, it always enters
the next dimension using virtual channel 0.4This continues until the packet is ejected.

The technique of breaking dependences and then reconnecting paths with virtual
channels generalizes to many situations. Revisiting the protocol deadlock described
in Section 14.1.5, the dependence between requests and replies may lead to poten-
tial deadlocks. A common technique used to work around this problem is to simply
assign requests and replies to distinct virtual channels. Now, as long as the underly-
ing algorithm used to route requests and replies is deadlock-free, the request-reply
protocol cannot introduce deadlock.

Planar-Adaptive Routing: Another routing technique that combines virtual channels
with restricted physical routes is planar-adaptive routing. In planar-adaptive routing,
a limited amount of adaptivity is allowed in the routing function while still avoiding
cycles in the channel dependence graph. The algorithm starts by defining adaptive
planes in a k-ary n-mesh. An adaptive plane consists of two adjacent dimensions, i

and i + 1. Within an adaptive plane, any minimal, adaptive routing algorithm can
be used. By limiting the size of a plane to two-dimensions, the number of virtual
channels required for deadlock avoidance is independent of the size of the network
and the number of dimensions.

This is illustrated in Figure 14.15 for a k-ary 3-mesh. A minimal, adaptive
algorithm could use any path within the minimal sub-cube for routing. However,
as n grows, this requires an exponential number of virtual channels to avoid dead-
lock. Planar-adaptive routing allows adaptive routing within the plane A0 (defined by
dimensions 0 and 1) followed by adaptive routing within the plane A1 (defined
by dimensions 1 and 2). This restriction still allows for large path-diversity, but uses
only a constant number of virtual channels.

For general planar-adaptive routing, each channel is divided into three virtual
channels, denoted di,v, where i is the dimension the virtual channel is in and v is the

Destination

Source
A0

A1

Destination

Source

(a) (b)

Figure 14.15 (a) The set of all minimal paths between a source and destination node in a k-ary 3-mesh
(b) and the subset of paths allowed in planar-adaptive routing.

4. This naive assignment creates imbalance in the utilization of the the VCs. More efficient assignments are
explored in Exercise 14.6.

272 C H A P T E R 14 Deadlock and Livelock

virtual channel ID. The adaptive plane Ai contains the virtual channels di,2, di+1,0,
and di+1,1 for i = 0, . . . , n − 2. Routing begins in Ai with i = 0. Any minimal,
adaptive routing algorithm is used to route the packet until the ith dimension of the
packet’s location matches the ith dimension of its destination. Then i is incremented
and routing in the next adaptive plane begins. These steps continue until routing in
An−2 is complete. It may be necessary to finish routing minimally in the nth dimension
before the packet reaches its destination.

To ensure deadlock-free routing within the ith adaptive plane, the virtual chan-
nels within that plane are divided into increasing and decreasing subsets. The increas-
ing subset is di,2+ and di+1,0 and the decreasing subset is di,2− and di+1,1, where “+”
and “−” denotes the channels that increase or decrease an address in a dimension,
respectively. Packets that need to increase their address in the ith dimension route
exclusively in the increasing network and vice versa. This approach is verified to be
deadlock-free in Exercise 14.7.

14.3 Adaptive Routing

In the previous sections,we modified the network and routing algorithms to eliminate
cyclic dependences in the resource dependence graph. Some of these techniques can
naturally be expressed as adaptive routing algorithms. For example, a packet using
west-first routing can move an arbitrary number of hops to the west before routing
in other directions — this decision could be made adaptively based on network
conditions. Some buffer-class approaches can also easily incorporate adaptively.

However, the focus of this section is on an important difference between adaptive
and oblivious routing algorithms:5 adaptive routing algorithms can have cycles in their
resource dependence graphs while remaining deadlock-free. This result allows the
design of deadlock-free networks without the significant limitations on path diversity
necessary in the oblivious case.

14.3.1 Routing Subfunctions and Extended Dependences

The key idea behind maintaining deadlock freedom despite a cyclic channel depen-
dence graph is to provide an escape path for every packet in a potential cycle. As
long as the escape path is deadlock-free, packets can move more freely throughout
the network, possibly creating cyclic channel dependences. However, the existence
of the escape route ensures that if packets ever get into trouble, there still exists a
deadlock-free path to their destination.

5. Actually, some oblivious routing algorithms can have cyclic dependences and remain deadlock-free, but
this is not true in general [160].

14.3 Adaptive Routing 273

An Example: Consider, for example, a 2-D mesh network that uses flit-buffer flow
control with two virtual channels per physical channel. We denote a channel by
xydv — that is, its node, direction, and virtual channel class (for example, 10e0 is
virtual channel class 0 in the east direction on node 10). Routing among the virtual
channels is restricted by the following rules.

1. All routing is minimal.

2. A packet in virtual channel xyd1 is allowed to route to any virtual channel on
the other end of the link — any direction, any virtual channel. For example,
00e1 may route to any of the eight virtual channels on node 10.

3. A packet in virtual channel xyd0 is allowed to route to virtual channel 1 of
any direction on the other end of the link. For example, 00e0 may route to
10d1 for any of the four directions d.

4. A packet in virtual channel xyd0 is allowed to route in dimension order
(x first, then y) to virtual channel 0 at the other end of the link. For ex-
ample, 00e0 may route to 10e0 or 10n0 as well as the four “1” channels on
node 10. Channel 00n0 may route only to 01n0 and the four “1” channels on
node 01.

In short, routing is unrestricted as long as the source or destination virtual channel
is from class “1”. However, when both source and destination virtual channels are
from class “0,” routing must be in dimension order.

This set of routing rules guarantees deadlock freedom even though cycles exist
in the virtual channel dependence graph. An example cycle is shown in Figure 14.16,
which shows four nodes’ worth of the virtual channel dependence graph for a net-
work employing these routing rules. Only a portion of the dependence edges are
shown to avoid cluttering the figure. A dependence cycle is shown that includes the
virtual channels 00e0, 10n0, 11w1, and 01s1. Each of the four edges of this cycle
are legal routes according to the four routing rules above.

Despite this dependence cycle, this routing arrangement is deadlock-free because
escape paths exist. Suppose, for example, that packet A holds virtual channels 00e0
and 10n0 and packet B holds virtual channels 11w1 and 01s1. A deadlocked configu-
ration would occur if A waits for 11w1 and B waits for 00e0. However, these packets
need not wait on the cyclic resource because they have other options. Packet A can
choose 11n0 instead of 11w1. As long as (1) at least one packet in the potential cycle
has an acyclic option and (2) packets do not commit to waiting on a busy resource,
a deadlocked configuration will not occur. In this example, we are guaranteed that
an acyclic option exists for every packet in the cycle, because they can always revert
to dimension-order routing on the “0” channels, which is guaranteed to be acyclic, as
described in Section 14.2.2.

Indirect Dependences: Now consider our 2-D mesh example, but without routing
restriction 1 — that is, where non-minimal routing is allowed. Without this re-
striction, the mesh is no longer guaranteed to be deadlock-free because indirect
dependences may result in cycles along the escape channels.

274 C H A P T E R 14 Deadlock and Livelock

e1

n1 n0

e0

s1 s0

w1

w0
00

e1

n1 n0

e0

s1 s0

w1

w0
11

e1

n1 n0

e0

s1 s0

w1

w0
01

e1

n1 n0

e0

s1 s0

w1

w0
10

Figure 14.16 Example of cyclic virtual channel dependences with escape paths. The figure shows four nodes
of the virtual channel dependence graph for a 2-D mesh network that must follow dimension
order routing within the “0” channels. A cycle exists in the virtual-channel dependence graph
including virtual-channels 00e0, 10n0, 11w1, and 01s1. No deadlock is possible, however,
because at three points the packet is free to choose another virtual channel not on the cycle —
the escape path.

For example, in Figure 14.16 suppose packet A is routing to node 12 (not shown)
and currently holds channel 00e0. Packet B, also routing to node 12 has routed
non-minimally so that it holds channels 10n0, 11w1, and 01s1. Even though the
misrouting was performed on the “1” channels (11w1 and 01s1), it creates an indirect
dependence on the “0” channels — from 10n0 to 00e0. This indirect dependence
creates a cycle on the “0” channels. If all of the “1” channels become blocked due to
cyclic routing, the “0” channels are no longer able to drain the network. Packet A is
waiting on packet B to release 10n0 before it can make progress along its dimension-
order route. At the same time, packet B is waiting for packet A to release 00e0 to
it to route in dimension order. Hence the “0” channels, which are supposed to be a
deadlock-free escape path, have become deadlocked due to an indirect dependence.

We can avoid indirect dependences by insisting that a packet that visits escape
channel (“0” channel) a is not allowed to route to escape channel b via any channels,
escape or otherwise, if b � a. One easy way to enforce this ordering for our example
2-D network is to insist that routing on the non-escape channels (“1” channels) is
minimal.

Indirect dependence is a concern only for networks that use flit-buffer flow
control. With packet-buffer flow control, a packet can hold only a single buffer at
a time. Hence, it is impossible for a packet holding an escape buffer to wait on
another escape buffer via some non-escape buffers. The initial escape buffer would
be released as soon as the non-escape buffer is acquired.

14.3 Adaptive Routing 275

Formal Development: Now that we’ve introduced the concepts of escape channels
and indirect dependence, we can more formally describe deadlock avoidance for
adaptive routing. If we have an adaptive routing relation R : C × N → P(C) over a
set of virtual channels C, we can define a routing subrelation R1 ⊆ R over a subset of
the virtual channels C1 ⊆ C so that R1 is connected — that is, any source s can route
a packet to any destination d using R1. The entire routing relation R is deadlock-free
if routing subrelation R1 has no cycles in its extended channel dependence graph. The
routes in R, but not in R1, are referred to as the complement subrelation RC = R −R1.
When the arguments of the routing relations are included R(c, d), they indicate the
packet’s current channel c and the packet’s destination d.

Returning to our example, R is the entire set of routing rules (rules 1 through 4,
above), C is the set of all virtual channels (both the “0” and “1” channels, above), R1
is the set of rules for the escape channels (rule 4, above), and C1 is the set of escape
virtual channels (the “0” channels, above). Also, RC is the set of routes permitted by
R but not by R1 (rules 1 through 3, above).

The extended resource dependence graph for R1 has as vertices the virtual chan-
nels in C1 and as edges both the direct dependences and the indirect dependences
between channels in C1.6 In short, this is our standard dependence graph extended
with indirect dependences. We define the two types of edges in the extended depen-
dence graph more precisely as:

direct dependence — This is the same channel dependence considered for deadlock
avoidance with oblivious routing. If there exists a node x such that cj ∈ R1(ci, x),
there is a channel dependence from ci to cj . That is, if a route in R1 uses two channels
ci and cj in sequence, then there is a direct dependence (or just a dependence)
between the two channels, which we denote as ci � cj . For example, in Figure 14.16
there is a dependence from 00e0 to 10n0, since any packet routing in row 0 to
column 1 will use these two virtual channels in sequence.

indirect dependence — An indirect dependence is created because our assump-
tions about flit-buffer flow control allow packets to occupy an arbitrary number of
channels concurrently. In this situation, the dependence is created when a path to
node x uses a channel ci ∈ R1, followed immediately by some number of channels
c1, . . . , cm through RC , and finally routing through a channel cj ∈ R1. For example,
in Figure 14.16 with non-minimal routing there is an indirect dependence from 10n0
to 00e0, since a packet holding 10n0 can misroute in RC via 11w1 and 01s1 to node
00 where R1 dimension order routing requires channel 00e0. With non-minimal
routing, this dependence would not exist because a packet that wants to use 00e0
would not be allowed to route in the other direction on 11w1. Implementations
sometimes remove indirect dependences by simply disallowing a transition from R1
to RC — once a packet uses the routing sub-function R1, it must continue to use R1
for the rest of its route.

6. In some routing algorithms where R1 and RC share channels, cross dependences must also be added to the
extended dependence graph. This sharing of channels almost never happens in practice, and we will not
discuss cross dependences here.

276 C H A P T E R 14 Deadlock and Livelock

A key result, proved by Duato [61], is that an acyclic, extended channel depen-
dence graph implies a deadlock-free network.

THEOREM
14.1

An adaptive routing relation R for an interconnection network is deadlock-free if there
exists a routing subrelation R1 that is connected and has no cycles in its extended
channel dependence graph.

While our discussion of extended dependences has focused on wormhole flow
control, these ideas can be applied to store-and-forward and cut-through networks
as well. The key differences are that the extended dependences are simpler and
dependences are formed between buffers instead of channels. The simplification is
because a packet cannot occupy an arbitrary number of channels when blocked,
which eliminates the indirect dependences leaving only direct dependences. If the
buffer dependence graph for R1 of store-and-forward network is acyclic, the net-
work is deadlock-free. The routing subrelation can be examined in isolation from R,
allowing a very flexible definition of R as long as R1 is deadlock-free.

14.3.2 Duato’s Protocol for Deadlock-Free Adaptive Algorithms

While Duato’s result provides the theoretical groundwork for designing deadlock-
free adaptive routing functions, it does not immediately reveal how one might use
the ideas to create a practical network design. In this section, we describe the most
common technique for applying Duato’s result, which allows fully adaptive, minimal
routing.

Duato’s protocol has three steps and can be used to help design deadlock-free,
adaptive routing functions for both wormhole and store-and-forward networks:

1. The underlying network is designed to be deadlock-free. This can include the
addition of virtual resources to break any cyclic dependences such as those in
the torus.

2. Create a new virtual resource for each physical resource in the network. For
wormhole networks, these resources are the (virtual) channels and for store-
and-forward networks, buffers are the resources. Then, the original set of vir-
tual resources uses the routing relation from Step 1.This is the escape relation,
R1. The new virtual resources use a routing relation RC .

3. For packet-buffer flow control, there are no restrictions on RC . For flit-buffer
flow control, RC must be constructed so that the extended dependence graph
of R1 remains acyclic.

The most common use of Duato’s protocol creates a minimally adaptive routing
algorithm with dimension-order routing as the routing subfunction R1. For example,
in a 3-ary 2-mesh with wormhole flow control, dimension-order routing is used for

14.4 Deadlock Recovery 277

R1. Then RC can contain all minimal paths and R = R1 ∪RC . The resulting extended
dependence graph is acyclic (Figure 14.17).

14.4 Deadlock Recovery

Until now, we have focused on techniques to eliminate the conditions that cause
deadlock. These methods required restricted routing functions or additional
resources to break cyclic dependences. However, another approach to dealing with
deadlock is not to avoid it,but rather to recover from it. Such an approach is attractive
when the design cannot accommodate the additional resources or the performance
degradation necessary to avoid deadlock. Of course, such techniques rely on the fact
that deadlocks will be infrequent and that the average-case performance, rather than
the worst-case performance, is considered important.

There are two key phases to any deadlock recovery algorithm: detection and
recovery. In the detection phase, the network must realize it has reached a dead-
locked configuration. Determining exactly whether the network is deadlocked re-
quires finding a cycle in the resource wait-for graph. Solving this problem is difficult
and costly, so most practical detection mechanisms are conservative. A conservative
detection always correctly identifies a deadlock, but may also flag network conditions
that are not deadlocks (false positives). The introduction of false positives decreases
performance, but makes implementation more feasible while still correctly detecting
all deadlocks. This type of detection is usually accomplished with timeout counters:
a counter is associated with each network resource, which is reset when the resource
makes progress (that is, data is sent through the resource). However, if the counter
reaches a predetermined threshold, the resource is considered deadlocked and the
recovery phase is started.

0,0 1,0 2,0

0,1 1,1 2,1

0,2 2,21,2

Figure 14.17 Extended channel dependence graph for a 3-ary 2-mesh. Direct (indirect) dependences shown
as solid (dotted) lines. Network channels are represented by the filled circles and dependences
that can be expressed as a combination of other dependences are not shown.

278 C H A P T E R 14 Deadlock and Livelock

14.4.1 Regressive Recovery

In regressive recovery, packets or connections that are deadlocked are removed from
the network. This technique can be applied to circuit switching, for example. If a
group of partially constructed circuits has formed a wait-for cycle, they are dead-
locked. This state persists until a timeout counter for one of the channel reaches a
threshold. Then any circuit waiting on that channel is torn down (removed from the
network) and retried. This breaks the wait-for dependence, removing the deadlock.
To ensure that the source retries the circuit, a Nack can be sent to the source, or the
source can retry any circuit that has been pending for more than a threshold time.
Here, as with many regressive recovery techniques, special attention must be given
to livelock to ensure a retried packet eventually succeeds.

Compressionless routing uses a similar recovery idea for wormhole-based net-
works. Extra, empty flits are appended to the packets so that the source node can
ensure that the destination has received at least one flit by the time it has transmitted
the final flit. This is feasible because of the small amount of buffering common to
wormhole networks — the minimum length of any packet in compressionless routing
is roughly the number of buffers along its path from the source to destination.

When a packet is started, the source node begins a timeout count. This count
is reset after each new flit is accepted into the network. If this timeout reaches
a threshold value before the last flit has been injected into the network, the entire
packet is removed from the network and retried. Once the final flit has been injected,
the source is guaranteed that the packet’s head has already reached the destination.
This implies that the packet has already allocated a path of (virtual) channels all
the way to its destination and can no longer be blocked. The primary cost of this
approach is the extra padding that must be added to packets. If many short packets
are being sent, the maximum throughput can be significantly reduced.

14.4.2 Progressive Recovery

Progressive recovery resolves deadlock conditions without removing deadlocked
packets from the network. Since network resources are not wasted by sending and
then removing packets, progressive recovery techniques have potentially higher per-
formance. Also, livelock issues associated with resending packets are eliminated.

The prevalent progressive recovery approaches implement the ideas of Duato’s
protocol in hardware. For example, the DISHA [186] architecture provides a shared
escape buffer at each node of the network. When a suspected deadlock condition is
detected, the shared escape buffer is used as a drain for the packets in the deadlock.
Like the routing sub-function, routing using the escape buffer is designed to be
deadlock-free.

Whether or not a hardware implementation of Duato’s algorithm is appropriate
depends on the relative costs of resource in a particular design. DISHA was designed
under the assumption that virtual channels and buffers are expensive network re-
sources, which is certainly true in some applications. However, in other applications

14.5 Case Study: Deadlock Avoidance in the Cray T3E 279

the introduction of a centralized resource, in this case the shared escape buffer, may
outweigh the impact of additional virtual channels.

14.5 Livelock

Unlike deadlock, livelocked packets continue to move through the network, but
never reach their destination. This is primarily a concern for non-minimal routing
algorithms that can misroute packets. If there is no guarantee on the maximum num-
ber of times a packet may be misrouted, the packet may remain in the network
indefinitely. Dropping flow control techniques can also cause livelock. If a packet is
dropped every time it re-enters the network, it may never reach its destination.

There are two primary techniques for avoiding livelock, deterministic and prob-
abilistic avoidance. In deterministic avoidance, a small amount of state is added to
each packet to ensure its progress. The state can be a misroute count, which holds the
number of times a packet has been misrouted. Once the count reaches a threshold,
no more misrouting is allowed. This approach is common in non-minimal, adaptive
routing. A similar approach is to store an age-based priority in each packet. When
a conflict between packets occurs, the highest priority (oldest) packet wins. When
used in deflection routing or dropping flow control, a packet will become the highest-
priority packet in the network after a finite amount of time. This prevents any more
deflections or drops and the packet will proceed directly to its destination.

Probabilistic avoidance prevents livelock by guaranteeing the probability that a
packet remains in the network for T cycles approaches zero as T tends to infinity. For
example, we might want to avoid livelock in a 2-ary k-mesh with deflection routing
and single flit packets.7 The maximum number of hops a packet can ever be from its
destination is Hmax = 2(k−1).We then write a string for the history of a packet,where
t denotes a routing decision toward the destination and d represents a deflection (such
as tddtdtt . . .). If the number of t ’s in the string minus the number of d’s ever exceeds
Hmax , then we know the packet must have reached its destination. As long as the
probability of a packet routing toward destination is always non-zero, the probability
of this occurring approaches one. Therefore, our network is livelock-free as long as
we can always guarantee a non-zero chance of a packet moving toward its destination
at each hop.

14.6 Case Study: Deadlock Avoidance in the Cray T3E

The Cray T3E [162] is the follow-on to the T3D (Section 8.5). It is built around the
Alpha 21164 processor and is scalable up to 272 nodes for a single cabinet machine.
Up to 8 cabinets can be interconnected to create liquid-cooled configurations as large
as 2,176 nodes. Like the T3D, the T3E’s topology is a 3-D torus network. For the

7. This problem becomes more complex with multi-flit packets. See Exercise 14.11 .

280 C H A P T E R 14 Deadlock and Livelock

2,176-node machines, the base topology is an 8,32,8-ary 3-cube, which accounts for
2,048 of the nodes. Additional redundant/operating system nodes are then added in
half of the z-dimensional rings, expanding their radix to 9, to bring the total number
of nodes to 2,176.

Additional latency tolerance in the T3E allowed a step back from the fast ECL
gate arrays used to implement the T3D routers and each of T3E routers is imple-
mented as a CMOS ASIC. The extra latency tolerance also allowed the T3E designers
to use adaptive routing for improved throughput over the dimension-order routing
of the T3D as well as increased fault-tolerance from the routing algorithm’s ability
to route around faulty links or nodes.

Adaptivity is incorporated into theT3E’s routing using the same approach as Du-
ato’s protocol (Section 14.3.2). The T3E network uses cut-through flow control and
each node has enough buffering to always store the largest packet. This ensures that
no indirect dependences will ever be created in the extended channel dependence
graph. Therefore, it is sufficient for the routing sub-function to be deadlock-free to
guarantee that the entire network will be deadlock-free.

The routing sub-function used in the T3E is called direction-order routing: packets
are routed first in the increasing x dimension (+x), then in +y, +z, −x, −y, and
finally −z. Three bits in the packet header indicate whether each packet traverses a
dimension in the increasing or decreasing direction. For example, a packet increasing
in all dimensions would route in +x, +y, then +z, while a packet increasing in
all but the y dimension would route +x, +z, then −y. Momentarily ignoring the
intra-dimension cycles caused by the torus topology, direction-order routing is easily
shown to be deadlock-free. Conceptually, any cycle in the channel dependence graph
would have to contain routes from increasing channels (+) to decreasing channels (−)
and vice versa. Although routes are allowed from increasing to decreasing channels,
the converse is not true. Therefore, direction-order routing is deadlock-free for the
mesh.

The T3E also allows a slight variation of direction-order routing through the
use of initial and final hops. The initial hop a packet takes in the network can be in
any of the increasing directions, and the final hop can be in −z once all other hops
are complete. The addition of initial and final hops improves the fault tolerance of
the routing algorithm, as illustrated in Figure 14.18. As shown, the faulty channel
between node 21 and node 22 blocks the default direction-order route. However, by
taking an initial hop in the −y direction, the packet successfully routes from node
20 to node 03.

Now considering the wrap-around channels of the torus, the T3E adopts a
dateline approach as described in Section 14.2.3: any packet traveling across a pre-
determined dateline within a dimension must start on virtual channel (VC) 0 and
transition to virtual channel 1 after the dateline. Packets that do not cross the date-
line can use either virtual channel 0 or virtual channel 1, but any particular packet
must choose one. In the T3E, the choice of virtual channels for these packets is
made with the goal of balancing the load between virtual channels. That is, an opti-
mal assignment of virtual channels exactly balances the average number of packets
that traverse each of the virtual channels of a particular physical channel. Because
the space of possible VC assignments is so large, a simulated annealing algorithm is

14.7 Bibliographic Notes 281

00 01 02

10 11 12

20 21 22

03

13

23

30 31 32 33

Figure 14.18 The fault-tolerance benefits of allowing an initial hop before direction-order routing begins (only
two dimensions are used for simplicity). The default direction-order route from node 20 to node
03 is shown in gray and crosses the faulty channel (marked with X). By taking an initial hop in
the −y direction, the fault is avoided along the bold route.

used in the T3E to find an approximate solution to this virtual channel balancing
problem.

In the dateline approach, two virtual channels are required to break deadlocks
within the dimensions of the tori and another two are used to create separate virtual
networks for request and reply messages. This eliminates the high-level deadlock
illustrated in Figure 14.6. Finally, one virtual channel is used for minimal adaptive
routing, which accounts for the five VCs used in the T3E network.

14.7 Bibliographic Notes

Early work on deadlock-free interconnection networks identified the technique of
enumerating network resources and traversing these resources an increasing order
[129, 70, 78, 57]. Linder and Harden [118] developed a method that makes arbi-
trary adaptive routing deadlock-free but at the cost of a number of virtual channels
that increases exponentially with the number of dimensions. Glass and Ni developed
the turn model, which allowed limited adaptivity while still remaining deadlock-
free [73]. In different approach, Dally and Aoki allowed some non-minimal adap-
tivity with a small number of dimension reversals [48].

Duato introduced the extended channel dependence graph [60] and refined and
extended these results in [61] and [62]. Duato’s approach for designing deadlock-
free adaptive routing algorithms has since been used in several networks such as the
Reliable Router [52], the Cray T3E, and the Alpha 21364 [131].

Other, more specific, deadlock-free routing algorithms include planar adaptive
routing [36] as described in Section 14.2.3. In irregular network topologies, dead-
lock can be avoided with the up∗/down∗ algorithm [70] which is employed in the
DEC AutoNet [159], for example. Gravano et al. introduced the *-channels and
other algorithms [76], which use similar ideas as Duato to incorporate adaptivity

282 C H A P T E R 14 Deadlock and Livelock

into the torus. Kim et al. describe compressionless routing [98], which employs cir-
cuit switching ideas rather than the mainly packet switching approaches we have
focused on in this chapter. While most systems choose deadlock avoidance, Anjan
and Pinkston describe the DISHA deadlock recovery scheme [186].

The problem of VC misbalance caused by many deadlock avoidance schemes
was studied specifically in the torus by Bolding [25]. In addition to the simulated
annealing approach by Scott and Thorson described in the Cray T3E case study, the
U.S. Patent held by Cray covers some additional VC load-balancing approaches [30].

Schwiebert [160] shows that it is possible to have oblivious routing algorithms
with cyclic channel dependences while still being deadlock-free. However, current
examples of this behavior require unusual routing function and topologies.

14.8 Exercises

14.1 Deadlocked configuration. Consider the example of Figure 14.5, but with the criteria
that a packet may use either virtual channel at each hop, whichever becomes free
first. Draw a wait-for graph for a deadlocked configuration of this network.

14.2 Deadlock freedom of simple routing algorithms. Determine whether the following obliv-
ious routing algorithms are deadlock-free for the 2-D mesh. (Show that the channel
dependence graph is either acyclic or contains a cycle.)

(a) Randomized dimension-order: All packets are routed minimally. Half of the
packets are routed completely in the X dimension before the Y dimension and
the other packets are routed Y before X.

(b) Less randomized dimension-order: All packets are routed minimally. Packets
whose minimal direction is increasing in both X and Y always route X before
Y . Packets whose minimal direction is decreasing in both X and Y always route
Y before X. All other packets randomly choose between X before Y and vice
versa.

(c) Limited-turns routing for the 2-D mesh: All routes are restricted to contain at
most three right turns and no left turns.

14.3 Compound cycles in the turn model. Explain why the fourth turn elimination option
in Figure 14.13(c) does not result in a deadlock-free routing algorithm.

14.4 Necessary number of disallowed turns. Use the ideas of the turn model to find a lower
bound on the number of turns that must be eliminated when routing in a k-ary
n-mesh to ensure deadlock freedom.

14.5 Enumerating turn model channels. Number the channels of a 3 × 3 mesh network
in a manner similar to that shown in Figure 14.14, but for the north-last routing
restriction.

14.8 Exercises 283

14.6 Balancing virtual-channel utilization. In Section 14.2.3, virtual channels were used
to remove the cyclic dependences in a ring network. However, the simple dateline
approach discussed has poor balancing between the virtual channels. For example,
virtual channel 1 from node 4 to 1 is used only by packets routed from node 2 to
node 1 and virtual channel 1 from 1 from node 1 to 2 is not used at all. Describe
a new routing algorithm of the form C × N �→ C that better balances the virtual
channels and is also deadlock-free.

14.7 Deadlock freedom of planar adaptive routing. Show that planar adaptive routing
(Sec tion 14.2.3) is deadlock-free in k-ary n-meshes.

14.8 Fault-tolerant planar adaptive routing. Fault-tolerant planar adaptive routing (FPAR)
extends the basic planar adaptive routing algorithm to avoid faults (non-functioning
nodes or channels).

(a) To allow for faulty nodes in the final dimension, FPAR adds the adaptive plane
An−1 containing the previously unused channels dn−1,2, d0,0, and d0,1. Then
routing proceeds from adaptive plane A0 to An−1, as in planar-adaptive rout-
ing, but with the addition of the extra plane. Show that there are no cyclic
dependences between adaptive planes.

(b) When routing in the plane Ai , if di or di+1 is blocked by a fault, a non-faulty
channel is chosen as long as that channel is also minimal. It may happen that
the packet has finished routing in the (i + 1)th dimension and a fault exists in
di . In this case, misrouting is required in di+1 — if the packet was routing in
di+1, it continues in the same direction, otherwise an arbitrary direction in di+1
is chosen for misrouting. This misrouting continues until the first non-faulty

00 01 02

10 11 12

20 21 22

03

13

23

30 31 32 33

Fault
region

d
i+

1 dim
ension

di dimension

Figure 14.19 An example of misrouting in fault-tolerant planar-adaptive routing. A faulty region of nodes
and channels (denoted by the dotted box) blocks the minimal path from node 10 to 13 in the
Ai plane and the minimal distance in the (i+1)th dimension is zero. So, misrouting is required
in di+1 to route around the faulty region.

284 C H A P T E R 14 Deadlock and Livelock

channel in di is found, which is taken. Then the packet continues in di until
its first opportunity to “correct” the misrouting in di+1. After the distance in
di+1 had again been reduced to zero, normal routing is resumed. This proce-
dure’s details are complex, but in essence it attempts to simply steer around
faulty regions (Figure 14.19). The converse case of being finished in di with
a fault in di+1 does not occur because once routing is done in di , i is incre-
mented. Show that FPAR is deadlock-free within a single adaptive plane Ai in a
k-ary n-mesh. Does it follow that the entire routing algorithm is also deadlock-
free?

14.9 Deadlock analysis of routing in the Cray T3E. Show that direction-order routing
(Section 14.6) is deadlock-free in a k-ary 3-mesh by enumerating the channels. Does
this enumeration also prove that the initial and final hop variation used in the Cray
T3E is also deadlock free? If not, create a new channel enumeration that does. Now
consider a further extension of the T3E’s routing algorithm that allows an arbitrary
number of initial hops in any of the positive (+) dimensions, in any order. Is this
extension also deadlock free?

14.10 Virtual channel cost of randomized dimension traversal order. You have designed a
randomized variant of dimension-order routing for the k-ary n-mesh in which the or-
der dimensions are traversed is completely random. This gives n! possible dimension
traversal orders. Of course, if each traversal order is given its own virtual channel,
the routing algorithm is deadlock-free. However, n! virtual channels can be costly for
high-dimensional networks. Can you find a deadlock-free virtual channel assignment
that uses fewer virtual channels?

14.11 Probabilistic livelock avoidance with variable size packets. Explain why the probabilistic
argument for livelock freedom in a deflection routing network does not necessarily
apply to networks with multi-flit packets. Assume that packets are pipelined across
the network as in wormhole flow control and each input port has one flit of buffering.
Construct a scenario with multi-flit packets and deflection routing that does livelock.

C H A P T E R 15

Quality of Service

Previously, we focused on increasing the efficiency of resource allocation, such as
achieving higher bandwidth and lower latency. However, even with perfect routing
and flow control, situations remain in which the requests for a particular resource
will exceed its capacity. In this regime, our attention shifts from efficiently allocating
the resource to fairly allocating the resource according to to some service policies.
In this chapter, we focus on both the typical services requested by network clients
and the mechanisms for providing these services. Broadly speaking, we refer to these
topics as providing QoS.

15.1 Service Classes and Service Contracts

In some applications of interconnection networks, it is useful to divide network traffic
into a number of classes to more efficiently manage the allocation of resources to
packets. Different classes of packets may have different requirements — some classes
are latency-sensitive, while others are not. Some classes can tolerate latency but not
jitter. Some classes can tolerate packet loss,while others cannot.Also,different classes
of packets may have different levels of importance. The packets that keep the life-
support systems going will take priority over the packets that carry digital audio for
the entertainment system.

Allocating resources based on classes allows us to prioritize services so more
important classes get a higher level of services and to tailor services so resource
allocation can account for the particular requirements of each packet class. With
prioritized services, we may give packets of one class strict priority in allocation of
buffers and channels over packets of a lower class, or we may provide one class
with a larger fraction of the overall resource pool. With tailored resource allocation,

285

286 C H A P T E R 15 Quality of Service

packets that belong to a class that needs low latency can advance ahead of packets that
are latency-insensitive. Packets of another class that can tolerate latency but not jitter
may be scheduled to make their delay large but predictable. Packets of a class that
can tolerate loss will be dropped before packets of a class that cannot tolerate loss.
Knowing the priority and requirements of each class allows us to allocate resources
more efficiently than if all packets received exactly the same service.

Traffic classes fall into two broad categories: guaranteed service classes and best
efforts classes. Guaranteed service classes are guaranteed a certain level of perfor-
mance as long as the traffic they inject complies with a set of restrictions. There is
a service contract between the network and the client. As long as the client complies
with the restrictions, the network will deliver the performance. The client side of the
agreement usually restricts the volume of traffic that the client can inject — that is,
the maximum offered throughput. In exchange for keeping the offered traffic below
a certain level, the network side of the contract may specify a guaranteed loss rate,
latency, and jitter. For example, we may guarantee that 99.999% of the packets of
class A will be delivered without loss and have a latency no larger than 1 μs as long
as A injects no more than 1 Kbits during any 100 ns period.

In contrast, the network makes no strong guarantees about best efforts pack-
ets. Depending on the network, these packets may have arbitrary delay or even be
dropped.1 The network will simply make its best effort to deliver the packet to its
destination.

Service classes in interconnection networks are analogous to service classes in
package delivery. While guaranteed service packets are like Federal Express� (they
guarantee that your package will get there overnight as long as it fits in their envelope
and is not more than a specified weight), best efforts packets are like mail in the U.S.
Postal Service (your package will probably get there in a few days, but there are no
guarantees). There may be several classes of best efforts traffic in a network, just
as the mail has several classes of package delivery (such as first-class, third-class,
and so on).

Within a given class of service and, in particular, a best-efforts class, there is
often a presumption of fairness between flows. Flows are simply the smallest level
of distinction made between the packets that comprise a class. A flow might be all
the packets generated by a particular source, those traveling toward a common des-
tination or all the packets sent by an application running on the network clients.
One expects that two flows of the same class will see roughly the same level of
service: similar levels of packet loss, similar delay, etc. If one flow has all of its pack-
ets delivered with low latency and the other flow has all of its packets dropped,
the network is being unfair. We shall define this notion of fairness more precisely
below.

1. Some networks guarantee that no packet will be dropped, even best-effort packets.

15.2 Burstiness and Network Delays 287

15.2 Burstiness and Network Delays

As mentioned, service guarantees may contain delay and jitter constraints in addition
to rate requests. To implement these guarantees, the burstiness of particular traffic
flows must be considered. Conceptually, a non-bursty flow sends its data in a regular
pattern. A non-bursty flow is shown in Figure 15.1(a), sending at a rate of two-third
packets/cycle. In contrast, a bursty flow tends to send its data in larger clumps rather
than smoothly over time. For example, Figure 15.1(b) shows a bursty flow with a
rate of one-third packets/cycle.

The result of these two flows sharing a 1-packet/cycle-channel is shown in
Figure 15.1(c). First, the jitter of the non-bursty flow has been increased from 1
to 2 cycles because of the interaction with the bursty flow. Also, the bursty flow was
delayed up to 4 cycles while traversing the channel. It can be easily verified that
reducing the burstiness of the second flow would reduce both its delay and the jitter
of the first flow. This simple example shows that the delay and jitter guarantees of
flow can be greatly affected by the flows with which it shares resources. To quantify
these affects, we first introduce a technique for characterizing bursty flows. The delay
analysis of a simple network element subjected to two bursty flows is presented.

15.2.1 (σ, ρ) Regulated Flows

A common and powerful way to model flows when making QoS guarantees is in
terms of two parameters: σ and ρ. The ρ parameter simply represents the average
rate of the flow, while the σ term captures burstiness. For any time interval of length
T , the number of bits injected in a (σ, ρ) regulated flow is less than or equal to

1 1 1 1 1 1 1 1

2 2 2 2

(a)

(b)

(c) 1 2 1 2 1 2 1 2 1 1 1 1

Delay=4

Delay=2

Time

Figure 15.1 An example of a (a) non-bursty and (b) bursty flow (c) sharing the same channel. The jitter of
the non-bursty flow is increased to 2 cycles and the delay of the bursty flow is 4 cycles.

288 C H A P T E R 15 Quality of Service

σ + ρT . That is, the number of bits can only exceed the average number ρT by
the maximum burst size σ . We have already seen a (σ, ρ) description of a flow in
Section 15.1:packets of class A are delivered in under 1 μs as long as A injects no more
than 1 Kbits during any 100-ns period. The rate of this flow is ρ = 1 Kbits/100 ns =
10 Gbps and σ is at most 1 Kbits.

Not only is it useful to express the nature of a flow in terms of σ and ρ, but it is
also possible to control these parameters of any particular flow. This control can be
achieved using a (σ, ρ) regulator, as shown in Figure 15.2. The regulator consists of an
input queue that buffers the unregulated input flow. This queue is served only when
tokens are available in the token queue. For each byte served from the input queue, a
single token is removed from the token queue. To control the rate ρ of the outgoing
flow, tokens are inserted into the token queue at a rate of ρ. Then the amount of
burstiness in the output flow is set by the depth of the token queue σ . Controlling
flows with a (σ, ρ) regulator can reduce the impact of bursty flows on other flows in
the network.2

15.2.2 Calculating Delays

Assuming (σ, ρ) characterized flows, deterministic bounds on network delays can be
computed. As an example, we focus on the delay of a simple network element: a two-
input multiplexer with queueing (top of Figure 15.3). The multiplexer accepts two
regulated input flows, denoted (σ1, ρ1) and (σ2, ρ2), which are multiplexed onto a
single output. Both inputs and the output channel are assumed to have bandwidth b.

1 byte/
token
server

Unregulated
packet flow

(σ,ρ) regulated
packet flow

Token
queue

σ

Rate ρ token
source

Figure 15.2 A (σ, ρ) regulator.

2. In practice, the token queue of the regulator can be realized by a saturating credit counter that increments
at rate ρ and saturates when it reaches a count of σ . A packet can be transmitted only if the credit counter
is non-zero and the counter is decremented each time a packet is transmitted.

15.2 Burstiness and Network Delays 289

(σ1,ρ1)

(σ2,ρ2) b

b
b

Time

t=0

Q
ue

ue
 s

iz
e

qmax

b-ρ1-ρ2
1

t1
t2

tdrain

1
1ρ1

b

Figure 15.3 Queue size at a two-input multiplexer (shown at top) under adversial inputs designed to maxi-
mize the interval for which the queue is non-empty. The increasing slopes represent the portions
of the input where either both or one input is sending at a peak rate, limited only by the injection
channel bandwidth. After both input bursts are exhausted, the queue slowly drains.

Finally, our only assumption about the way in which packets are selected for the
output is that the multiplexer is work-conserving. That is, the output channel is never
idle if the multiplexer contains any packets.

For the system to be stable and the maximum delay to be defined, it is sufficient
for ρ1 +ρ2 < b. This condition also implies that the multiplexer queue will be empty
at times, which leads to a simple observation about packet delay: the longest delay of
any packet through the multiplexer is at most the maximum time the queue can be
non-empty. So, our strategy for determining maximum packet delay will be to find
the adversarial behavior of the two input flows that will keep the multiplexer queue
non-empty for the longest interval possible.

Our adversary strategy is summarized in the graph of queue time versus time
shown in Figure 15.3. The strategy has three phases. Initially, the input queue is
assumed to be empty. The first phase begins at time t = 0 with both input flows
simultaneously sending packets at rate b, the maximum allowed by the constraints of
the channels. This fills the multiplexer’s queue at rate b because the input channels
are injecting packets at a total rate of 2b, and since the multiplexer is work-conserving,
it is draining packets from the queue at a rate of b. Therefore, the net rate of increase
in the queue size is b, which is reflected in the slope of the first line segment of
Figure 15.3. This phase continues until one of the inputs can no longer sustain a rate
of b without violating its (σ, ρ) constraints. Without loss of generality, we assume

290 C H A P T E R 15 Quality of Service

the first flow reaches this point first at time t1. By our definition of (σ, ρ) flows, this
occurs when bt1 = σ1 + ρ1t1. Rewriting,

t1 = σ1

b − ρ1
.

During the second phase, the first flow can send only at a rate of ρ1 so that its
(σ, ρ) constraint is not violated. The second flow continues to send at b, giving a net
injection rate of ρ1 + b and a drain rate of b. Therefore, the queue still grows during
the second phase, but with a smaller rate of p1, as shown in the figure. Similarly, this
phase ends at t2 when the second flow can no longer send at rate b:

t2 = σ2

b − ρ2
.

At the beginning of the third phase, both input flows have exhausted their bursts
and can send only at their steady-state rates of ρ1 and ρ2, respectively. This yields
a decreasing rate of b − ρ1 − ρ2 in the queue size. At this rate, the queue becomes
empty after tdrain = qmax/(b−ρ1 −ρ2), where qmax is the queue size at the beginning
of the phase. The queue size is simply the sum of the net amount after the first and
second phases:

qmax = bt1 + ρ1(t2 − t1) = σ1 + ρ1σ2

b − ρ2
.

By our previous argument, we know the delay D must be bounded by the length of
this non-empty interval.

Dmax = t2 + tdrain = σ1 + σ2

b − ρ1 − ρ2
.

While we have not made a rigorous argument that our choice of input behavior
gives the largest possible value of Dmax, it can be shown that it is in fact the case [42].
Intuitively, any adversary that exhausts the entire bursts of both input streams before
the queue re-empties will give the largest possible non-empty interval. Additionally,
our strategy of starting both bursts immediately maximizes the size of the queue,
which also bounds the total amount of buffering needed at the multiplexer to qmax.
Similar techniques can be applied to a wide variety of basic network elements to
determine their delays. We analyze additional network elements in the exercises.

15.3 Implementation of Guaranteed Services

There are a wide range of possibilities for implementing guaranteed services. We
begin with aggregate resource allocation, where no specific resources are allocated to
any flow; rather, the network accepts requests from its clients based on their aggregate
resource usage. This aggregate approach is inexpensive in terms of hardware cost, but
does not provide the tightest delay bounds. Lower delays can be obtained by reserving
specific resources in either space or time and space together. The additional costs of
these methods is the hardware required to store the resource reservations.

15.3 Implementation of Guaranteed Services 291

15.3.1 Aggregate Resource Allocation

The simplest way to implement a service guarantee is to require that the aggregate
demand �C of a traffic class C is less than a bound. Traffic conforming to this bound
then is guaranteed not to saturate the network, and hence can be guaranteed lossless
delivery with certain delay characteristics. This is the simplest method of providing
guaranteed service. Because no specific resources are reserved for individual flows,
little if any additional hardware is needed to support aggregate allocation.3 However,
because all of the (possibly bursty) input flows in class C are mixed together, the
resulting output flows become even more bursty. As a result, aggregate resource
allocation gives the loosest delay bounds of the methods we shall describe.

With aggregate allocation, requests can be explicitly supplied by the network
clients or can be implicit in nature. In a packet switching network, for example,
the network might be able to accept any set of resource allocations that did not
oversubscribe any input or output port of the network. A port is oversubscribed if the
total amount of traffic it is required to source or sink exceeds its bandwidth — this
corresponds to a row or column sum of the request matrix �C .

Now, to see how burstiness affects aggregate resource allocation, consider the
2-ary 2-fly with an extra stage shown in Figure 15.4. To balance load, this network
uses a randomized routing algorithm in which all traffic routes from the source to
a random switch node in the middle stage of the network before being routed to
its destination. The figure also shows two flows: a bursty flow from node 0 to node
1 (solid lines) and a non-bursty flow from 2 to 0 (dotted lines). Because aggregate
resource allocation does not reserve particular resources to flows, there is no way to
prevent coupling between these two flows. This makes low-jitter requirements on
the non-bursty flow more difficult to achieve in this example. Additionally, the use of

0

1

2

3

0

1

2

3

Coupling

Figure 15.4 Two flows under aggregate resource allocation. Because the flows share channel resources,
there is coupling between the bursty (solid lines) and non-bursty (dotted lines) flows, which
affects their delay and jitter.

3. Typically, a network employing aggregate allocation will employ hardware at each network input to
perform admissions control. This hardware admits traffic to the network only if it is in compliance with
the aggregate demand bound. No additional hardware is required internal to the network.

292 C H A P T E R 15 Quality of Service

randomized routing introduces more burstiness. Previously,we considered the bursti-
ness in time of the traffic flows, but randomized routing also introduces burstiness
in space — the routing balances load on average, but instantaneous loads may be
unbalanced. This further complicates a guarantee of low jitter or delay.

Taking these factors into account and using the delay result from Section 15.2.2,
we can compute a delay bound for this aggregate resource allocation. Both flows
in this example are (σ, ρ) regulated, and for the bursty flow ρ1 = 0.75 Gbps and
σ1 = 1, 024 bits and for the non-bursty flow ρ2 = 0.75 Gbps and σ2 = 64 bits.
Channel bandwidth is b = 1 Gbps and the maximum packet length is L = 128 bits.

Following the flow from 0 to 1 through the system, it is split in the first stage by
the randomized routing algorithm. We assume that the routing algorithm splits the
flow into two sub-flows, both with rate ρ1/2. Although we cannot assume that the
burstiness of the sub-flows is also halved because routing occurs at packet granularity,
this burstiness can be upper-bounded by (σ1 + L)/2. (See Exercise 15.2.)

Using these results, we know the sub-flows from the allocation are (σ ′
1, ρ1/2)

regulated, where

σ ′
1 ≤ (σ1 + L)/2 = (1024 + 128)/2 = 576 bits.

Similarly, for the second sub-flow

σ ′
2 ≤ (σ2 + L)/2 = (64 + 128)/2 = 96 bits.

So, in splitting the second flow, its burstiness is actually increased because of the
packet granularity limit.

The first delay incurred by either of these flows comes as they are multiplexed
onto the output channel of the second stage. Using the result from Section 15.2.2,
we know this delay is at most

Dmax = σ ′
0 + σ ′

1
b − (ρ0 + ρ1)/2

= σ1 + σ2 + L

2b − ρ1 − ρ2
.

as long as ρ0 + ρ1 < 2b. Substituting the values from the example,

Dmax = 576 + 96
1 − 0.375 − 0.375

= 672 bits
0.25Gbps

= 2.688 μs.

Without any additional information, the jitter can be as large as Dmax because packets
could conceivably pass through the multiplexer with no delay. A similar calculation
gives the delay incurred by the sub-flows as they are merged in the final stage of the
network before reaching their destinations.

15.3.2 Resource Reservation

In situations where stronger guarantees on delay and jitter are required, it may be
necessary to reserve specific resources rather than rely on aggregate allocation. Of

15.3 Implementation of Guaranteed Services 293

course, this comes at greater hardware overhead because these reservations must
also be stored in the network. We present two reservation approaches: virtual cir-
cuits, where resources are reserved in space, and time-division multiplexing, where
resources are reserved in both space and time.

With virtual circuits, each flow is assigned a specific route through the network.
This reservation technique is used in Asynchronous Transfer Mode (ATM), for exam-
ple (Section 15.6). The use of virtual circuits addresses several sources of delay and
jitter. First, because resources are allocated in space, any variations in resource usage
due to factors such as randomized routing are completely eliminated. The second
advantage is that flows can be routed to avoid coupling with other flows. Consider
the previous example of the 2-ary 2-fly with an extra stage from Section 15.3.1. By
controlling their routes, the non-bursty flow (dotted line) can be routed around the
bursty flow (solid line), improving its jitter (Figure 15.5).

When extremely tight guarantees are required, time-division multiplexing (TDM)
provides the strictest controls. To avoid the variability introduced by flows sharing a
resource over time, TDM “locks-down” all the resources needed by a particular flow
in both time and space. Because no other flows are allowed to access these resources,
they are always available to the allocated flow, making guarantees easy to maintain. A
TDM implementation divides time into a fixed-number of small slots. The size and
number of slots then govern the granularity at which a resource can be allocated.
So, for example, time might be broken into 32 slots, with each slot equal to the
transmission time of a single flit. If the channel bandwidth is 1 Gbyte/s, flows could
allocate bandwidth in multiples of 32 Mbytes/s. If a flow required 256 Mbytes/s, it
would request 8 of the 32 time slots for each resource it needed.

Figure 15.6 revisits the 2-ary 2-fly example, in which flows have been allocated
using TDM. Although some channels carry both flows, the flows are isolated because
each of the four time slots is assigned to a unique flow. With time-slot allocation, a
flow can share a resource with a bursty flow without increasing its own burstiness.

Time-slot allocations such as this can either be computed off-line, in the case
where the required connections are known in advance, or on-line, when connections
will be both added and removed over time. In either situation, finding “optimal”

0

1

2

3

0

1

2

3

Figure 15.5 Two flows under virtual circuit resource reservation. Coupling between the bursty (solid lines)
and non-bursty (dotted lines) flows is avoided by choosing independent routes through the
network.

294 C H A P T E R 15 Quality of Service

0

1

2

3

0

1

2

3

Slot 0

Slot 1

Slot 2

Slot 3

Current
slot

2 to 0

0 to 1

0 to 1

2 to 0

BE

0 to 1

0 to 1

BE

Figure 15.6 An allocation of flows in a 4-slot TDM network along with timewheels from two channels of
the network.

allocations is generally NP-hard, so most practical implementations resort to heuristic
approaches. One heuristic is explored in Exercise 15.5.

As shown in Figure 15.6, a timewheel can be associated with each resource in the
network to store its allocation schedule. Then, a pointer into the timewheel table
indicates the current time slot and the owner of the resource during that time slot. For
this example, unused slots are marked as “BE” to indicate the resource’s availability
for best-effort traffic. Used slots match the resource allocation for the channel. As
time progresses, the pointer is incremented to the next table entry, wrapping to the
top once it reaches the bottom of the table.

15.4 Implementation of Best-Effort Services

The key quality of service concern in implementing best-effort services is providing
fairness among all the best-effort flows. Similar concerns may also arise within the
flows of a guaranteed service when resources are not completely reserved in advance.
We present two alternative definitions of fairness, latency and throughput fairness,
and discuss their implementation issues.

15.4.1 Latency Fairness

The goal of latency-based fairness is to provide equal delays to flows competing
for the same resources. To see the utility of such an approach, consider an exam-
ple of cars leaving a crowded parking lot, as shown in Figure 15.7. Each column of
the parking lot is labeled with a letter and contains a line of cars waiting to turn
onto the exit row, which leads to the exit of the parking lot. Cars are labeled with

15.4 Implementation of Best-Effort Services 295

D1 C1 B1 A1

D2 C2 B2 A2

LF: A1 B 1 A2 C1 A 3 B 2 A 4 D1 A 5 …

AB: A1 B1 C1 D1 A2 B2 C2 D2 A3 …

Figure 15.7 A parking lot with 4 columns of cars waiting for access to a single, shared exit. Cars are labeled
with their column and a relative entrance time into the parking lot. The sequence of exiting cars
under locally fair (LF) and age-based (AB) arbitrations are also shown.

their column along with a relative time that they started leaving the parking lot.
So, D2 started leaving before A4, for example. This is analogous to packets queued
in the vertical channels of a mesh network waiting for access to a shared horizon-
tal channel of that network. We will assume a car can leave the parking lot every
5 seconds.

Standard driving courtesy dictates that at each merge point, cars from either
entrance to a merge alternate access to that merge. We call this the locally fair arbi-
tration policy. As shown by the dotted lines, our parking lot example has three merge
points. Now consider the sequence of cars leaving the lot under the locally fair policy.
The first car from the rightmost column A1 leaves first, followed by B1. Because of
the locally fair policy at the right merge point, A2 leaves next, followed by C1, and
so on. Although D1 was one of the first cars waiting to leave the parking lot, it must
wait 8 cars, or 40 seconds, before finally leaving. By this time, 4 cars from column A

have left. Obviously, the delays under locally fair arbitration are distributed unfairly.
In fact, if this example was extended to contain 24 columns, the first car of the last
column X1 would have to wait over a year to leave the parking lot! Of course, this
assumes a relatively large number of cars in the parking lot.

To remedy this problem, we can replace our arbitration policy with one that is
latency fair.An arbitration is latency fair if the oldest requester for a resource is always
served first. For our parking lot example, we can simply use the relative starting times
of each car to make decisions at the merge points — the oldest of two cars at a merge
point goes first. This gives a much better exit sequence with one car leaving from
each column before any column has two cars that have left. For networks, we refer
to this policy as age-based arbitration. When multiple packets are competing for a

296 C H A P T E R 15 Quality of Service

resource, the oldest, measured as the time since its injection into the network, gets
access first.

While age-based arbitration greatly improves the latency fairness of networks,
it is generally used only as a local approximation to a truly latency fair network.
This caveat arises because high-priority (older) packets can become blocked behind
low-priority (younger) packets, which is known as priority inversion. As we will see, a
similar problem arises in throughput fairness and both can be solved by constructing
a non-interfering network, which we address in Section 15.5.

15.4.2 Throughput Fairness

An alternative to latency-based fairness, throughput fairness, seeks to provide equal
bandwidth to flows competing for the same resource. Figure 15.8(a) illustrates this
idea with three flows of packets crossing a single, shared channel in the network.
As shown, each flow requests at rate of 0.5 packets per cycle, but the channel can
support only a total 0.75 packets per cycle. Naturally, a throughput-fair arbitration
would be to simply divide the available bandwidth between the three flows so that
each received 0.25 packets per cycle across the channel.

This example becomes more complex when the rates of each of the flows are no
longer equal. Figure 15.8(b) shows the case in which the rates have been changed
to 0.15, 0.5, and 0.5 packets per cycle. Many reasonable definitions of fairness could
lead to different allocations in this situation, but the most common definition of
fairness used for throughput is max-min fairness. An allocation is max-min fair if
the allocation to any flow cannot be increased without decreasing the allocation
to a flow that has an equal or lesser allocation. The resulting allocation, shown in
Figure 15.8(b), is max-min fair.

Algorithmically, max-min fairness can be achieved by the following procedure.
For the N flows, let bi be the bandwidth requested by the ith flow, where 0 ≤ i < N .
The bandwidth requests are also sorted such that bi−1 ≤ bi for 0 < i < N . Then the

0.75

0.5

0.5

0.5
A

B

C

0.25

0.25

0.25
Shared channel

0.75

0.5

0.5

0.15
A

B

C

0.15

0.3

0.3
Shared channel

(a) (b)

Figure 15.8 Throughput-fair assignment of bandwidth to three flows sharing a single channel: (a) an allo-
cation when the flows have equal requests, (b) a max-min fair allocation for unequal requests.

15.5 Separation of Resources 297

bandwidths are allocated using the following recurrence:

R0 = b,

ai = min
[
bi,

Ri

N − i

]
,

Ri+1 = Ri − ai,

where b is the total bandwidth of the resource, Ri is the amount of bandwidth
available after scheduling i requests, and ai is the amount of bandwidth assigned to
request i. This algorithm satisfies the smallest requests first and any excess bandwidth
for each request is distributed evenly among the remaining larger requests.

Max-min fairness can be achieved in hardware by separating each flow request-
ing a resource into a separate queue. Then, the queues are served in a round-robin
fashion. Any empty queues are simply skipped over. This implementation is often
referred to as fair queueing. While not conceptually difficult, several practical issues
can complicate the implementation. For example, additional work is required if the
packets have unequal lengths and weighted fair queueing adds the ability to weight
some flows to receive a higher priority than others. As we saw in latency fairness,
true throughput fairness also requires per-flow structures to be maintained at each
resource in the network.

15.5 Separation of Resources

To meet service and fairness guarantees, we often need to isolate different classes of
traffic. Sometimes, we also need to distinguish between the flows within a class. For
brevity, we will collectively refer to classes and flows simply as classes throughout this
section. With reservation techniques such as TDM, the cost of achieving this comes
with the tables required to store the resource reservations. When resources are al-
located dynamically, the problem is more complicated. Ideally, an algorithm could
globally schedule resources so that classes did not affect one another. However, in-
terconnection networks are distributed systems, so a global approach is not practical.
Rather, local algorithms, such as fair queueing and age-based arbitration, must gen-
erate resource allocations, and hardware resources must separate classes to prevent
the behavior of one class from affecting another. Before introducing non-interfering
networks for isolating traffic classes, we discuss tree-saturation, an important network
pathology that can result from poor isolation.

15.5.1 Tree Saturation

When a resource receives a disproportionally high amount of traffic, one or more hot-
spots in the network can occur. A hot-spot is simply any resource that is being loaded
more heavily than the average resource. This phenomenon was first observed in
shared memory interconnects: a common synchronization construct is a lock, where

298 C H A P T E R 15 Quality of Service

multiple processors continuously poll a single memory location in order to obtain
the lock and gain access to a shared data structure. If a particular lock is located at
one node in the network and many other nodes simultaneously access this lock, it is
easy to see how the destination node can become overwhelmed with requests and
become a hot-spot. In an IP router application, random fluctuations in traffic to a
particular output or a momentary misconfiguration of routing tables can both cause
one or more output ports to become overloaded, causing a hot-spot.

Of course, facilitating resource sharing is an important function of any intercon-
nection network and in the example of a shared lock, the network’s flow control
will eventually exert backpressure on the nodes requesting the lock. This is expected
behavior of the network. However, a possibly unexpected impact of hot-spots is
their affect on the network traffic not requesting a hot-spot resource. Tree-saturation
occurs as packets are blocked at a hot-spot resource (Figure 15.9). Initially, chan-
nels adjacent to the hot-spot resource become blocked as requests overwhelm the
resource, forming the first level of the tree. This effect continues as channels two
hops from the resource wait on the blocked channels in the first level, and so on. The
resulting pattern of blocked resources forms a tree-like structure.

As also shown in Figure 15.9, it is quite possible for a packet to request a chan-
nel in the saturation tree, but never request the hot-spot resource. If there is not an
adequate separation of resources, these packets can become blocked waiting for chan-
nels in the saturation tree even though they do not require access to the overloaded
resource. Tree-saturation is a universal problem in interconnection networks and is
not limited to destination nodes being overwhelmed. For example, the same effect

0

1

4

5

2

3

6

7

0

1

2

3

4

5

6

7
Interference

Figure 15.9 Tree-saturation in a 2-ary 3-fly. Destination 4 is overloaded, causing channels leading toward
it to become blocked. These blocked channels in turn block more channels, forming a tree
pattern (bold lines). Interference then occurs for a message destined to node 7 because of the
tree-saturated channels.

15.6 Case Study: ATM Service Classes 299

occurs when a network channel becomes loaded beyond its capacity.The quantitative
effects of tree-saturation in shared memory systems are explored in Exercise 15.4.

15.5.2 Non-interfering Networks

To achieve isolation between two classes A and B, there cannot be any resource
shared between A and B that can be held for an indefinite amount of time by A

(B) such that B (A) cannot interrupt the usage of that resource. A network that
meets this definition is referred to as non-interfering. For example,with virtual-channel
flow control, a non-interfering network would have a virtual channel for each class
in the network. However, physical channels do not have to be replicated because
they are reallocated each cycle and cannot be held indefinitely by a single class. The
partitioning also applies to buffers at the inputs of the network, where each client
needs a separate injection buffer for each class.

While non-interfering networks provide the separation between classes neces-
sary to meet service and fairness guarantees, their implementation can be expensive.
Consider, for example, the use of an interconnection network as a switching fabric for
an Internet router where we require that traffic to one output not interfere with traffic
destined for a different output. In this case, we provide a separate traffic class for each
output and provide completely separate virtual channels and injection buffers for
each class. Even in moderate-sized routers, providing non-interference in this manner
requires that, potentially, hundreds of virtual channels be used, which corresponds
to a significant level of complexity in the network’s routers (Chapters 16 and 17).4

To this end, the number of classes that need true isolation should be carefully chosen
by the designer. In many situations, it may be possible to combine classes without a
significant degradation in service to gain a reduction in hardware complexity.

15.6 Case Study: ATM Service Classes

Asynchronous transfer mode (ATM) is a networking technology designed to support
a wide variety of traffic types, with particular emphasis on multimedia traffic such
as voice and video traffic, but with enough flexibility to efficiently accommodate
best-effort traffic [154]. Typical applications of ATM include Internet and campus
network backbones and as well as combined voice, video, and data transports within
businesses.

ATM is connection-based, so before any data can be sent between a source-
destination pair, a virtual circuit (Section 15.3.2) must be established to res-
erve network resources along a path connecting the source and destination.While the
connections are circuit-based, data transfer and switching in ATM networks is

4. The torus network used in the Avici TSR [49] provides non-interference between up to 1,024 classes in
this manner.

300 C H A P T E R 15 Quality of Service

packet-based. An unusual feature of ATM is that all packets, called cells, are fixed-
length: 53 bytes. This reduces packetization latency and simplifies router design.

Each ATM connection is characterized under one of five basic service classes:

Constant bit rate (CBR) — a constant bit rate connection, such as real-time,
uncompressed voice.

Variable bit rate, real-time (VBR-rt) — a bursty connection in which both
low delay and jitter are critical, such as a compressed video stream for tele-
conferencing.

Variable bit rate (VBR) — like VBR-rt, but without tight delay and jitter
constraints.

Available bit rate (ABR) — bandwidth demands are approximately known
with the possibility of being adjusted dynamically.

Unspecified bit rate (UBR) — best-effort traffic.

The service classes, excluding UBR, also require additional parameters, along with
the class type itself, to specify the parameters of the service required. For example,
a (σ, ρ) regulated flow, which is required for VBR-rt, is specified by a sustained
cell rate (SCR) and burst tolerance (BT) parameter. ATM also provides many other
parameters to further describe the nature of flows, such as the minimum and peak
cell rates (MCR and PCR) and cell loss ratio (CLR), for example.

While ATM switches can use TDM-like mechanisms for delivering CBR traffic,
efficient support of the other traffic types requires a dynamic allocation of resources.
Most switches provide throughput fairness and must also separate resources to ensure
isolation between virtual circuits.

15.7 Case Study: Virtual Networks in the Avici TSR

In Section 9.5, we introduced the Avici TSR and its network and examined its use
of oblivious source routing to balance load. In this section, we take a further look
at this machine and study how it uses virtual channels to realize a non-interfering
network.

The Avici TSR uses a separate virtual channel for each pair of destination nodes
to make traffic in the network completely non-interfering [50]. That is, traffic to
one destination A shares no buffers in the network with traffic destined to any other
destination B �= A. Thus, if some destination B becomes overloaded and backs
up traffic into the network, filling buffers and causing tree saturation, this overload
cannot affect packets destined for A. Because packets destined for A and B share
no buffers, A’s packets are isolated from the overload. Packets destined for A and B

do share physical channel bandwidth. However, this is not an issue, since traffic is
spread to balance load on the fabric channels and the network load to B cannot in
the steady state exceed the output bandwidth at node B.

The problem is illustrated in Figure 15.10. Overloaded destination node B backs
up traffic on all links leading to B, shown as dark arrows. This is a form of tree

15.7 Case Study: Virtual Networks in the Avici TSR 301

B

A

a

b

c

d

Figure 15.10 A fragment of a 2-D mesh network showing links blocked by tree-saturation from overloaded
destination node B. Packets routing to node A over the gray path (a, b, c, d) will encounter
interference from packets destined for B on all but link d unless resources are kept separate.

saturation (Section 15.5.1). All of the virtual channels and flit buffers usable by B on
these links are full, blocking further traffic. Now consider a packet routing to node
A over the path shown in gray. If this packet shares resources with packets destined
for B, it will be blocked waiting on a virtual channel or flit buffer at links a, b, and
c and delayed indefinitely. The packet destined for A will not be blocked at link d

because it is proceeding in the opposite direction from packets destined for B and
hence using a different set of virtual channels and flit buffers.

The bandwidth consumed by packets destined to B is not an issue. Assuming
that node B can consume at most one unit of bandwidth and that load is distributed
evenly over incoming paths, only 1

12
unit of bandwidth on link c (1

20
on link a)

is consumed by traffic destined for B. This leaves ample bandwidth to handle the
packet destined for A. The problem is that packets destined for B hold all of the
virtual channels and flit buffers and release these resources very slowly because of
the backup. The problem is analogous to trying to drive to a grocery store (node A)
near the stadium (node B) just before a football game. You, like the packet to node
A, are blocked waiting for all of the cars going to the game to clear the road.

302 C H A P T E R 15 Quality of Service

The solution is to provide separate virtual networks for each destination in the
machine.TheAviciTSR accomplishes this, and also provides differentiated service for
two classes of traffic by providing 512 virtual channels for each physical channel. For
each destination d, theTSR reserves two virtual channels on every link leading toward
the destination. One virtual channel is reserved for normal traffic and a second virtual
channel is reserved for premium traffic. Separate source queues are also provided for
each destination and class of service so that no interference occurs in the source
queues. With this arrangement, traffic destined for A does not compete for virtual
channels or buffers with traffic destined to B.Traffic to A only shares physical channel
bandwidth with B, and nothing else. Hence, packets to A are able to advance without
interference. Returning to our driving analogy, it is as if a separate lane were provided
on the road for each destination. Cars waiting to go to the stadium back up in
the stadium lane but do not interfere with cars going to the grocery store, which
are advancing in their own lane. The great thing about interconnection networks
is that we are able to provide this isolation by duplicating an inexpensive resource
(a small amount of buffering) while sharing the expensive resource (bandwidth).
Unfortunately this can’t be done with roads and cars.

To support up to 512 nodes with 2 classes of traffic using only 512 virtual chan-
nels, the TSR takes advantage of the fact that minimal routes to 2 nodes that are max-
imally distant from one another in all dimensions share no physical channels. Hence,
these nodes can use the same virtual channel number on each physical channel with-
out danger of interference.This situation is illustrated for the case of an 8-node ring in
Figure 15.11. Packets heading to node X along a minimal route use only the link direc-
tions shown with arrows. Packets heading to node Y along a minimal route use only
links in the opposite direction (not shown). Because minimal routes to the two nodes
share no channels, they can safely use the same virtual channel number without dan-
ger of actually sharing a virtual channel, and, hence, without danger of interference.

15.8 Bibliographic Notes

More detailed discussions of general issues related to QoS along with implemen-
tation issues, especially those related to large-scale networks such as the Internet,
are covered by Peterson and Davie [148]. The general impact of QoS on router de-
sign is address by Kumar et al. [107]. Cruz provides a detailed coverage of (σ, ρ)

flows and their utility in calculating network delays [42, 43]. Early definitions of

X

Y

Figure 15.11 Two destinations X and Y maximally distant from one another on this 8-node ring can share
a set of virtual channels without interference on minimal routes. All links that lead to X lead
away from Y and vice versa.

15.9 Exercises 303

fairness in networks is covered by Jaffe [88]. Throughput fairness is introduced by
Nagle [132] and extended to account for several practical considerations by Demers
et al. [58]. True max-min fairness can be expensive to implement and several no-
table approximations exist, such as Golestani’s stop-and-go queueing [74] and the
rotating combined queueing [97] algorithm presented by Kim and Chien, the latter
of which is specifically designed in the context of interconnection networks. Yum et
al. describe the MediaWorm router [198], which provides rate-based services using
an extension of the virtual clock algorithm [200]. Several other commercial and aca-
demic routers incorporate various levels of QoS, such as the SGI SPIDER [69], the
Tandem ServerNet [84], and the MMR [63]. Tree saturation was identified by Pfister
and Norton, who proposed combining buffers to consolidate requests to the same
memory address in shared-memory systems [151]. One well-known technique that
separates resources of different flows is virtual output queueing, covered by Tamir
and Frazier [181].

15.9 Exercises

15.1 Burstiness example. Verify that the combining example shown in Figure 15.1 falls
within the delay bound given by the general multiplexer model of Section 15.2.2.

15.2 Burstiness of an equally split flow. Describe how a single (σ, ρ) characterized flow can
be split into two flows, each with rate σ/2. Show that the bound on the burstiness
of either of the two new sub-flows is (σ + L)/2.

15.3 First-come, first-served multiplexer. Apply the approach of Section 15.2.2 to a mul-
tiplexer with a first-come, first-served (FIFO) service discipline. Assuming the two
inputs to the multiplexer are a (σ1, ρ1) characterized flow and a (σ2, ρ2) characterized
flow, respectively, what is the maximum delay of this multiplexer?

15.4 Impact of tree-saturation. Consider a system that has p nodes, each of which contains
a processor and a memory module. Every node generates a fixed-length memory
request at a rate r,with a fraction h of the requests destined to a“hot”memory location
and the remaining fraction 1 − h uniformly distributed across all other memory
locations. What is the total rate of requests into the hot memory module? Assuming
that tree saturation blocks all requests once the hot module is saturated, p = 100, and
h = 0.01, what fraction of the total memory bandwidth in the system can be utilized?

15.5 Simulation. Consider the reservation of TDM flows in a 4 × 4 mesh network. As-
sume time is divided into T slots and individual flows require one of these slots. Also,
flows are scheduled incrementally in a greedy fashion: given a flow request between
a particular source-destination pair, the flow is scheduled along the path with the
smallest cost. The cost of a path is defined as the maximum number of TDM slots
used along any of its channels. Then the quality of the schedule is determined by the
number of slots required to support it (the maximally congested channel). Use this
heuristic to schedule a set of random connections and compare it to the lower-bound
on congestion using the optimization problem from Equation 3.9.

.
This Page Intentionally Left Blank

C H A P T E R 16

Router Architecture

A router is composed of registers, switches, function units, and control logic that
collectively implement the routing and flow control functions required to buffer and
forward flits en route to their destinations. Although many router organizations exist,
in this chapter, we examine the architecture of a typical virtual-channel router and
look at the issues and tradeoffs involved in router design.

Modern routers are pipelined at the flit level. Head flits proceed through pipeline
stages that perform routing and virtual channel allocation and all flits pass through
switch allocation and switch traversal stages. Pipeline stalls occur if a given pipeline
stage cannot be completed in the current cycles. These stalls halt operation of all
pipeline stages before the stall, since flits must remain in order.

Most routers use credits to allocate buffer space. As flits travel downstream on a
channel, credits flow upstream to grant access to the buffers just vacated. In routers
that have a limited number of buffers, the latency of credit handling can have a large
impact on performance. Credits also affect deadlock properties. If a virtual channel is
allocated before all credits are returned, a dependency is created between the packet
being allocated the channel and any packets still in the downstream buffer.

16.1 Basic Router Architecture

16.1.1 Block Diagram

Figure 16.1 shows a block diagram of a typical virtual-channel router. These blocks
can be partitioned broadly into two groups based on functionality: the datapath and
control plane. The datapath of the router handles the storage and movement of a
packet’s payload and consists of a set of input buffers, a switch, and a set of output

305

306 C H A P T E R 16 Router Architecture

G R O P C

G R O P C

Switch
allocator

VC
allocator

Input unit

Input unit

Output unit

Output unitSwitch

G I C

G I C

RouterRouter

Figure 16.1 Virtual-channel router block diagram. The datapath consists of an input unit for each input port,
an output unit for each output port, and a switch connecting the input units to the output units.
Three modules make decisions and perform allocation: packets are assigned an output port by
a router and an output virtual channel by a virtual-channel allocator. Each flit is then assigned
a switch time slot by a switch allocator.

buffers. The remaining blocks implement the control plane of the router and are
responsible for coordinating the movement of packets through the resources of the
datapath. For our virtual-channel router, the control blocks perform route computa-
tion, virtual-channel allocation, and switch allocation. We also associate input control
state with the input buffers, forming an input unit, and similarly for the outputs.

Each flit of a packet arrives at an input unit of the router. The input unit contains
a set of flit buffers to hold arriving flits until they can be forwarded and also maintains
the state of each virtual channel associated with that input link. Typically, five state
fields are maintained to track the status of each virtual channel, as described in
Table 16.1.

To begin advancing a packet, route computation must first be performed to
determine the output port (or ports) to which the packet can be forwarded.1 Given

1. In some situations, when the routing is simple or bandwidth demands, the router may be duplicated with
each input unit having its own router. Such duplication is not possible with the two allocators as they are
allocating a shared resource.

16.1 Basic Router Architecture 307

Table 16.1 Virtual channel state fields, represented by a 5-vector: GROPC.

Field Name Description

G Global state Either idle (I), routing (R), waiting for an output VC (V), active (A),
or waiting for credits (C).

R Route After routing is completed for a packet, this field holds the output
port selected for the packet.

O Output VC After virtual-channel allocation is completed for a packet, this field
holds the output virtual channel of port R assigned to the packet.

P Pointers Flit head and tail pointers into the input buffer. From these pointers,
we can also get an implicit count on the number of flits in the buffer
for this virtual channel.

C Credit count The number of credits (available downstream flit buffers) for output
virtual channel O on output port R.

its output port, the packet requests an output virtual channel from the virtual-channel
allocator. Once a route has been determined and a virtual channel allocated, each
flit of the packet is forwarded over this virtual channel by allocating a time slot on
the switch and output channel using the switch allocator and forwarding the flit to
the appropriate output unit during this time slot.2 Finally, the output unit forwards
the flit to the next router in the packet’s path. As with the input unit, several state
fields contain the status of each output virtual channel (Table 16.2).

The control of the router operates at two distinct frequencies: packet rate and
flit rate. Route computation and virtual-channel allocation are performed once per
packet. Therefore, a virtual channel’s R, O, and I state fields are updated once per
packet. Switch allocation,on the other hand, is performed on a per-flit basis. Similarly,
the P and C state fields are updated at flit frequency.

Table 16.2 Output virtual channel state fields, represented by a 3-vector: GIC.

Field Name Description

G Global state Either idle (I), active (A), or waiting for credits (C).
I Input VC Input port and virtual channel that are forwarding flits to

this output virtual channel.
C Credit count Number of free buffers available to hold flits from this

virtual channel at the downstream node.

2. When the switch has an output speedup of one (switch bandwidth equals output bandwidth) the switch
and output channels can be scheduled together with no loss of performance. When the switch has out-
put speedup, the output unit typically incorporates a FIFO to decouple switch scheduling from output
scheduling.

308 C H A P T E R 16 Router Architecture

16.1.2 The Router Pipeline

Figure 16.2 shows a Gantt chart illustrating the pipelining of a typical virtual chan-
nel router. To advance, each head flit must proceed through the steps of routing
computation (RC), virtual-channel allocation (VA), switch allocation (SA), and swi-
tch traversal (ST). The figure reflects a router in which each of these steps takes
one clock cycle — each has its own pipeline stage.3 Figure 16.2 shows a situation in
which the packet advances through the pipeline stages without any stalls. As we will
discuss shortly, stalls may occur at any stage.

The routing process begins when the head flit of a packet arrives at the router
during cycle 0. The packet is directed to a particular virtual channel of the input
port, at which it arrives as indicated by a field of the head flit. At this point, the
global state (G) of the target virtual channel is in the idle state. The arrival of the
head flit causes the virtual channel to transition to the routing (G = R) state at the
start of cycle 1.

During cycle 1, information from the head flit is used by the router block to
select an output port (or ports). The result of this computation updates the route
field (R) of the virtual channel state vector and advances the virtual channel to the
waiting for output virtual channel (G = V) state, both at the start of cycle 2. In
parallel with RC, the first body flit arrives at the router.

During cycle 2, the head flit enters the VA stage, the first body flit passes through
the RC stage, and the second body flit arrives at the router. During the VA stage, the
result of the routing computation, held in the R field of the virtual-channel state
vector, is input to the virtual-channel allocator. If successful, the allocator assigns a
single output virtual channel on the (or on one of the) output channel(s) specified
by the R field. The result of the VA updates the output virtual channel field (O) of

RC VA SA STHead flit

Body flit 1 SA ST

SA STBody flit 2

Tail flit SA ST

1 2 3 4 5 6 7Cycle

Figure 16.2 Pipelined routing of a packet. Each flit of a packet proceeds through the stages of routing
computation (RC), virtual channel allocation (VA), switch allocation (SA), and switch traversal
(ST). The RC and VA stages perform computation for the head flit only (once per packet). Body
flits pass through these control stages with no computation. The SA and ST stages operate on
every flit of the packet. In the absence of stalls, each flit of the packet enters the pipeline one
cycle behind the preceding flit and proceeds through the stages one per cycle.

3. This is not always the case. In some routers, two or more of these steps may be combined into a single
pipeline stage, whereas in other routers a single step may itself be pipelined across many stages.

16.1 Basic Router Architecture 309

the input virtual-channel state vector and transitions the virtual channel to the active
(G = A) state. The result of the allocation also updates the global field of the selected
output virtual-channel state vector to the active (G = A) state and sets the input (I)
field of the output virtual channel state vector to identify the successful input virtual
channel. From this point until the release of the channel by the tail flit, the C (credit)
field of the output virtual channel is also reflected in the C field of the input virtual
channel.

For purposes of deadlock analysis, the VA stage is the point at which a depen-
dency is created from the input virtual channel to the output virtual channel. After
a single output virtual channel is allocated to the packet, the input virtual channel
will not be freed until the packet is able to move its entire contents into the output
virtual channel’s buffers on the next node.

At the start of cycle 3, all of the per-packet processing is complete and all
remaining control is the flit-by-flit switch allocation of the SA stage. The head flit
starts this process, but is handled no differently than any other flit. In this stage,
any active virtual channel (G = A) that contains buffered flits (indicated by P) and
has downstream buffers available (C > 0) bids for a single-flit time slot through the
switch from its input virtual channel to the output unit containing its output virtual
channel. Depending on the configuration of the switch, this allocation may involve
competition not only for the output port of the switch, but also competition with
other virtual channels in the same input unit for the input port of the switch. If the
switch allocation bid is successful, the pointer field is updated to reflect the departure
of the head flit in the virtual channel’s input buffer, the credit field is decremented to
reflect the fact that a buffer at the far side has been allocated to the departing head
flit, and a credit is generated to signal the preceding router that a buffer is available
on this input virtual channel.

Successful switch allocation is shown in Figure 16.2 during cycle 3 and the head
flit traverses the switch (the ST stage) during cycle 4. Since we are assuming an
otherwise empty switch, the head flit can start traversing the channel to the next
router in cycle 5 without competition.

While the head flit is being allocated a virtual channel, the first body flit is in
the RC stage, and while the head flit is in the SA stage, the first body flit is in the
VA stage and the second body flit is in the RC stage. However, since routing and
virtual-channel allocation are per-packet functions, there is nothing for a body flit to
do in these stages. Body flits cannot bypass these stages and advance directly to the
SA stage because they must remain in order and behind the head flit. Thus, body flits
are simply stored in the virtual channel’s input buffer from the time they arrive to
the time they reach the SA stage. In the absence of stalls, three input buffer locations
are needed to hold the three body flits in the pipeline at any one time. We will see
below that a larger buffer is needed to prevent the pipeline from bubbling due to
credit stalls.

As each body flit reaches the SA stage, it bids for the switch and output channel
in the same manner as the head flit. The processing here is per-flit and the body flits
are treated no differently than the head flit. As a switch time slot is allocated to each
flit, the virtual channel updates the P and C fields and generates a credit to reflect its
departure.

310 C H A P T E R 16 Router Architecture

Finally, during cycle 6, the tail flit reaches the SA stage. Allocation for the tail
flit is performed in the same manner as for head and body flits. When the tail flit is
successfully scheduled in cycle 6, the packet releases the virtual channel at the start
of cycle 7 by setting the virtual channel state for the output virtual channel to idle
(G = I) and the input virtual channel state to idle (G = I) if the input buffer is empty.
If the input buffer is not empty, the head flit for the next packet is already waiting
in the buffer. In this case, the state transitions directly to routing (G = R).

16.2 Stalls

In the previous discussion, we assumed the ideal case in which packets and flits
proceeded down the pipeline without delays: allocations were always successful, and
channels, flits, and credits were available when needed. In this section, we examine
six cases, listed in Table 16.3, where this ideal behavior is interrupted by stalls. The
first three types of stalls are packet stalls — stalls in the packet processing functions
of the pipeline. Packet stalls prevent the virtual channel from advancing into its R,
V, or A states. Once a virtual channel has a packet in the active (A) state, packet
processing is complete and only flit stalls can occur. A flit stall occurs during a cycle
in which a flit does not successfully complete switch allocation. This can be due to
lack of a flit, lack of a credit, or simply losing the competition for the switch time slot.

Table 16.3 Types of router pipeline stalls. For each stall, the table gives the type of stall, whether it is a
packet (P) or flit (F) stall, the packet state during which the stall occurs (all flit stalls occur during
the active (A) state), and a description of the stall.

Type of Stall P/F State Description

VC Busy P ¬I Back-to-back packet stall. The head flit for one packet arrives
before the tail flit of the previous packet has completed switch
allocation. The head flit of the new packet is queued in the
buffer. It will be dequeued and the new packet will enter
the routing state once the tail flit of the preceding packet
completes switch allocation.

Route P R Routing not completed, input virtual channel remains in R
state and reattempts routing next cycle.

VC Allocation P V VA not successful, input virtual channel remains in the V state
and reattempts allocation next cycle.

Credit F A No credit available. Flit is unable to attempt switch allocation
until a credit is received from the downstream virtual channel.

Buffer Empty F A No flit available. Input buffer is empty, perhaps due to an
upstream stall. Virtual channel is unable to attempt switch
allocation until a flit arrives.

Switch F A Switch allocation attempted but unsuccessful. Flit remains in
switch-allocation pipe stage and reattempts switch allocation
on the next cycle.

16.2 Stalls 311

1 2 3 4 5 6 7 8

RC VA SA STHead flit (packet A)

Tail flit (packet B — holds VC) SA ST

SA STBody flit (packet A)

Cycle

Figure 16.3 Virtual-channel allocation stall — an example of a packet stall. Packet A arrives during cycle 1,
but is not able to allocate a virtual channel V until cycle 5, after V is freed by packet B. While
awaiting the virtual channel, the pipeline is stalled for three cycles.

As an example of a packet stall, Figure 16.3 shows a virtual-channel allocation
stall. The head flit of packet A completes the routing computation in cycle 1 and
bids for an output virtual channel starting in cycle 2. Unfortunately, all of the out-
put virtual channels compatible with its route are in use, so the packet and its head
flit fail to gain an output virtual channel and are unable to make progress. The bid
is repeated without success each cycle until the tail flit of packet B, which holds
an output virtual channel that A can use, completes switch allocation and releases
the output virtual channel in cycle 4. During cycle 5, packet A successfully completes
virtual-channel allocation and acquires the channel that B just freed. It proceeds on
to switch allocation in cycle 6 and switch traversal in cycle 7. Note that since the
head of A cannot perform vitual-channel allocation until the tail of B completes
switch allocation, there is an idle cycle on the output virtual channel between for-
warding the tail flit of B and the head flit of A. The body flits of A stall as well,
since the first body flit is not able to enter switch allocation until the head flit has
completed this stage. However, this virtual-channel stall need not slow transmission
over the input channel as long as there is sufficient buffer space (in this case, six
flits) to hold the arriving head and body flits until they are able to begin switch
traversal.

A switch allocation stall, an example of a flit stall, is shown in Figure 16.4. The
head flit and first body flit proceed through the pipeline without delay. The second
body flit, however, fails to allocate the switch during cycle 5. The flit successfully
reattempts allocation during cycle 6 after stalling for one cycle.All body flits following
this flit are delayed as well. As above, this stall need not slow transmission over the
input channel if sufficient buffer space is provided to hold arriving flits. A credit
stall has an identical timing diagram, but instead of the switch allocation failing,
no switch allocation is attempted due to lack of credits. A buffer empty stall is
shown in Figure 16.5. The head flit and first body flit proceed without delay, but
then the second body flit does not arrive at the router until cycle 6. The second
body flit bypasses the RC and VA stages, which it would normally spend waiting in
the input buffer, and proceeds directly to the SA stage in cycle 7, the cycle after it
arrives. Body flits following the second flit can proceed directly to the SA stage as
well.

312 C H A P T E R 16 Router Architecture

RC VA SA STHead flit

Body flit 1 SA ST

SA STBody flit 2

Body flit 3 SA ST

1 2 3 4 5 6 7 8Cycle

Figure 16.4 Switch allocation stall — an example of a flit stall. Here, the second body flit of a packet fails
to allocate the requested connection through the switch in cycle 5, and hence is unable to
proceed. The request is retried successfully in cycle 6, resulting in a one-cycle stall that delays
body flit 2 and all subsequent flits.

RC VA SA STHead flit

Body flit 1 SA ST

SA STBody flit 2

Body flit 3 SA ST

1 2 3 4 5 6 7 8Cycle

Figure 16.5 Buffer empty stall — another type of flit stall. Here, body flit 2 is delayed by three cycles, arriving
in cycle 6 rather than 3. Its departure from the router is only delayed by one cycle; however, the
other two cycles are absorbed by bypassing the empty RC and VA pipeline stages.

16.3 Closing the Loop with Credits

A buffer is allocated to a flit as it leaves the SA stage on the transmitting or upstream
side of a link. To reuse this buffer, a credit is returned over a reverse channel after
the same flit departs the SA stage on the receiving or downstream side of the link.
When this credit reaches the input unit on the upstream side of the link, the buffer
is available for reuse. Thus, the token representing a buffer can be thought of as
traveling in a loop: starting at the SA stage on the upstream side of the link, traveling
downstream with the flit, reaching the SA stage on the downstream side of the link,
and returning upstream as a credit. The buffer is only occupied by the flit during
the time that the flit is in the first three pipeline stages (RC, VA, and SA) on the
upstream side. The remainder of the time around the loop represents an overhead
period during which the buffer is idle.

The credit loop latency tcrt , expressed in flit times, gives a lower bound on the
number of flit buffers needed on the upstream side for the channel to operate at
full bandwidth, without credit stalls. Since each flit needs one buffer and the buffers

16.4 Reallocating a Channel 313

cannot be recycled until their tokens traverse the credit loop, if there are fewer than
tcrt buffers, the supply of buffers will be exhausted before the first credit is returned.
The credit loop latency in flit times is given by

tcrt = tf + tc + 2Tw + 1, (16.1)

where tf is the flit pipeline delay, tc is the credit pipeline delay, and Tw is the one-way
wire delay.4

If the number of buffers available per virtual channel is F , the duty factor on the
channel will be

d = min
(

1,
F

tcrt

)
. (16.2)

The duty factor will be unity (full bandwidth achieved) as long as there are sufficient
flit buffers to cover the round trip latency, as previously described in Equation 13.1.
As the number of flit buffers falls below this number, credit stalls will cause the duty
factor for one virtual channel to be reduced proportionally. Of course, other virtual
channels can use the physical channel bandwidth left idle due to credit stalls.

Figure 16.6 illustrates the timing of the credit loop and the credit stall that can
result from insufficient buffers. The figure shows the timing of a 6-flit packet: 1 head
flit followed by 5 body flits in crossing a channel that has 4 flit buffers available at
the far end. Upstream pipeline stages are shown in white and downstream pipeline
stages are shaded grey. For simplicity, the flit time is equal to one clock cycle. It is
assumed that traversing the physical link in each direction takes two clock cycles,
labeled W1 and W2 — hence Tw = 2 cycles. Credit transmission takes place in
pipeline stage CT on the upstream node and updating the credit count in response
to a credit takes place in pipeline stage CU on the downstream node.

The pipeline in Figure 16.6 has a flit latency of tf = 4 cycles and a credit latency
of tc = 2 cycles (the CT and CU stages). With Tw = 2 cycles, Equation 16.1 gives
us a total round-trip credit delay of tcrt = 11 cycles. Hence, there are 11 cycles from
when the head flit is in the SA stage in cycle 1 to when body flit 4 reuses the head
flit’s credit to enter the SA stage. The last term (the one) in Equation 16.1 is due to
the fact that the SA stage appears twice in the forward path of the flit. With only
F = 4 buffers, Equation 16.2 predicts that the duty factor will be 4/11, which is
correct.

16.4 Reallocating a Channel

Just as a credit allows a flit buffer to be recycled, the passing of a tail flit enables an
output virtual channel to be recycled. When we recycle an output virtual channel,
however, it can have a great impact on the deadlock properties of a network.

4. Although we normally express these delays in seconds, or sometimes cycles, for convenience we assume
it is expressed in units of flit times (which may take several cycles each) here.

314 C H A P T E R 16 Router Architecture

4 3 2 1 0 0 0 0 0 0

ST W1 W2 RC VA SA STSA

ST W1 W2 SA STSA

ST W1 W2 SA STSA

ST W1 W2 SA STSA

CT W1 W2Credit (head) CU

ST W1 W2 SA STSA

0 1

CT W1 W2 CU

Body flit 4

Credit (body 1)

ST W1 W2 SA STSA

1 1 1 0 0 0

Body flit 5

1 2 3 4 5 6 7 8Cycle 9 10 11 12 13 14 15 16 17 18

Body flit 1

Head flit

Body flit 2

Body flit 3

Credit count

Figure 16.6 Credit stall: a buffer is allocated to the head flit when it is in the upstream SA stage in cycle 1.
This buffer cannot be reassigned to another flit until after the head flit leaves the downstream
SA stage, freeing the buffer, and a credit reflecting the free buffer propagates back to the
upstream credit update (CU) stage in cycle 11. Body flit 4 uses this credit to enter the SA stage
in cycle 12.

When the tail flit of a packet, A, enters the ST stage, the output virtual channel,
x, allocated to A can be allocated to a different packet, B by the virtual-channel
allocator, as illustrated in Figure 16.3. Packet B may come from any input virtual
channel: the same input virtual channel as A, a different virtual channel on the same
input, or a virtual channel on a different input.

Allocating x to B at this point, however, creates a dependency from B to A.
Because B will be in the input buffer of virtual channel x behind A, it will have to
wait on A if A becomes blocked. If, instead of reallocating output virtual channel x

when the tail flit enters the ST stage of the upstream router, we wait until the tail
flit enters the ST stage of the downstream router, we eliminate this dependence. By
waiting until A vacates the input buffer of the downstream router, packet B ensures
that it will not allocate an output virtual channel holding a blocked packet ahead of
it. This wait is critical to the deadlock properties of some routing algorithms, partic-
ularly adaptive routing algorithms, that assume when a virtual channel is allocated,
it is empty. In practice, the upstream router does not know when A enters the ST
stage of the downstream router, but instead waits until the credit from the tail flit
returns, bringing the credit count to its maximum, before reallocating the virtual
channel. This wait can result in considerable lost bandwidth when there are many
back-to-back short packets traversing a single virtual channel while the other virtual
channels sharing the same physical channel are idle.

Three options for reallocating an output virtual channel are shown in Figure 16.7.
All three panels, (a) to (c), show a two-flit packet A followed by the head flit of a
packet B. Panel (a) also shows the credit from the tail flit of A. No credits are shown
in the other panels.

16.4 Reallocating a Channel 315

RC VA SA STHead flit

Tail flit SA ST

Credit (tail)

Head flit (same OVC)

W1 W2 SA ST

CT W1 W2 CU

RC VA SA ST

W1 W2 RC VA SA ST

RC VA SA ST

SA ST W1 W2 SA ST

W1 W2 RC VA SA STHead flit

Tail flit

Head flit (same OVC) RC VA SA ST W1 W2 RC VA SA ST

RC VA SA ST

SA ST W1 W2 SA ST

W1 W2 RC VA SA STHead flit

Tail flit

Head flit (same OVC) RC VA SA ST W1 W2 RC VA SA ST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Cycle

(a)

(b)

(c)

Figure 16.7 Reallocating an output virtual channel (OVC) to a new packet. (a) The most conservative ap-
proach is to wait until the downstream flit buffer for the virtual channel is completely empty,
as indicated by the arrival of the credit from the tail flit. This avoids creating a dependency be-
tween the current packet and a packet occupying the downstream buffer. (b) If we can afford to
create a dependency, we can reallocate the virtual channel as soon as the tail flit of the previous
packet completes the SA stage. We don’t need to wait for its credit to return. However, unless
we duplicate state, the new packet is not able to enter the RC stage on the downstream router
until the tail flit completes the SA stage on this router. This is because the global state for each
virtual channel can only handle a single packet at a time. (c) If we extend the global state to
allow two packets to be on the virtual channel at the same time, the new one routing while
the old one is still active, we can avoid this second stall at the cost of some control complexity.

Panel (a) shows the case in which we wait for the credit from the tail flit before
reallocating the virtual channel. In this case, the head flit of B arrives during cycle 2,
completes the RC stage in cycle 3, and then enters a virtual channel stall for 12 cycles
until cycle 15 when it finally completes the VA stage. The delay here is tcrt + 1 since
the delay of the VA stage is added to the normal credit loop.

Panels (b) and (c) of Figure 16.7 illustrate the case in which we reallocate the
output virtual channel as soon as the tail flit is in the ST stage, as in Figure 16.3. In
both panels, packet B is able to complete the VA stage in cycle 5 after only a single
stall cycle.

316 C H A P T E R 16 Router Architecture

Panels (b) and (c) differ in the timing of the reallocation of the input virtual
channel at the downstream side of the link. In panel (b), packet B is not allowed
to complete the RC stage until cycle 11, when the tail flit of A has entered the
downstream ST stage, completely freeing the input virtual channel. This results in
a one-cycle virtual-channel busy stall but simplifies the router logic slightly, since
the virtual channel makes a clean transition from handling A to handling B. The VC
state reflects A from cycles 7 to 10 and packet B from cycle 11 onward.

Panel (c) shows a more aggressive approach that eliminates the virtual-channel
busy stall at the expense of more complicated virtual-channel control logic that can
handle two packets, in different stages, at the same time. Here, we allow B to enter
the RC stage before the tail flit has completed the SA stage. In this case, the input
virtual-channel is handling packets A and B simultaneously, and hence must track
the state of both (for example, with two G fields in the state vector). Also, if B

completes the RC stage, but the tail of A fails switch allocation, the R state field will
belong to B, whereas the O, P, and C fields belong to A. This may persist for several
cycles. If this situation occurs, B encounters a virtual-channel busy stall, but at the
VA stage rather than at the RC stage.

16.5 Speculation and Lookahead

Latency of an interconnection network is directly related to pipeline depth. Thus,
it is advantageous to reduce the pipeline to as few stages as possible, as long as this
is accomplished without lengthening the delay of each stage. We can reduce the
number of stages by using speculation to enable us to perform operations in parallel
that otherwise would be performed sequentially. We can also reduce the number
of stages by performing computation ahead of time to remove it from the critical
path.

We can reduce the number of pipeline stages in a router without packing more
logic into each stage by operating our router speculatively. For example, we can spec-
ulate that we will be granted a virtual channel and perform switch allocation in
parallel with virtual-channel allocation, as illustrated in Figure 16.8. This reduces
the pipeline for head flits to three stages and results in body flits idling for only one
cycle during the RC stage. Once we have completed the routing computation for
a packet, we can take the resulting set of virtual channels and simultaneously bid
for one of these virtual channels and for a switch time slot on the corresponding
physical channel.5 If the packet fails to allocate a virtual channel, the pipeline stalls
and both the SA and VA are repeated on the next cycle. If the packet allocates a
virtual channel, but fails switch allocation, the pipeline stalls again. However, only
switch allocation is required on the next cycle and since the packet has an output
virtual channel allocated, the allocation is no longer speculative.

5. If the set of routes possible produced by the RC stage spans more than one physical channel, we can
speculate again by choosing one.

16.5 Speculation and Lookahead 317

1 2 3 4 5

RC
VA
SA STHead flit

Body flit 1

Body flit 2

Cycle

SA ST

SA ST

Figure 16.8 Speculative router pipeline with VA and SA performed in parallel. The switch allocation for the
head flit is speculative, since it depends on the success of the virtual channel allocation being
performed at the same time. If the VA fails, the switch allocation will be ignored even if it
succeeds.

To guarantee that speculation does not hurt performance, we can speculate con-
servatively. We do this by giving priority in switch allocation to non-speculative
requests. This guarantees that a switch cycle that could be used by a non-speculative
request will never go idle because it was granted to a speculative request that later
failed to allocate a virtual channel.

In practice, speculation works extremely well in that it almost always succeeds in
the cases where pipeline latency matters. Pipeline latency matters when the router
is lightly loaded. In this situation, almost all of the virtual channels are free and the
speculation is almost always successful. When the router becomes heavily loaded,
queueing latency dominates pipeline latency, so the success of the speculation does
not greatly influence performance.

We can take speculation one step further by performing switch traversal specula-
tively in parallel with the two allocation steps, as illustrated in Figure 16.9. In this case,
we forward the flit to the requested output without waiting for switch allocation. To
do this, we require that the switch have sufficient speedup, or at least input speedup
so it can accept speculative requests from all of the inputs. (See Section 17.2.) While
the speculative flits are traversing the switch, the switch allocation is performed in
parallel.6 The allocation is completed at the same time that the flits reach the far
side of the switch and the results of the allocation select the winning flit. Whether or
not this double speculation can be done without affecting cycle time depends on the
details of the switch and allocators. In many routers, however, the virtual channel
allocator is the critical path and the switch allocation and switch output selection
can be performed in series without lengthening the clock cycle.

We have gotten the pipeline down to two cycles. Could it be shortened to a
single cycle? We could try to apply speculation a third time and perform the routing
computation in parallel with the other three functions. However, this would be
very inefficient, since we really need to know where a flit is going before allocating
channels, allocating switch cycles, or forwarding it across a switch.

6. With complete input speedup, this allocation reduces to an arbitration. (See Chapter 19.)

318 C H A P T E R 16 Router Architecture

1 2 3 4

RCHead flit

Body flit 1

Body flit 2

Cycle
VA
SA
ST

SA

ST

SA

ST

Figure 16.9 Speculative router pipeline with VA, SA, and ST all performed in parallel.

Rather than speculate on the result of the routing stage, we can perform this
work ahead of time, so that the result is available when we need it. To do this, while
we are traversing a given router — say, for hop i of a route — we perform the
routing computation not for this router, but for the next router, the router at hop
i + 1 of the route, and pass the result of the computation along with the head flit.
Thus, when the packet reaches each router, it has already selected the channel (or
set of channels) on which it will leave the router and the VA and SA operations
can begin immediately using this information. In parallel with any of the pipeline
stages of the router, the routing computation for the next hop is performed, de-
noted NRC, so this router will also have its output channel(s) selected when the flit
arrives.

Figure 16.10 shows two pipelines employing this type of one-hop route looka-
head. On the left side, route lookahead is applied to our non-speculative four-stage
pipeline to shorten it to three stages. Here, we have put the NRC (next hop routing
computation) into the VA stage. We could have easily put it in the SA stage, or even
had it span the two stages without loss of performance. On the right side, route

1 2 3 4 5 6

NRC
VA

SA STHead flit

Body flit 1 SA ST

SA STBody flit 2

Tail flit SA ST

Cycle 1 2 3

Head flit

Body flit 1

Body flit 2

Cycle
VA
SA
ST

NRC

SA

ST

SA

ST

Figure 16.10 Route lookahead. By performing the routing computation one hop ahead, we can overlap it
with any of the other pipeline stages. On the left, we show this applied to our standard four-
stage pipeline, and on the right, applied to the pipeline of Figure 16.9, shortening it to a single
stage.

16.6 Flit and Credit Encoding 319

lookahead is applied to the doubly speculative pipeline of Figure 16.9, shortening
it to a single cycle.7 For applications in which latency matters, we cannot do much
better than this.

16.6 Flit and Credit Encoding

Up to now we have discussed flits and credits traversing the channel between two
routers without describing the details of how this is done. How do we separate flits
from credits? How do we know where each flit begins? How is the information
within a flit or a credit encoded. In this section, we will briefly examine each of these
issues.

First, we address the issue of separating flits from credits. The simplest ap-
proach is to send flits and credits over completely separate channels, as shown in
Figure 16.11(a). The flit channel is usually considerably wider (as denoted by the
thicker line) than the credit channel, as it carries substantially more information.
While simple, having a separate credit channel is usually quite inefficient. There is
often excess bandwidth on the credit channel that is wasted and serializing the cred-
its to get them over a narrow channel increases credit latency. It is usually more
efficient to carry the flits and credits on a single physical channel, as illustrated in
Figure 16.11(b). One approach is to include one credit (for the reverse channel)
within each flit (for the forward channel). We call this piggybacking the credit on
the flit as if the flit were giving the credit a piggyback ride. This approach is sim-
ple and takes advantage of the fact that, although they are different sizes, flits and
credits have the same rates — on average, one credit is needed each flit time. Alter-
natively, flits and credits can be multiplexed at the phit level on the wires. This has
the advantage that during transients when the flit and credit rates are different, all of
the bandwidth can be devoted to flits or all of the bandwidth can be devoted to credits

Router A Router B

Flit

Credit

Flit

Credit

Router A Router B

Flit /Credit

Flit /Credit

(a) (b)

Figure 16.11 Flits and credits may (a) be sent over separate physical channels or (b) share a channel. If they
share a channel, the credits be piggybacked within each flit or may be multiplexed with the flits
using a phit-level protocol.

7. This does not necessarily mean one-cycle-per-hop latency. While it is only a single cycle through the
router, many systems will require an additional cycle (or more) to traverse the channel.

320 C H A P T E R 16 Router Architecture

rather than having a fixed allocation. However, there can be some fragmentation loss
with this approach if a credit does not exactly fit into an integer number of phits.

To multiplex flits and credits at the phit level, we need to address the issue of
how we know where each flit and credit begins and how we know whether it is a flit
or a credit. This is accomplished by a phit-level protocol, which may use an encoding
like the one illustrated in Figure 16.12. Here, each phit indicates whether it is starting
a credit, starting a flit, or idle. Because we know how long credits and flits are, we
do not need to encode middle of flit in the type field; it can be inferred, and we may
use the phit type field of continuation phits for additional payload information. If
credits are piggybacked in the flit, we can dispense with the start-of-credit encoding
and reduce the phit-type field to a single bit. Other link-level protocols, such as
those based on framing, can completely eliminate this field at the expense of some
flexibility.

Now that we know where each flit and credit begins, let’s examine their contents.
As shown in Figure 16.13, all flits include a virtual channel identifier that indicates
which virtual channel this flit is associated with, a type field that identifies the type
of flit, either head or not (we might also encode the tail or not), and a check field
that is used to check for errors in the flit in addition to the payload. Head flits add a
route information field that is used by the routing function to select an output virtual
channel for the packet. If credits are piggybacked on flits, a credit field is added to
both head and non-head flits. A credit, whether it is piggybacked or sent separately,
includes a virtual-channel identifier that indicates the virtual channel that is to receive
the credit and a check field. Credits can optionally include a type field that could, for
example, encode on/off flow control information or other back-channel information
for the virtual channel.

PayloadType

10 Start credit

11 Start flit

0X Idle

Phit

(a)

Flit payload11

Flit payload

Flit payload

00

Credit payload10

Flit payload11

Flit payload

Flit payload

(b)

Figure 16.12 (a) Each phit consists of a type field that encodes the start of flits and credits and a payload
field. (b) An example of phit-level multiplexing, the type field encodes a three-phit flit followed
by an idle phit, a one-phit credit, and a second three-phit flit.

16.7 Case Study: The Alpha 21364 Router 321

VC Type PayloadRoute info CheckHead flit

VC Payload CheckBody flit

VC PayloadRoute Info Check

VC Payload Check

Head flit w/credit

Body flit w/credit

Credit

Credit

(a)

(b)

(c) VC CheckCredit

Type

Type

Type

Type

Figure 16.13 (a) Head and body flit formats. All flits contain a virtual channel identifier (VC), a type field,
payload, and a check field. Head flits also include routing information. (b) Head and body flit
formats with piggybacked credit. (c) Credit format. Credits include a virtual channel identifier
and check bits. They may also include a type field.

A cursory examination of Figures 16.12 and 16.13 might suggest that we are
doing the same work twice. After all, the phit encoding identifies a virtual channel
(credit or flit) and a type (start or idle). Why then do we need to repeat this informa-
tion at the flit level? The answer is overhead. Consider, for example, multicomputer
router with 16-bit phits, 16-byte flits, 16 virtual channels, and piggybacked credits.
If we were to put a 4-bit virtual-channel field and a 2-bit type field in every 16-bit
phit, our overhead would be 37.5%. Adding an 8-bit check field would leave only 2
bits left for information. With a single-bit type field on the phits and a total of 14 bits
for virtual channel, type, and check bits on the flit, our total overhead is just 17%.

16.7 Case Study: The Alpha 21364 Router

The Alpha 21364 is the latest in the line of the Alpha microprocessor architec-
tures [89, 131]. The 152 million transistor, 1.2-GHz 21364 integrates an Alpha
21264 processor core along with cache coherence hardware, two memory controllers,
and a network router, onto a single die. This allows the 21364 to be used as a single-
chip building block for large, shared-memory systems. The router has four external
ports with a total 22.4 Gbytes/s of network bandwidth and up to 128 processors can
be connected in a 2-D torus network. The architecture of the 21364’s router closely
matches the basic router architecture introduced in this chapter: it employs deep
pipelining of packets through the router to meet its 1.2-GHz operating frequency
and also uses speculation to recover some of the latency incurred from this pipelining.

Figure 16.14 shows the high-level aspects of the 21364’s router architecture.
The router uses cut-through flow control, not wormhole flow control. Although this

322 C H A P T E R 16 Router Architecture

Local
arbiter

Global
arbiter

Input unit

Input unit

Input unit

Router

Output unit

Output unit

Output unit

Figure 16.14 A simplified view of the Alpha 21364 router architecture. Although the actual implementation
has 8 input ports and 7 output ports, only a 3 × 3 router is shown for simplicity. The 21364’s
crossbar is implemented as a mux for each output port, as shown. Also, the switch allocator is
divided into two distinct units: a local arbiter and a global arbiter.

design decision requires each input unit to be able to store at least one entire packet,
this is practical for the 21364 because the largest packets used in its coherence
protocol are 76 bytes long. Each input unit contains enough buffering for several
maximum-length packets and the router has a total of 316 packet buffers. This is a
sufficient amount of packet storage for the router to have several virtual channels,
which are used to both avoid deadlock and implement adaptive routing.

As shown in the router’s pipeline diagram (Figure 16.15), routing and buffering
occupies the first four pipeline cycles of the first phit of a packet — we consider
the phit pipeline because this is a cut-through router. Routing occurs during the RC
stage, followed by a transport/wire delay (T) cycle. Header decode and update of
the input unit state occupies another cycle (DW) before the payload of the packet
is finally written to the input queues (WrQ). In parallel with the storage of the first
phit in the input buffers, switch allocation can begin.

Because the Alpha 21364 uses cut-through flow control, the normally separate
virtual-channel and switch allocation steps can be merged into a single allocation.
Although multiple virtual channels can be active per output in a general virtual-
channel router, a cut-through router can simplify its design by allowing only one

16.7 Case Study: The Alpha 21364 Router 323

1 2 3 4

RC T DW
SA1

WrQ
RE

SA2

ST1
ST2 ECC

ST1 ST2 ECCWrQ

5 6 7 8 9

ST1 ST2 ECCWrQ

Phit 1

Phit 2

Cycle

Phit 3

10

Figure 16.15 The pipeline stages of the Alpha 21364 router. The entire pipeline latency is 13 cycles, or
10.8ns at 1.2GHz, including several cycles for synchronization, driver delay, receiver delay, and
transport delay to and from the pins. Because the flit size equals the packet size in cut-through
flow control, pipeline delays at the phit level are shown.

active virtual channel per output. This ensures that any virtual-channel allocation is
also a valid switch allocation and, for the 21364 design, we will simply refer to this
merged VA and SA step as SA. Once the packet using a virtual channel is completely
transferred downstream, the corresponding output becomes available to other wait-
ing packets. Of course, this approach could defeat the purpose of virtual channels
under wormhole flow control because the single virtual channel active at each out-
put may become blocked. However, cut-through ensures that the downstream router
will always have enough buffering to store an entire packet, therefore avoiding the
possibility that a packet becomes blocked while also holding an output.

To meet its aggressive timing requirements, the switch allocation of the 21364
is split into two stages, referred to as the local and global arbiters. (In Section 19.3,
we discuss these separable allocators in greater detail.) First, the local arbiters in
each input unit choose a packet among all waiting packets that are ready. A packet
is considered ready when its output port is available and its downstream router
has a free packet buffer. Local arbitration takes one pipeline cycle (SA1) and, dur-
ing the following cycle, the header information for each packet selected by a local
arbiter is read and transported to the correct output (RE). This header information
is enough to begin the global arbitration cycle (SA2). Since the local arbitration
decisions are not coordinated, its quite possible that multiple packets have been
selected for a single output. The global arbiters resolve this conflict by choosing
one packet for each output. In parallel with this global arbitration decision, the
data corresponding to each packet that was selected by the local arbiters is spec-
ulatively read from the input buffers and transferred to the outputs (ST1). This
transfer is speculative because these packets may still lose at the global arbiters, but
if they win, the cycle required to read their data and transfer it to the outputs is
hidden. Switch transfer is completed in stage ST2 once the global arbitration re-
sults are known. The final stage (ECC) appends a 7-bit error correcting code to
each phit before it is transferred to the downstream router. Although not shown in
Figure 16.15, backchannels within the router convey the results of the speculative

324 C H A P T E R 16 Router Architecture

switch transfer to the input units. If the speculation succeeds, subsequent phits of
the packet can continue to be sent. If it fails, the speculative phits are dropped from
within the switch and must be resent by the input unit. The result of the 21364’s
deeply pipelined design and speculative switch transfer is an extremely low per-
hop latency of 10.8 ns combined with sustained throughputs of 70% to 90% of
peak [131].

16.8 Bibliographic Notes

The basic virtual-channel router architecture presented in this chapter dates back
to the Torus Routing Chip [56]. Refinements over the years can be found in the
Reliable Router [52], the routers in the Cray T3D [95] and T3E [162], the IBM SP
series [176], and the SGI SPIDER chip [69]. The SPIDER chip was the first router to
compute the route one step ahead. The use of speculation to reduce router latency
was first described by Peh and Dally [146].

16.9 Exercises

16.1 Simplifications with one virtual channel. How do the pipeline and global state change
if there is only a single virtual channel per physical channel? Describe each pipeline
stage and each field of the global state.

16.2 Architecture of a circuit switching router. Sketch the architecture of a router for circuit
switching (as in Figure 12.6). What is the global state? What is the pipeline? What
are the steps in handling each circuit and each flit?

16.3 Impact of ack/nack flow control on the pipeline. Suppose ack/nack flow control is used
instead of credit-based flow control. How does this change the router pipeline? What
happens to credit stalls?

16.4 Dependencies from aggressive virtual-channel reallocation. Consider a simple minimal
adaptive routing algorithm for 2-D mesh networks based on Duato’s protocol:VC 0
is reserved for dimension order routing (the routing subfunction) and VC 1 is used
for adaptive routing. Which of the reallocation strategies shown in Figure 16.7 are
deadlock-free for this routing algorithm?

16.5 Flit formatting for narrow channels. For the flit fields shown in Figure 16.13, let the
VC field require 4 bits, the type information require 2 bits, the credit field require
8 bits, and the route information require 6 bits. If the input channel receives 8 bits
per clock cycle, how many cycles are required before routing can begin? If so, give
the corresponding flit format. If route lookahead is employed, can virtual-channel
allocation begin on the first cycle?

C H A P T E R 17

Router Datapath
Components

In this chapter, we explore the design of the components that comprise the datapath
of a router: the input buffer, switch, and output unit. Input buffers hold flits while
they are waiting for virtual channels, switch bandwidth, and channel bandwidth.
Input buffers may be centralized, partitioned across physical channels, or partitioned
across virtual channels.A central buffer offers the most flexibility in allocating storage
across physical channels and virtual channels, but is often impractical due to a lack of
bandwidth. Within each buffer partition, storage can be statically allocated to each
virtual channel buffer using a circular buffer, or dynamically allocated using a linked
list.

The switch is the core of the router and where the actual switching of flits from
input ports to output ports takes place. A centralized buffer itself serves as a switch
with the input multiplexer and output demultiplexers of the buffer performing the
function. A shared bus can also serve as a switch and has the advantage that it does
not require complex switch allocation — each input broadcasts to all outputs when it
acquires the bus. However, a bus makes inefficient use of internal bandwidth. Most
high-performance routers use crosspoint switches. A crosspoint switch is usually
provided with some excess bandwidth,or speedup, to simplify the allocation problem
and to prevent switch allocation from becoming a performance bottleneck and hence
idling expensive channel bandwidth.

17.1 Input Buffer Organization

The input buffers are one of the most important structures in a modern router. The
flow control protocol allocates space in these buffers to hold flits awaiting channel
bandwidth to depart these routers. The buffers provide space for arriving flits so that

325

326 C H A P T E R 17 Router Datapath Components

the incoming channel need not be slowed when a packet is momentarily delayed due
to a pipeline stall or contention for a virtual channel or physical channel.

17.1.1 Buffer Partitioning

How the input buffers are partitioned is tightly tied to the design of the switch.
Input buffers can be combined across the entire router, partitioned by physical in-
put channel, or partitioned by virtual channel, as illustrated in Figure 17.1. If a single
memory is used to hold all of the input buffers on a router, as shown in Figure 17.1(a),
there is no need for a switch. However, no real savings exist in such a case. Instead,
there are really two switches: one that multiplexes inputs into the memory and
one that distributes outputs from the memory.1 The major advantage of the cen-
tral memory organization is flexibility in dynamically allocating memory across the
input ports. Unfortunately, there are two serious shortcomings with this approach.
First, the bandwidth of the single memory can become a serious bottleneck in high-
performance routers. For example, in a router with δi = 8 input ports, the central
memory bandwidth must be at least 2δi = 16 times the port bandwidth so it can
write 8 flits and read 8 flits each flit time. To get high-bandwidth requires a very wide
memory, often many flits wide, which leads to the second problem. Router latency
is increased by the need to deserialize flits to make a wide enough word to write to
the shared memory and then reserialize the flits at the output.

The bandwidth and latency problems of the central buffer memory can be
avoided by providing a separate memory per input port,2 as illustrated in
Figure 17.1(b). While the total memory bandwidth is still 2δi times the port band-
width in this arrangement, each individual memory needs only twice the bandwidth
of the input port, making implementation more feasible and avoiding the latency
penalties of a wide memory. This arrangement enables buffers to be shared across
the virtual channels associated with a particular physical channel, but not across the
physical channels.

One can subdivide the flit buffers further, providing a separate memory for each
virtual channel, as shown in Figure 17.1(c). This has the advantage of enabling input
speedup in the switch by allowing the switch to access more than one virtual channel
from each physical channel in a single cycle. For example, suppose a router has
δi = 8 input ports, each of which has V = 4 virtual channels. A per-virtual-channel
buffer organization would then provide δiV = 32 inputs to a 32 × 8 switch. As
shall be discussed in Section 17.2 providing input speedup on the switch in this
manner increases the throughput of the router. Dividing the input buffers this finely,
however, can lead to poor memory utilization because memory space in the buffers of

1. Switching by demultiplexing into the shared memory and multiplexing out of the shared memory is
similar to the switching performed by a bus switch (Section 17.2.1) except that the memory decouples
the timing of the input and output sides of the switch.

2. Of course, there are possibilities between these two points — for example, sharing one memory between
each pair of input ports.

17.1 Input Buffer Organization 327

Memory

(a)

Memory

Memory

Memory

Memory

(b)

(c)

Physical
channels

Virtual
channels

Figure 17.1 Flit buffer organization. (a) A central memory is shared across all input ports of the router. This
allows flexibility in allocating buffer space across channels, and the memory serves as a switch
as well. However, the bandwidth of the single central memory can become a bottleneck, which
makes this organization unsuitable for high-performance routers. (b) A separate buffer memory
is provided for each input physical channel. This organization provides bandwidth that scales
with the number of ports and requires a switch with a number of input ports equal to the number
of physical channels. (c) A separate buffer memory is provided for each virtual channel. This
enables the switch to source flits from multiple virtual channels on the same physical channel
in a single cycle. However, it often results in significant buffer fragmentation, as the memory of
idle virtual channels cannot be shared by busy virtual channels.

idle virtual channels cannot be allocated to busy virtual channels. Also, the overhead
associated with so many small memories is considerable. It is much more efficient to
have a few larger memories.

A good compromise between a per-physical-channel buffer, as in Figure 17.1(b),
and a per-virtual-channel buffer, Figure 17.1(c), is to provide a buffer on each phys-
ical channel with a small number of output ports, as shown in Figure 17.2(a). This
approach gives us the buffer-sharing and economy-of-scale advantages of per-physical-
channel buffers while still permitting switch speedup. The expense of multiport
memory in Figure 17.2(a) can be avoided, with a very small penalty in perfor-
mance, by using a partitioned physical channel buffer rather than a multiport phys-
ical channel buffer, as shown in Figure 17.2(b). With this approach, the V virtual
channels associated with a physical channel are partitioned across a small number
B < V of per physical channel buffers. For example, in the case shown in the figure

328 C H A P T E R 17 Router Datapath Components

Memory

Memory

(a) (b)

Figure 17.2 Multiple buffer ports per physical channel. (a) Switch input speedup is enabled without the
expense of a per-virtual-channel buffer by providing multiple output ports on a per-physical-
channel buffer. (b) A less expensive approach that gives almost the same performance is to divide
the virtual channels across multiple single-port buffers. For example, all even virtual channels
are stored in one buffer and all odd channels in the other.

where B = 2, the even virtual channels would be stored in one buffer and the odd
virtual channels in the other. This organization sacrifices some flexibility in both
buffer allocation (storage cannot be shared across partitions) and switch scheduling
(the switch can select only one virtual channel per partition). In practice, however,
the performance of a partitioned buffer is nearly identical to a multiport buffer and
the cost (in chip area) is significantly less.

17.1.2 Input Buffer Data Structures

In any buffer organization, we need to maintain a data structure to keep track
of where flits and packets are located in memory and to manage free memory.
Also, in those buffer organizations in which multiple virtual channel buffers share a
single memory we need a mechanism to allocate space fairly between the virtual
channels.

Two data structures are commonly used to represent flit buffers: circular buffers
and linked lists. Circular buffers are simpler to manage, but require a fixed partition
of buffer space. Linked lists have greater overhead, but allow space to be freely
allocated between different buffers.

In our description of both types of buffers, we use the term buffer or flit buffer to
refer to the entire structure used to hold all of the flits associated with one virtual
channel, for example, and the term cell or flit cell to refer to the storage used to hold
a single flit.

A circular buffer is illustrated in Figure 17.3. Fixed FIRST and LAST pointers
mark the boundaries of the buffer within the memory. These pointers may be made
configurable by placing them in registers. However, they cannot be changed once the
buffer is in use. The contents of the buffer lie at and below the Head pointer and
above the Tail pointer, possibly wrapping around the end of the buffer, as shown
in Figure 17.3(b).

An element is added to the buffer by storing it in the cell indicated by the tail
pointer and incrementing the tail pointer in a circular manner. In “C” code, this
operation is expressed as:

17.1 Input Buffer Organization 329

a

Tail

Head

FIRST

LAST

F
ill

ed

B
uf

fe
r

Memory

f
e
d
c
b

Tail

Head

FIRST

LAST

f
e

g
h
i

j

(a) (b)

Figure 17.3 (a) A buffer containing six flits a through f. (b) The same buffer after flits a through d are removed
and flits g through j are added, causing the tail to wrap around the end of the buffer. A circular
buffer is a fixed partition of a memory, delimited by constant pointers FIRST and LAST. Variable
Head and Tail pointers indicate the current contents of the buffer. Data is inserted into the
buffer at the head pointer, which is then circularly incremented. Data is removed from the buffer
at the tail pointer, which is then circularly incremented.

mem[Tail] = new_flit ;
Tail = Tail + 1 ;
if(Tail > LAST) Tail = FIRST ;
if(Tail == Head) Full = 1 ;

The third line of this code makes the buffer circular by wrapping the tail pointer
back to the start of the buffer when it reaches the end.

Similarly, an element is removed from the buffer by reading the value at the
head pointer and circularly incrementing the head pointer:

flit = mem[Head] ;
Head = Head + 1 ;
if(Head > LAST) Head = FIRST;
if(Head == Tail) Empty = 1 ;

The last line of both code sequences detects when the buffer is full and empty,
respectively. These conditions occur when the head and tail pointers are equal. The
difference is that a full condition occurs when an insert causes the pointers to be equal
and an empty condition occurs when a remove causes the pointers to be equal. The
full and empty indications are used by logic external to the flit buffer to avoid making
insert requests when the buffer is full and remove requests when the buffer is empty.

330 C H A P T E R 17 Router Datapath Components

In typical implementations, circular buffer data structures are implemented in
logic that carries out all four lines of the above code sequences in a single clock cycle.
In fact, many implementations are structured so that a buffer can simultaneously
insert an element and remove an element in a single clock cycle.

If the buffers are a power of two in size and aligned to a multiple of their size (for
example, 16-flit buffers starting at a multiple of 16) then the wrapping of pointers
can be performed without a comparison by just blocking the carry from the bits
that indicate a location within the buffer to the bits that indicate a buffer within
the memory. For example, if flit buffers are 16 cells in size, bits 0 to 3 of the pointer
select the cell within the buffer and bits 4 and up identify the buffer. Thus, if we
block the carry from bit 3 to bit 4, incrementing the pointer from the last position
of a buffer, BF for buffer B, will result in a pointer that wraps to the first position of
the buffer B0.

A linked list data structure, illustrated in Figure 17.4, gives greater flexibility in
allocating free storage to buffers, but incurs additional overhead and complexity. To
manage a memory that has linked lists, each cell is augmented with a pointer field to
indicate the next cell in a list. To facilitate the multiple pointer operations required to
manage the list, the pointers are usually kept in a separate memory than the flit cells
themselves, and this pointer memory is often multiported. For each buffer stored in
the memory, a head and tail pointer indicate the first and last cells of the linked list
of buffer contents. All cells that do not belong to some buffer are linked together on
a free list. Initially, all of the cells in the memory are on the free list and the head
and tail pointers for all flit buffers are NULL. For purposes of memory allocation, we
also keep a count register for each buffer that indicates the number of cells in that
buffer and a count register holding the number of cells on the free list.

Inserting a flit into the buffer requires the following operations:

if(Free != NULL) {
mem[Free] = new_flit ;// store flit into head of free list
if(Tail != NULL)
ptr[Tail] = Free ; // link onto buffer list - if

Tail = Free ; // it exists
Free = ptr[Free] ; // unlink free cell
ptr[Tail] = NULL ; // optional - clear link to free list
if(Head == NULL) // if buffer was empty
Head = Tail ; // head and tail both point at

this cell
} else ERROR ; // no cells left on free list

Inserting a flit into a linked list like this can be done in a single cycle, but it requires
a dual-ported flit buffer. We must write the pointer of the old tail cell and read
the pointer of the head of the free list (the new tail cell). However, there are no
dependencies between these two operations, so they can go on at the same time if
we have enough ports. If we want to clear the pointer of the new tail cell, so it no
longer points to the free list (a good idea for consistency checking — see below — but
not absolutely required), we need a read-modify-write operation on at least one of
the two ports.

17.1 Input Buffer Organization 331

a

d

c
b

Tail

Head

Free e

a

d

c
b

Tail

Head

Free

e

d

c
b

Tail

Head

Free

(a) (b)

(c)

Figure 17.4 A linked list data structure maintains each buffer as a linked list of cells. Free cells are linked
together on a free list. (a) A flit buffer contains four cells in a linked list. Head points to the
first cell in the list and Tail points to the last cell in the list. Free points to a linked list
of five free cells. (b) Flit e is added to the list by removing a cell from the free list, filling it,
and linking it into the buffer list. (c) Flit a is removed from the list and its cell is returned to the
free list.

332 C H A P T E R 17 Router Datapath Components

Removing a flit from the buffer goes as follows:

if(Head != NULL) {
flit = mem[Head] ; // get the flit
Next = ptr[Head] ; // save pointer to next flit in buffer
ptr[Head] = Free ; // put old head cell on the free list
Free = Head ; //
if(Head == Tail) { // if this was the last cell - empty list

Head = NULL ;
Tail = NULL ;

} else { // otherwise, follow the link to the
Head = Next ; // next cell

}
} else ERROR ; // attempt to remove from empty buffer

As this code shows, removing a flit is considerably easier. It can be done in a single
cycle with a single-port pointer memory that supports a read-modify-write operation
to both read the link in the head cell and link it into the free list.

The main cost of using a linked-list structure is the complexity of manipulating
the pointer memories, which require multiple pointer-memory operations per insert
or remove, and the increased complexity of error handling. The actual storage over-
head of the pointers is small. For example, to associate an 8-bit pointer with a typical
8-byte flit requires an overhead of only 12.5%.

Handling bit errors that occur within linked list data structures is much more
involved than handling such errors in circular buffers. In a circular buffer, a bit error
in the memory affects only the contents of the buffer, not its structure. A bit error
in the head or tail pointer of a circular buffer at most results in inserting or deleting
a bounded number of flits from the buffer. With circular buffers, errors can always
be contained to a single buffer by resetting the state of the buffer (setting Head =
Tail = FIRST).

With a linked-list buffer, a single bit error in the pointer field of a flit can have
much greater consequences. A bit error in a pointer in the free list disconnects many
free flits of storage, resulting in allocation failures, while the buffer counter indicates
that many free cells are still available. If the error causes this pointer to point at a
cell allocated to a flit buffer, allocating this cell to another buffer will both break
the chain of the original buffer and cause the two buffers to share a sequence of the
chain. A bit error in a cell allocated to a buffer has similar consequences.

The important point is that bit errors in linked-list structures have effects that
are global across all buffers in a memory. Thus, it is important to detect and contain
these errors when they occur before the effects of the error have corrupted all buffers
in the memory.

Error control methods for linked-list buffers combine defensive coding of entries
and background monitoring. Defensive coding starts by adding parity to the pointers
themselves so that single bit errors will be detected before a pointer is used. Each flit
cell is tagged with a type field that indicates whether it is free or allocated, and this
field is used to check consistency. Storing the buffer number, or at least a hash of it,

17.1 Input Buffer Organization 333

in allocated cells enables us to check that cells have not become swapped between
buffers. Finally, storing a sequence number, or at least the low few bits of it, into each
cell enables the input unit to check that cells have not become reordered. The insert
and remove operations check the validity of their pointers, that the type and buffer
numbers of the cells read match expectations, and that the sequence numbers of cells
removed are in order. If exceptions are detected, the buffers affected are disabled
and an error handling routine, which is usually implemented in software, is triggered.

A background monitoring process complements defensive coding by checking
the consistency of cells that are not being accessed. This detects errors in the middle
of linked lists that would otherwise lie dormant until much later. The monitoring
process walks each buffer list, from head to tail, checking that the number of cells in
the buffer matches the count, that each cell in the buffer is allocated, that each cell
belongs to this buffer, and that there are no parity errors. A similar check is made of
the free list. Such list walking is often complemented by a mark-and-sweep garbage
collection pass to detect cells that somehow have become disconnected from any list.
In most implementations the background monitor itself is a hardware process that
uses idle cycles of the buffer memory to perform these consistency checks. When
an error is detected, the buffers affected are disabled and a software-error handling
routine is invoked.

17.1.3 Input Buffer Allocation

If we build our input buffers using a linked-list data structure, we can dynamically
allocate storage between the different buffers sharing a memory. This dynamic
memory allocation offers the potential of making more efficient use of memory
by allocating more memory to busy virtual channels and less to idle virtual channels.
Many studies have shown that when there are large numbers of virtual channels, load
is not balanced uniformly across them. Some are idle, while others are overloaded.
Thus, it is advantageous to allocate more memory to the busy channels and less to the
idle channels. However, if not done carefully, dynamic buffer allocation can negate
the advantages of virtual channels. If one greedy virtual channel were allowed to
allocate all of the storage and then block, no other virtual channel would be able to
make progress. This, in turn, creates a dependency between the virtual channels and
can potentially introduce deadlock.

To control input buffer allocation, we add a count register to the state of each
virtual channel buffer that keeps track of the number of flits in that channel’s buffer.
An additional count register keeps track of the number of cells remaining on the free
list. Using these counts, we can implement many different buffer allocation policies.
The input to the policy is the current state of the counts. The output is an indication
of whether or not each virtual channel is allowed to allocate an additional buffer.

For example, a simple policy is to reserve one flit of storage for each virtual chan-
nel buffer. This guarantees that we won’t inadvertently cause deadlock by allocating
all of the storage to a single virtual channel that then blocks. Each virtual channel
is able to continue making progress with at least one flit buffer. To implement this

334 C H A P T E R 17 Router Datapath Components

policy, we allow a virtual channel to add a flit to its buffer if (a) its buffer is currently
empty (every virtual channel gets at least one flit), or (b) the count of free flit buffers
is greater than the number of virtual channel buffers with a count of zero.

To simplify administration of this policy, we divide our free count into a count
of reserved cells and a count of floating cells. A reserved cell count is maintained per
virtual channel and is incremented or decremented when a buffer becomes empty or
the first flit is inserted into an empty buffer, respectively. We increment or decrement
the shared floating count when inserting or removing cells into buffers with at least
one additional cell in them. With this arrangement, condition (b) can be checked by
checking the count of floating cells for zero.

Although this simple policy does preserve our deadlock properties, it can still
lead to great imbalance in buffer allocation. One way to correct such imbalance is
to use a sliding limit allocator, which is characterized by two parameters, r and f .
Parameter r is the number of cells reserved for each buffer and must be at least one
to avoid deadlock. Parameter f is the fraction of the remaining cells (after reserving
r for each buffer) that can be allocated to any one buffer.

As with the fixed reservation scheme, we implement the sliding limit allocator
by keeping two free cell counters, one for reserved cells Nr and one for floating cells
Nf . We allow an insert into buffer b with count Nb if Nb < r, in which case the
buffer comes from the reserved pool and we decrement Nr , or r ≤ Nb < f Nf + r,
in which case the buffer comes from the floating pool and we decrement Nf .

The aggressiveness of this policy is set by the parameter f . When f = 1, a single
buffer can allocate the entire free pool and this policy degrades into the reservation
policy above. When f = 1

B
, where B is the number of buffers in the memory, each

buffer can allocate at most 1
B

of the pool and the policy is equivalent to a fixed
partition. More useful values of f exist between these two extremes. For example,
with f = 0.5, any buffer can use at most half of the remaining floating pool and
with f = 2

B
, no buffer can use more than twice the space as would be granted with

a fixed partition.

17.2 Switches

The switch is the heart of a router. It is here that packets and flits are actually di-
rected to their desired output port. The main design parameter with a switch is its
speedup — the ratio of the switch bandwidth provided to the minimum switch band-
width needed to support full throughput on all inputs and outputs. As we shall see,
adding speedup to a switch simplifies the task of switch allocation and results in
higher throughput and lower latency. We can set the speedup on the input side of a
switch and on the output side of a switch independently.

A switch of a given speedup can be realized in a number of different ways. If a
flit time covers many clock periods, we can perform switching in time (as with a bus)
instead of or in addition to switching in space. Also, there are situations in which we
compose a switch from a series of smaller switches and thus form a small network
in its own right. However, except in the simplest cases, multistage switches raise a
host of difficult allocation and flowcontrol problems.

17.2 Switches 335

Input
deserializer 0

Output
serializer 0

Bus

Output
serializer 1

Output
serializer 2

Output
serializer 3

Input
deserializer 1

Input
deserializer 2

Input
deserializer 3

Input port 0

Input port 1

Input port 2

Input port 3

Output port 0

Output port 1

Output port 2

Output port 3

1

1

1

1

4

4

4

4

4

4

4

4

1

1

1

1
Signal widths shown in phits

Figure 17.5 A 4 × 4 switch realized as a bus. Each input deserializer accumulates phits, acquires a bus cycle,
and then transmits P phits in parallel over the bus to one or more output serializers. The output
serializers then send the individual phits over the output ports.

17.2.1 Bus Switches

When a flit time consists of more internal clock cycles (phit times) than the number
of ports, a bus may be used as a switch, as illustrated in Figure 17.5. The timing of
this type of bus switch is shown in Figure 17.6. Each input port of the switch accepts
phits of a flit and accumulates them until it has at least P phits, where P is the num-
ber of input switch ports. Once an input port has P phits, it arbitrates for the bus.
When it acquires the bus, it transmits the P phits, possibly an entire flit, broadside to
any combination of output units. The receiving output unit(s) then deserializes the
P phits and transmits them one at a time to the downstream logic. For this to work
without loss of bandwidth due to fragmentation, the number of phits per flit must
be a multiple of P .

The figures show a case in which there are four input ports and four output
ports on the bus switch, each flit is four phits in length, and flits are aligned on the
inputs and outputs (that is, all flits have their first phit during the same clock cycle).
In this case, each input port accumulates an entire flit and then transmits it over
the bus. Because each input port has access to all output ports during its bus cy-
cle, there is no need for a complex switch allocation. (See Chapter 19.) Each input
port is guaranteed access to the output it desires when it acquires the bus because
it gets access to all of the outputs. This also means that multicast and broadcast can
be accomplished (ignoring for the moment the flowcontrol issues associated with
multicast) with no additional effort. In Figure 17.6, a fixed bus arbitration scheme
is used. Input port 0 gets the bus during phit cycle 0 (the first phit of each flit),
input port 1 gets the bus during phit cycle 1, and so on. This type of arbitration is
extremely simple.

There is no point in having a speedup of greater than one with a bus switch.
Because an input port always gets its output port during its bus cycle, it can always
dispose of the input flit that just arrived with a speedup of one. Additional speedup
increases cost with no increase in performance.

336 C H A P T E R 17 Router Datapath Components

Input port 0

Input port 1

Input port 2

Input port 3

a0 a1 a2 a3 b0 b1 b2 b3

f0 f1 f2 f3 g0 g1 g2 g3

Bus a

Output port 0

Output port 1

Output port 2

Output port 3

k0 k1 k2 k3 l0 l1 l2 l3

p0 p1 p2 p3 q0 q1 q2 q3

f k p b g l q

f0 f1 f2 f3

a0 a1 a2 a3

k0 k1 k2 k3

p0 p1 p2 p3

b0 b1 b2 b3

g0 g1 g2 g3

l0 l1 l2 l3

q0 q1 q2 q3

Phit time

Flit time

c0 c1 c2 c3

h0 h1 h2 h3

m0 m1 m2 m3

r0 r1 r2 r3

c h m r

c0 c1 c2 c3

h0 h1 h2 h3

m0 m1 m2 m3

r0 r1 r2 r3

Phit cycle 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 17.6 Timing diagram for a 4 × 4 bus switch in which each flit consists of four phits. Flits a, f, k, and
p arrive on the four input ports, one phit at a time, during the first flit time; flits b, g, l, and q
arrive during the second flit time; and flits c, h, m, and r arrive during the third flit time. While
the ith flits are arriving, the (i −1)th flits are transmitted broadside across the bus, one flit being
transmitted each phit time, and the (i − 2)th flits are being reserialized on the output ports.

Bus switches have the advantage of being extremely simple. But this simplicity
comes at the expense of wasted port bandwidth and increased latency. The bus
bandwidth equals the aggregate bandwidth of the router, P b, where P is the number
of ports and b is the per-port bandwidth. To interface to this bus, however, each
input deserializer must have an output bandwidth of P b and each output serializer
must have an input bandwidth of P b. Thus, the aggregate bandwidth out of the input
deserializers, and into the output serializers, is P 2b, because only 1

P
of this bandwidth

(on the input side, at least) is active during any given cycle.
If the router is implemented on a chip, this excess bandwidth has some cost but

is not a serious limitation.3 Figure 17.7 shows how the bus lines can be run directly
over the input deserializers and output serializers so the cost of this excess bandwidth
is low. In fact, this bus switch has a wiring complexity that is exactly double that
of a crossbar switch with the same bandwidth, 2P × P phit-wide buses for the bus
switch versus P × P for the crossbar. Each serializer or deserializer in the bus switch
also requires 2P phits of storage, while a crossbar switch is stateless.

3. If one tried to build a bus switch with the serializers and deserializers on separate chips, however, the pin
bandwidth would be prohibitively expensive.

17.2 Switches 337

Input deserializer

Output serializer

Bus lines

Input port 0

Input port 1

Input port 2

Input port 3

Output port 2

Output port 1

Output port 0

Output port 3

Figure 17.7 Floorplan and wiring plan of a 4 × 4 bus switch. The phit-wide input and output lines run
horizontally. Each input line feeds an input deserializer (shaded), while each output line is driven
by an output serializer (hatched). The 4-phit-wide bus runs vertically over the serializers and
deserializers.

The latency and coarse granularity of a bus switch is a more serious limitation
than its excess bandwidth. As shown in Figure 17.6, the bus switch must switch in
units of at least P phits. If the flit size is smaller than this, a bus switch is not feasible.
Also, the latency of the bus switch is 2P phit times because of the time required to
deserialize the input and align the outputs.4 This is in comparison to the delay of a
single phit time for a crossbar.

An intermediate point between a straight bus switch and a complete crossbar
switch is a multiple-bus switch. Figure 17.8 shows an output partitioned switch with
two buses. Outputs 0 and 1 share bus 1 and outputs 2 and 3 share bus 2. By halving
the number of outputs supplied by each bus, we halve the number of phits that must
be transported over the bus each cycle to keep the outputs busy. Hence, serialization
latency is halved. This reduction in latency comes at the expense of more complex
allocation. We can no longer use a fixed allocation. Instead, we must solve a matching
problem to allocate input ports and output ports for each cycle. (See Chapter 19.)

The multiple bus configuration shown in Figure 17.8 is equivalent to a 2-phit
wide 4 × 2 crosspoint switch (four 2-phit-wide inputs switched onto two 2-phit-
wide buses). Each output of this 4 × 2 switch drives two output serializers that
receive 2-phit-wide data from a bus and output this data one phit at a time. In the
extreme case, where we put each output on a separate bus, the multiple bus switch
is equivalent to a P × P crosspoint.

4. This latency can be reduced to P + 1 + a phit times, where a is the number of cycles lost during bus
arbitration on a bus switch with unaligned output flits. The average value of a if all P ports are competing
is P

2
.

338 C H A P T E R 17 Router Datapath Components

Input
deserializer 0

Output
serializer 0

Bus1

Output
serializer 1

Output
serializer 2

Output
serializer 3

Input
deserializer 1

Input
deserializer 2

Input
deserializer 3

Bus2

1

1

1

1

2

2

2

2

2

2

2

2

1

1

1

1

Input port 0

Input port 1

Input port 2

Input port 3

Output port 3

Output port 2

Output port 1

Output port 0Signal widths shown in phits

Figure 17.8 Output-partitioned multiple-bus switch: The four inputs can drive two phits at a time onto
either bus. Outputs 0 and 1 receive two-phit parcels from bus 1, while outputs 2 and 3 receive
from bus 2. This organization reduces latency and excess bandwidth at the expense of more
complicated allocation.

We can build input-partitioned multiple-bus switches as well as output-parti-
tioned multiple bus switches, as is explored further in Exercise 17.4.Also, as discussed
in Exercise 17.5, we can partition a switch across both the inputs and the outputs at
the same time.

Memory switches, such as the one shown in Figure 17.1(a), are bus switches with
a memory separating the input and output sides of the bus. These memory switches
can be partitioned across inputs or outputs or both as described in Exercise 17.6.

17.2.2 Crossbar Switches

Recall from Section 6.2 that an n × m crossbar or crosspoint switch can connect any
of the n inputs to each of the m outputs. We represent crossbars with the symbol
shown in Figure 17.9. The structure of crossbars is discussed in detail in Section 6.2
and will not be repeated here.

The primary issue when using a crossbar as the switch in a router datapath is
speedup: the ratio of provided bandwidth to required bandwidth. We can provide
speedup on the input of the crossbar, the output of the crossbar or on both sides.
This speedup can be provided in space (additional inputs) or time (higher bandwidth

17.2 Switches 339

in0

in1

in2

in3

out0

out1

out2

out3

out4

Figure 17.9 Symbol for a 4 × 5 crossbar switch.

inputs).5 Figures 17.10 and 17.11 show examples of switches with input speedup
(Figure 17.10[b]), output speedup (Figure 17.11[a]), and both input and output
speedup (Figure 17.11[b]).

Providing a crossbar switch with speedup simplifies the task of allocating the
switch, or gives better performance with a simple allocator.6 Especially with small
flit sizes and low latency requirements, it is often cheaper to build a switch with more
speedup than it is to build an allocator that achieves the required performance with
less speedup. Switch allocation is the process of allocating crossbar input ports and
crossbar output ports in a non-conflicting manner to a subset of the flits waiting in
the input buffers. The topic of allocation is treated in detail in Chapter 19. Here we
assume the use of a simple random separable allocator to compare the performance
of switches with varying amounts of speedup.

A random separable allocator works by first having each input buffer randomly
select a flit from among all waiting flits to be forwarded on each input port of the
crossbar. If traffic is uniform, each output has equal probability of being the destina-
tion of each selected input flit. Each output port then randomly selects a flit from
among the flits on the input ports bidding for that output.

Suppose our k input, k output router has input speedup of s and no output
speedup; thus, the crossbar has sk inputs. With a random separable allocator, an
output will forward a flit as long as some input has selected a flit for that output. The
throughput � of the switch is the probability that at least one of the sk flits selected
in the first phase of allocation is destined for a given output. This probability is
given by

� = 1 −
(

k − 1
k

)sk

. (17.1)

5. Speedup in space always has an integral value. (You cannot have half of a switch port). Speedup in time,
however, may have non-integral values. For example, you can operate a crossbar that passes a flit in 3
cycles in a router that handles a flit every 4 cycles for a speedup of 1.33.

6. In other contexts, speedup is also used to compensate for overhead that may be incurred by adding headers
to packets or flits or due to fragmentation when segmenting packets into flits. In this case, we assume
we are switching flits without adding additional overhead and, hence, use speedup strictly to simplify
allocation.

340 C H A P T E R 17 Router Datapath Components

1

1

1

Input buffer
1

1

1

11

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

(a)

(b)

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

Input port 0

Input port 1

Input port 2

Input port 3

Input port 0

Input port 1

Input port 2

Input port 3

Output port 0

Output port 1

Output port 2

Output port 3

Output port 0

Output port 1

Output port 2

Output port 3

Figure 17.10 Crossbar input speedup. The 4 × 4 switch shown in (a) has an input speedup of one — the
number of inputs matches the number of outputs and all are of unit bandwidth. The switch in
(b) has an input speedup of two — there are twice as many inputs as outputs — resulting in a
simpler allocation problem.

The throughput vs. input speedup curve is plotted for a 4 output switch in
Figure 17.12. Using the separable allocator, a switch with no speedup achieves only
68% of capacity, while an input speedup of 2 yields 90% of capacity and 3 brings
capacity up to 97%.

When the input speedup of the switch reaches 4 in this case (or k in the general
case), there is no point in using an allocator. At this point, the k crossbar inputs
out of each input buffer can each be dedicated to a single output port so that each
crossbar input handles flits between a single input-output port pair. The situation is
then identical to that of the bus switch described above in Section 17.2.1 and 100%
throughput is achieved without allocation. Since 100% throughput can be achieved
with trivial arbitration with a speedup of k, there is no point in ever making a switch
with an input speedup larger than s = k.

A switch with output speedup can achieve the exact same speedup as a switch
with an identical amount of input speedup by using a separable allocator operating in

17.2 Switches 341

1

1

1

Output
buffer1

Output
buffer1

Output
buffer1

1 Output
buffer1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(a)

(b)

1

1

1

1

1

1

1
1

1

1

1

1

Input
buffer

Input
buffer

Input
buffer

Input
buffer

Input
buffer

Input
buffer

Input
buffer

Input
buffer

Input 0

Input 1

Input 2

Input 3

Output 0

Output 1

Output 2

Output 3

Output
buffer

Output
buffer

Output
buffer

Output
buffer

Input 0

Input 1

Input 2

Input 3

Output 0

Output 1

Output 2

Output 3

Figure 17.11 Crossbar output speedup. (a) A 4×4 switch with an output speedup of 2. (b) A switch that has
a speedup of 2 — both an input speedup of 2 and an output speedup of 2.

the reverse direction. Each output port selects a waiting flit destined for that output
port and then bids on the input port holding this flit. In practice, this is difficult
to implement, since it requires getting information about waiting input flits to the
output ports. For this reason, and also to eliminate the need for output buffering,
input speedup is generally preferred over output speedup.

A switch that has both input and output speedup can achieve a throughput
greater than one. Of course, it cannot sustain this, since the input and output buffers
are finite. If the input and output speedups are si and so, respectively, and assuming
si ≥ so, we can view this as a switch with overall speedup so and with input speedup
of si/so relative to the overall speedup. Thus, the throughput in this case is given by

� = so

⎛
⎝1 −

(
k − 1

k

) si k

so

⎞
⎠ .

342 C H A P T E R 17 Router Datapath Components

0 1 2 3 4

Input speedup

0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
u

g
h

p
u

t
(f

ra
ct

io
n

 o
f

ca
p

ac
it

y)

Figure 17.12 Throughput as a function of input speedup for a k = 4 output crossbar switch using a single
iteration random separable allocator.

Most often, crossbars are operated with a small amount of overall speedup
(between 1.2 and 1.5) so that 100% throughput can be achieved without heroic
allocation and with low latency and then with the input ports doubled to further
simplify allocation.

17.2.3 Network Switches

A switch can be realized as a network of smaller switches. For example, the 7-input ×
7-output switch needed to implement a dimension-order router for a 3-D torus
network can be realized with three 3 × 3 switches, as shown in Figure 17.13. This
reduces the number of crosspoints needed to realize the switch from 49 to 27. Each
dimension of this switch can be partitioned further by separating the plus and minus
directions, as shown in Figure 17.14. However, this additional partitioning increases
the crosspoint count to 33.

Partitioning the switch has the advantage of reducing the total number of cross-
points and enhancing the locality of the logic, thus reducing wire length.7 On the
downside,however, the partitioned switch requires more complex control, if an entire

7. This was the motivation for introducing this type of partitioning as dimension-slicing or port-slicing in
Section 7.2.2

17.3 Output Organization 343

xm_in xm_out

to_router

xp_in xp_out

ym_in ym_out

yp_in yp_out

zm_in zm_out

zp_in zp_out

from
_router

Figure 17.13 A dimension-order router can be divided into smaller routers by implementing the restricted
7 × 7 switching function with three 3 × 3 switches.

path is to be allocated at once, or flit buffers between the partitions to hold a flit while
it arbitrates for the next switch. Also, depending on the network, traffic, and routing,
the loading on the internal links between the sub-routers may become greater than
the load on the channels themselves.

In general, partitioning a switch into a network of switches should be avoided
unless it is necessary to fit each partition into a level of the packaging hierarchy.

17.3 Output Organization

The datapath of the output unit of Figure 16.1 consists primarily of a FIFO buffer
to match the rate of the output channel to the rate of the switch. For a switch that
has no output speedup, no datapath is required. As flits exit the switch, they can be
placed directly onto the output channel. For a switch with output speedup (in time
or space), however, a FIFO buffer is needed to stage the flits between the switch and
the channel.

There is no need to partition the output buffer storage across virtual channels. A
single FIFO buffer can be shared across all of the virtual channels multiplexed onto

344 C H A P T E R 17 Router Datapath Components

xm_in xm_out

xp_in xp_out

Figure 17.14 The dimension-order router can be divided further, reducing each 3 × 3 switch into two 2 × 2
switches and a 3:1 multiplexer.

the output physical channel without introducing dependencies between the virtual
channels. No dependencies exist because the output FIFO never blocks. Every flit
time it dequeues the flit at the head of the FIFO (if there is one) and places it on
the channel regardless of the state of downstream flit buffers. Backpressure does not
affect the output buffer, but rather throttles traffic on the input side of the switch
during the SA stage of the router pipeline.

Although there is no backpressure from the channel to the output buffer, there
must be backpressure from the output buffer to the switch allocator to prevent buffer
overflow. When the buffer occupancy is over a threshold, the output buffer signals
to the switch allocator to stop traffic to that output port until the channel can drain
the buffer below the threshold.

Output buffers need not be large. Usually 2 to 4 flits of buffering is sufficient
to match the speed between the switch and the channel and larger buffers consume
area without improving performance.

17.4 Case Study: The Datapath of the IBM Colony Router

The IBM Colony router is the third generation router in the IBM SP family of in-
terconnection networks [177]. The earlier generation Vulcan routers were discussed
in the case study presented in Section 11.3 and the Colony router adopts a similar
internal architecture and the same multistage network topology. The Colony also

17.4 Case Study: The Datapath of the IBM Colony Router 345

includes several enhancements, such as higher signaling speeds, a faster internal cycle
time, and support for adaptive and multicast routing. The result is a router that can
scale to implement massive interconnection networks. For example, Colony routers
are used in ASCI White, an 8,192-processor IBM SP supercomputer, which was the
world’s fastest computer from 2000 to 2001.

An overview of the Colony’s internal architecture is shown in Figure 17.15.
The 8 × 8 switching element adopts a hybrid datapath organization, using both a
shared,central memory for storing and switching packets and an input-queued bypass
crossbar for switching packets. Any packet arriving at an input port of the switch
requests access to the bypass crossbar. If the requested output port of the crossbar is
available, the packet is immediately pipelined through the router,minimizing latency.
As long as load on the network is low, packets have a good chance of winning access to
the bypass crossbar, and their overall latency closely matches that of an input-queued
router.

If an input port has failed to gain access to the bypass crossbar and a chunk,
defined as 8 flits, of a packet has arrived at the input port, then that packet requests
access to the central memory. This request is guaranteed to eventually be served.
Since it is possible for all 8 input ports of the switch to be blocked and require ac-
cess to the central memory, the bandwidth into the memory must be equal to the
total input bandwidth of the router. While the central memory could conceptually
be implemented with 16-port SRAM (one port for each input and output of the
router), highly ported SRAMs are expensive and slow and thus impractical for a

Central
buffer

Service

Input port 1

Input port 8

Output port 1

Output port 8

Bypass crossbar

Figure 17.15 The IBM Colony router’s architecture. The 8 × 8 switch is organized around a shared, central
buffer that is time-multiplexed between the router ports. A bypass crossbar allows packets to
cut through the router, reducing latency when contention is low. The service block initiates and
executes network service commands such as diagnostics and error reporting.

346 C H A P T E R 17 Router Datapath Components

high-bandwidth router design. Instead, the designers of the Colony router imple-
mented the central memory as an 8-flit wide (one chunk) 2-port SRAM. Then, the
read and write ports of the SRAM are multiplexed in time: each input (output)
port transfers an entire 8-flit chunk of data to the SRAM. If multiple input (output)
ports want access to the central memory on the same cycle, they are serviced in
least recently used order. Time-multiplexing a wide, banked SRAM makes the im-
plementation of the central memory feasible, but it also increases the granularity of
the switch to 8-flit chunks. If packet lengths are not a multiple of 8 flits, a significant
portion of the switch’s bandwidth can be wasted.

As a further optimization, the wide SRAM is banked into four 2-flit wide SRAMs.
Instead of each port accessing all the SRAM banks in the same cycle, access is
staggered in time. For example, input one transfers the first flit of chunk in one
cycle, the second flit in the next cycle, and so on.8 This approach allows the connec-
tions from ports to the SRAM to be implemented with 1-flit wide channels switched
through a crossbar. One such crossbar is required for the input and output ports to
access the central memory, as shown in Figure 17.15. If bank accesses were not stag-
gered in time, the amount of wiring required would be greatly increased — each port
would need a channel 8 times as wide to connect to the central memory.

The usage of the central memory of the Colony router is tracked with several
linked-list structures. Each chunk of data stored in the central memory has two
additional fields for maintaining these linked-lists. The first field is a next packet
pointer and each output maintains a head (FirstP) and tail pointer (LastP) to the
list of packets destined to the output. Since packets may be comprised of several
chunks, the second field contains a next chunk pointer. Similarly, a head (FirstC)
and tail pointer (LastC) is also maintained for the list of chunks. One free list tracks
all the available chunks in the central memory and the pointer to the head of the list
is maintained (Free). By also tracking the second entry in the free list (FreeList),
the chunk lists can support a read and write per cycle while requiring only a 2-port
SRAM. (See Exercise 17.8.)

An example of these linked lists for one output of the router is shown in
Figure 17.16. Initially, two packets are stored in the central buffer,as in Figure 17.16(a).
In the next cycle, Figure 17.16(b), the first chunk of packet A is read and a chunk of
packet B is written to the memory.The read begins by checking the head of the chunk
list FirstC, which is NULL in this case. This indicates that the next chunk should
be retrieved from a new packet, packet A in this case. So, by following FirstP, the
first chunk to the new packet is found and read from the memory. FirstC is set
to the next chunk pointer from the read chunk and FirstP is updated to point to
the next packet in the memory. The freed chunk is then added to the free list. The
write operation begins by taking a chunk from the free list and storing the chunk’s
data. Because this write is for packet B, the write operation simply follows LastC
and adds a next chunk pointer from B2 to B3. (See Figure 17.16(b).) If the write
had been to a new packet, LastP would have been followed and updated instead.

8. Two-flit (de)serializating buffers match the 1-flit datapath width of the switch with the 2-flit width of
the SRAMs.

17.5 Bibliographic Notes 347

(a)

(b)

FirstPFirstC LastP

A3

A1

A2

B1

B2

LastC

FirstPFirstC LastP

A3

A2

B1

LastC

B2

B3

Figure 17.16 An example of the linked-list data structures used in the central memory of the Colony router.
Every entry in the linked-lists has three fields, which are shown from left to right in the figure:
chunk data, next packet, and next chunk. Only one output port’s lists are shown for simplicity.

17.5 Bibliographic Notes

Tamir and Frazier [182] give a detailed implementation of a dynamic buffer manage-
ment approach, as do Stunkel et al. [177]. Many earlier interconnection networks,
such as the J-Machine [138] and the Cray T3D [95], partitioned their switches by
dimension to simplify implementation. A maximally partitioned design is presented
by Nojima et al. [137]. Other networks, such as the Torus Routing Chip [56], the
SGI SPIDER [69], and the Cray T3E [162] opted for crossbar-based switches with
varying amounts of speedup. Shared memory approaches include the design of Kat-
evenis et al. [92] and the IBM Colony switch [177] detailed in the case study. The
HIPIQS architecture, introduced by Sivaram et al. [170], combines an input-queued
approach with speedup and dynamic buffer management. Finally, both Ahmadi and
Denzel [5] and Tobagi [184] provide excellent surveys of different datapath organi-
zations beyond those covered in this chapter.

348 C H A P T E R 17 Router Datapath Components

17.6 Exercises

17.1 Circular buffer management hardware. Sketch a register-transfer-level diagram show-
ing the logic required to insert and remove flits simultaneously from a circular buffer.
Pay particular attention to the logic to determine the full and empty states. Option-
ally, code this in Verilog.

17.2 Linked-list buffer management hardware. Draw a schematic showing the logic required
to insert or remove flits (one or the other) from a linked-list flit buffer in a single
cycle. Optionally, code this in Verilog.

17.3 Design of a bus-based switch. Suppose you have a router with P = 7 input ports and
P = 7 output ports and a flit size of 8 phits. Explain how to build an efficient bus
switch for this router. How many phits does the bus need to carry each cycle?

17.4 An input partitioned bus-based switch. Draw a block diagram for a two-bus input
partitioned switch, like Figure 17.8, but with two inputs driving each bus and each
output receiving from both buses. Allow each output to read from only one of these
two buses during any given cycle. Describe a method for allocating such a switch.
Now consider the case where an output can receive simultaneously from both buses.
How does this change your allocation method?

17.5 A doubly partitioned bus-based switch. Draw a diagram of an input and output parti-
tioned switch that has eight ports — partition both the inputs and outputs into two
groups and use four independent buses for switching. Explain the allocation of this
switch.

17.6 Partitioning a memory switch. Generalize bus partitioning for the memory switch
organization shown in Figure 17.1(a). How many separate memories are required if
the outputs are partitioned into two groups? How wide are these memories?

17.7 A buffered crossbar. Recursively apply partitioning to the memory switch from Exer-
cise 17.6. That is, for a P input switch, partition the inputs into P groups. Likewise
for the outputs. How many separate memories are required in this switch? How wide
are these memories?

17.8 Advantage of tracking two free list entries. Write pseudocode for insertion and deletion
from the IBM Colony linked-list structure using two free list entries (store pointers
to both the first and second entry of the free list). Use three separate memories
(data, packet pointers, and chunk pointers) that each have a single read and a single
write port. Hint: Consider three different cases: insertion only, deletion only, and
simultanous insertion and deletion.

C H A P T E R 18

Arbitration

While the datapaths of routers are made up of buffers and switches, the control paths
of routers are largely composed of arbiters and allocators. As discussed in Chapter 16,
we use allocators to allocate virtual channels to packets and to allocate switch cycles
to flits. This chapter discusses arbiters, which resolve multiple requests for a single
resource. In addition to being useful in their own right, arbiters form the fundamental
building block for allocators that match multiple requesters with multiple resources.
Allocators are discussed in Chapter 19.

Whenever a resource, such as a buffer, a channel, or a switch port is shared by
many agents, an arbiter is required to assign access to the resource to one agent at
a time. Figure 18.1(a) shows a symbol for an n-input arbiter that is used to arbi-
trate the use of a resource, such as the input port to a crossbar switch, among a set
of agents, such as the virtual channels (VCs) connected to that input port. Each
virtual channel that has a flit to send requests access to the input port by assert-
ing its request line. Suppose, for example, that there are n = 8 VCs and VCs 1, 3,
and 5 assert their request lines, r1, r3, and r5. The arbiter then selects one of these
VCs — say, VC i = 3 — and grants the input port to VC 3 by asserting grant line g3.
VCs 1 and 5 lose the arbitration and must try again later by reasserting r1 and r5.
Most often, these lines will just be held high until the VC is successful and receives a
grant.

18.1 Arbitration Timing

The duration of the grant depends on the application. In some applications, the
requester may need uninterrupted access to the resource for a number of cycles. In
other applications, it may be safe to rearbitrate every cycle. To suit these different

349

350 C H A P T E R 18 Arbitration

r0

r1

rn -1

g0

g1

gn -1

r0

h0

rn -1

g0

g1

gn -1

r1

h1

hn -1

Figure 18.1 Arbiter symbols. (a) An arbiter accepts n request lines, r0,. . .,rn−1, arbitrates among the asserted
request lines, selecting one, ri, for service, and asserting the corresponding grant line, gi. (b) To
allow grants to be held for an arbitrary amount of time without gaps between requests, a hold
line is added to the arbiter.

applications, we may build arbiters that issue a grant for a single cycle, for a fixed
number of cycles, or until the resource is released.

For example, an arbiter used in the allocation of a switch that handles flits
in a single cycle will grant a virtual channel the right to a switch port for just
one cycle. In this case, a new arbitration is performed every cycle, each granting
the switch for one cycle — usually, but not always, the cycle immediately following
the arbitration. Figure 18.2(a) illustrates this case. Here, VCs 0 and 1 both request
the switch during cycle 1 by asserting r0 and r1. VC 0 wins this arbitration, is granted
the requested switch port during cycle 2, and drops its request during the same
cycle. VC 1 keeps its request high and since there is no competition is granted the
switch port during cycle 3. If both VCs keep their request lines high, and if the
arbiter is fair (see Section 18.2), the switch port will be alternated between them on
a cycle-by-cycle basis, as shown in cycles 6 through 9 in the figure.

Figure 18.2(b) shows a situation in which each grant is for four cycles; for
example this would occur in a router where the switch takes four cycles to transmit
each flit and flit transmissions cannot be interrupted. Here,VC 0 wins the arbitration
during cycle 1 and is granted the switch for cycles 2 through 5. VC 1, which asserts
its request continuously, must wait until cycle 6 for access to the switch.

Finally, Figure 18.2(c) shows a situation in which the resource is granted until
released. In this case, VC i interfaces to the arbiter via both a request line ri and a
hold line hi , as in Figure 18.1(b). After winning an arbitration, a VC has exclusive
use of the resource as long as the hold line is held high. For example, here VC 0 holds
the switch for 3 cycles (cycles 2 through 4) and then VC 1 holds the switch for 2
cycles (cycles 5 and 6).

Some arbiters implement variable length grants by holding the resource until the
request line is dropped. However, such an approach requires at least one idle cycle
between two uses of the resource by the same agent. With a separate hold line, an
agent can release the resource and request it again during the same cycle. VC 1 does
exactly this during cycle 6, winning the switch again for a single cycle (cycle 7).

18.2 Fairness 351

r0

r1

g0

g1

(a)

Cycle

(b)

91 2

r0

r1

g0

g1

(c)

h0

h1

3 4 5 6 7 80

r0

r1

g0

g1

Cycle 9 101 2 3 4 5 6 7 80

Cycle 1 2 3 4 5 6 7 80

Figure 18.2 Arbiter timing. (a) An arbiter grants a resource for one cycle at a time. A new arbitration each
cycle determines the owner for the next cycle. (b) An arbiter grants a resource for a fixed period
of four cycles. (c) An arbiter grants a resource for as long as the requester asserts the hold line.
There are three grants in this example: to requester 0 for 3 cycles, to requester 1 for 2 cycles,
and to requester 1 for one cycle. The last two grants are back-to-back so that g1 does not go
low between them.

18.2 Fairness

A key property of an arbiter is its fairness. Intuitively, a fair arbiter is one that provides
equal service to the different requesters. The exact meaning of equal, however, can
vary from application to application. Three useful definitions of fairness are:

Weak fairness: Every request is eventually served.

352 C H A P T E R 18 Arbitration

A0
0.125r0

0.25

0.
12

5
r1

A1
0.5

0.
25

r2

A2
1.0

0.
5

r3

Destination

Figure 18.3 In a system with multiple arbiters, each arbiter can be locally fair, while at the system level the
overall arbitration is unfair. In this example, requester r3 receives four times the bandwidth to
the destination as r1 even though each of the three arbiters is individually fair in the strong
sense.

Strong fairness: Requesters will be served equally often. This means that the number
of times one requester is served will be within ε of the number of times some other
requester is served when averaged over a sufficient number of arbitrations, N . Often,
we modify strong fairness to be weighted so that the number of times requester i is
served is proportional to its weight, wi .

FIFO fairness: Requesters are served in the order they made their requests. This is
like customers at a bakery who are served in the order they arrived by each taking a
number.

Even if an arbiter is locally fair, a system employing that arbiter may not be fair,
as illustrated in Figure 18.3. The figure illustrates the situation in which four sources,
r0, . . . , r3, are sending packets to a single destination. The sources are combined
by three strongly fair 2:1 arbiters. Although each arbiter fairly allocates half of its
outgoing bandwidth to each of its two inputs, bandwidth is not fairly allocated to
the four sources. Source r3 receives half of the total bandwidth, since it needs to
participate in only one arbitration, while sources r0 and r1 receive only 1

8 of the
bandwidth — since they must participate in three rounds of arbitration. This same
situation, and ways to address it, are discussed in Section 15.4.1 and in Section 18.6
of this chapter.

18.3 Fixed Priority Arbiter

If we assign priority in a linear order, we can construct an arbiter as an iterative circuit,
as illustrated for the fixed-priority arbiter of Figure 18.4. We construct the arbiter
as a linear array of bit cells. Each bit cell i, as shown in Figure 18.4(a), accepts one
request input, ri , and one carry input, ci , and generates a grant output, gi , and a carry
output, ci+1. The carry input ci indicates that the resource has not been granted
to a higher priority request and, hence, is available for this bit cell. If the current
request is true and the carry is true, the grant line is asserted and the carry output
is deasserted, signaling that the resource has been granted and is no longer available.

18.3 Fixed Priority Arbiter 353

r1
g1

c2

ri
gi

c
i

c
i+

1

r0 g0

r2
g2

c3
r3

g3

c1

(a)

(b)

Figure 18.4 A fixed priority arbiter. (a) A bit cell for an iterative arbiter. (b) A four-bit fixed priority arbiter.

We can express this logic in equation form as:

gi = ri ∧ ci

ci+1 = ¬ri ∧ ci

Figure 18.4(b) shows a four-bit fixed priority arbiter constructed in this manner.1

The arbiter consists of four of the bit cells of Figure 18.4(a). The first and last bit
cells, however, have been simplified. The first bit cell takes advantage of the fact that
c0 is always 1. While the last bit cell takes advantage of the fact that there is no need
to generate c4.

At first glance, it appears that the delay of an iterative arbiter must be linear
in the number of inputs. Indeed, if they are constructed as shown in Figure 18.4,
then that is the case, since in the worst case the carry must propagate from one end
of the arbiter to the other. However, we can build these arbiters to operate in time
that grows logarithmically with the number of inputs by employing carry-lookahead
techniques — similar to those employed in adders. See Exercise 18.1.

Although useful for illustrating iterative construction, the arbiter of Figure 18.4
is not useful in practice because it is completely unfair. It is not even fair in the
weak sense. If request r0 is continuously asserted, none of the other requests will
ever be served.

1. This is the same type of arbiter used in the circuit of Figure 2.6.

354 C H A P T E R 18 Arbitration

18.4 Variable Priority Iterative Arbiters

We can make a fair iterative arbiter by changing the priority from cycle to cycle, as
illustrated in Figure 18.5. A one-hot priority signal p is used to select the highest
priority request. One bit of p is set. The corresponding bit of r has high priority and
priority decreases from that point cyclically around the circular carry chain.2

The logic equations for this arbiter are:

gi = ri ∧ (ci ∨ pi)

ci+1 = ¬ri ∧ (ci ∨ pi)

c0 = cn

18.4.1 Oblivious Arbiters

Different schemes can be used to generate the priority input into the circuit of
Figure 18.5, resulting in different arbitration behavior. If p is generated without any
information about r or g, an oblivious arbiter results. For example, generating p with

ri
gi

c
i

c
i+

1

(a)

(b)

pi
pi

ri
gi

ci

ci+1

pi

ri
gi

ci

ci+1

pi

ri
gi

ci

ci+1

pi

ri
gi

ci

ci+1

r0

p0

r1

p1

r2

p2

r3

p3

g3

g0

g1

g2

Figure 18.5 A variable priority iterative arbiter. The high-priority request input is selected by the one-hot p
signal. (a) A one-bit slice of a variable priority arbiter. (b) A four-bit arbiter built from four such
bit slices.

2. Some timing verifiers have trouble with cyclic carry chains like this. This problem can be avoided by
replicating the arbiter, connecting the carry-in of the first arbiter to “0” connecting the carry-out of the
first arbiter into the carry-in of the second, and OR-ing the grants together.

18.4 Variable Priority Iterative Arbiters 355

a shift register rotates the priority by one position each cycle, and generating p by
decoding the output of a random number generator gives an arbiter with a different
random priority each cycle.

Both the rotating arbiter and the random arbiter have weak fairness. Eventually,
each request will become high priority and get service. These arbiters, however, do
not provide strong fairness. Consider the case where two adjacent inputs ri and ri+1
repeatedly request service from an n-input arbiter, while all other request inputs
remain low. Request ri+1 wins the arbitration only when pi+1 is true while ri wins
the arbitration for the other n − 1 possible priority inputs. Thus, ri will win the
arbitration n − 1 times as often as ri+1. This unfairness can be overcome by using a
round-robin arbiter.

18.4.2 Round-Robin Arbiter

A round-robin arbiter operates on the principle that a request that was just served
should have the lowest priority on the next round of arbitration. This can be accom-
plished by generating the next priority vector p from the current grant vector g. In
Verilog, this logic is given by:

assign next_p = |g ? {g[n-2:0],g[n-1]} : p ;

Figure 18.6 shows in schematic form, a four-bit round-robin arbiter. If a grant was
issued on the current cycle, one of the gi lines will be high, causing pi+1 to go high
on the next cycle. This makes the request next to the one receiving the grant highest
priority on the next cycle, and the request that receives the grant lowest priority. If
no grant is asserted on the current cycle,anyg is low and the priority generator holds
its present state.

The round-robin arbiter exhibits strong fairness. After a request, ri is served,
it becomes the lowest priority. All other pending requests will be serviced before
priority again rotates around so that ri can be serviced again.

18.4.3 Grant-Hold Circuit

The arbiters we have discussed so far allocate the resource one cycle at a time. A
client that receives a grant can use the resource for just one cycle and then must
arbitrate again for the resource. This cycle-by-cycle arbitration is fine for many
applications. However, as explained in Section 18.1, in some applications clients
require uninterrupted use of the resource for several cycles. For example, a client
may need uninterrupted access to a switch for three cycles to move a packet into an
output buffer.

The duration of a grant can be extended in an arbiter by using a grant-hold cir-
cuit, as illustrated in Figure 18.7. The Verilog code for this circuit is shown below.
If a particular bit had a grant on the last cycle (last is true), and the hold line for
that bit (h) is asserted, that bit will continue to receive a grant (g stays high), and the

356 C H A P T E R 18 Arbitration

gi -1

pi
anyg next_pi

p0next_p0

(a)

(b)

g0

p1
next_p1

g1

p2next_p2

g2

p3next_p3

g3

an
yg

Figure 18.6 A round-robin arbiter makes the last winning request lowest priority for the next round of
arbitration. When there are no requests, the priority is unchanged. (a) A one-bit slice of a
round-robin priority generator. (b) A four-bit priority generator build from four of these slices.

lasti holdi

gi
newgi

anyhold

Arb
ri gci

hi

Other
hold
lines

Bit slice

Figure 18.7 An arbiter with a grant-hold circuit holds a grant signal gi and disables further arbitration until
hold line hi is released.

18.4 Variable Priority Iterative Arbiters 357

output of the arbiter (gc) is suppressed by signal anyhold. We have already seen an
example of this type of grant-hold circuit, in a slightly different form, in Figure 2.6.

assign g = anyhold ? hold : gc ; // n-bit grant vector
assign hold = last & h ; // n-bit hold vector
assign anyhold = |hold ; // hold not zero
always @(posedge clk) last = g ; // last cycle’s grant vector

18.4.4 Weighted Round-Robin Arbiter

Some applications require an arbiter that is unfair to a controlled degree, so that
one requester receives a larger number of grants than another requester. A weighted
round-robin arbiter exhibits such behavior. Each requester i is assigned a weight
wi that indicates the maximum fraction fi of grants that requester i is to receive
according to fi = wi

W
where W = ∑n−1

j=0 wj . A requester with a large weight will
receive a large fraction of the grants while a requester with a small weight receives
a smaller fraction. For example, suppose a weighted round-robin arbiter has four
inputs with weights of 1, 3, 5, and 7, respectively. The inputs will receive 1

16
, 3

16
, 5

16
,

and 7
16

of the grants, respectively.
As shown in Figure 18.8, a weighted round-robin arbiter can be realized by

preceding an arbiter with a circuit that disables a request from an input that has
already used its quota. The figure shows a one-bit slice of a weighted round-robin
arbiter which consists of a weight register, a counter, anAND-gate, and a conventional
arbiter. When the preset line is asserted, the counter in each bit-slice is loaded with
the weight for that slice. As long as the counter is non-zero, the AND-gate is enabled
and requests are passed along to the arbiter. Each time the requester receives a
grant, the counter is decremented. When the counter has reached zero (the requester
has received its share of grants), the AND-gate is disabled and requests from this
requester are disabled until the next preset.

The preset line is activated periodically each W cycles. If all inputs are requesting
their quotas, the counters will have all reached zero between presets. If some inputs
do not use their quota, the counters of the other inputs will reach zero before the

Arbiter
qrCount=0

p

d

Weight

g

r

pr
es

et

Figure 18.8 A one-bit slice of a weighted round-robin arbiter.

358 C H A P T E R 18 Arbitration

end of the preset interval, and the resource will remain idle until the preset interval
is completed. In some cases, a multistage arbiter is used to allow requesters that have
consumed their quota to compete for these otherwise idle cycles.

Choosing the number of weight bits presents a tradeoff between precision
and burstiness. A large number of weight bits allows weights to be specified with
very high precision. Unfortunately, large weights also result in burstiness. Requesters
are only guaranteed their shares over the preset interval, W cycles, and increasing
the size of weights makes this interval larger. Within this interval usage is uneven
with the low weight requesters getting more than their share at the beginning of the
interval and the high-weight requesters making it up at the end. (See Exercise 18.2.)

18.5 Matrix Arbiter

A matrix arbiter implements a least recently served priority scheme by maintaining
a triangular array of state bits wij for all i < j . The bit wij in row i and column
j indicates that request i takes priority over request j . Only the upper triangular
portion of the matrix need be maintained since the diagonal elements are not needed
and wji = ¬wij∀i �= j . Each time a request k is granted, it clears all bits in its row,
wk∗, and sets all bits in its column, w∗k to give itself the lowest priority since it was
the most recently served.

Figure 18.9 shows a four-input matrix arbiter. The state is maintained in the
six flip-flops denoted by solid boxes in the upper triangular portion of the matrix.
Each of the shaded boxes in the lower triangular portion of the matrix represents
the complementary output of the diagonally symmetric solid box.

When a request is asserted, it is AND-ed with the state bits in its row to disable
any lower priority requests. The outputs of all of the AND gates in a column are OR-
ed together to generate a disable signal for the corresponding request. For example, if
bit w02 is set and request r0 is asserted, signal dis2 will be asserted to disable lower
priority request 2. If a request is not disabled, it propagates to the corresponding
grant output via a single AND gate. When a grant is asserted, it clears the state bits
in its row and sets the state bits in its column to make its request the lowest priority
on subsequent arbitrations. The modification to the state bits takes place on the next
rising edge of the clock. See Figure 18.10.

To operate properly, a matrix arbiter must be initialized to a legal state.3 Not
all states of the array are meaningful since for an n-input arbiter there are 2n(n−1)/2

states and only n! permutations of inputs. States that result in cycles are particularly
dangerous because they can result in deadlock. For example, if w01 = w12 = 1 and
w02 = 0 and requests 0, 1, and 2 are all asserted, the requests will disable one another
and no grants will be issued.

3. Its also a good idea to have some mechanism for the arbiter to recover from an illegal state should it ever
enter one due to a bit error.

18.5 Matrix Arbiter 359

01

r 0

02

21

31

10

20

30 32

12 13

23

03

r 1

g 1

r 2

g 0

r 3

g 2

g 3

dis0 dis1 dis2 dis3

Figure 18.9 A matrix arbiter maintains a triangular array of state bits wij that implement a least recently
served order of priority. If wij is true, then request i will take priority over request j. When a
request k wins an arbitration, it clears bits wk* and sets bits w*k to make itself lowest priority.

ij

gi

gj

wij wij

gi

gj

Figure 18.10 Each state bit of the matrix arbiter wij consists of a flip-flop that is synchronously set on column
grant gj and reset on row grant gi.

360 C H A P T E R 18 Arbitration

The matrix arbiter is our favorite arbiter for small numbers of inputs because it
is fast, inexpensive to implement, and provides strong fairness.

18.6 Queuing Arbiter

While a matrix arbiter provides least recently served priority, a queueing arbiter
provides FIFO priority. It accomplishes this, as illustrated in Figure 18.11,by assigning
a time stamp to each request when it is asserted. During each time step, the earliest
time stamp is selected by a tree of comparators.

The timer block in Figure 18.11 is a counter that increments a time stamp
during each arrival interval, typically each clock cycle. When a request arrives4 the
current time stamp is latched in the stamp block and associated with the index of
the request; the index is 0 for request r0, 1 for request r1, and so on. At the output of
the stamp block, a request is represented by an index-time stamp pair, i, ti . Inputs
with no request are represented by a unique time value that is considered to be larger
than all possible time stamps, and an unused index that does not decode to a grant. A
tree of comparators then selects the winning index, the one with the lowest (earliest)
time stamp, iw. Each node of the tree performs a pair-wise comparison between two
requests: the request (index and time stamp) that has the lower time stamp wins the
comparison and proceeds to the next level of the tree. Finally, the output index is
decoded to give a radial grant signal.

The cost of the arbiter is largely determined by the number of bits used to
represent the time stamp since this determines the size of the registers in the stamp

Timer

Stamp

Stamp

Index Timestamp

Comparator
tree

r0

rn-1

g0

gn-1

iw

0,t0

(n -1),tn-1

D
ec

od
e

g0

gn-1

Figure 18.11 A queueing arbiter serves requests in order of arrival by assigning a time stamp to each request
and selecting the earliest time stamp by using a tree of comparators.

4. A request arrives during a cycle when the request line toggles from 0 to 1 or during a cycle after a grant
is received when the request line remains high.

18.6 Queuing Arbiter 361

blocks and the width of the comparators in the comparator tree. The ratio of two
time parameters determines the required time stamp width wt , the time stamp range
�t , and the arrival interval ta .

wt = log2
�t

ta

Both parameters are usually represented in units of clock cycles. �t must be large
enough to cover the anticipated maximum difference in arrival time of requests and
also must be large enough to accommodate timer rollover:

�t = 2nTmax (18.1)

where n is the number of inputs to the arbiter and Tmax is the maximum service
time. The factor of two is described below.

When a large �t is required, wt can be reduced by increasing ta at the expense of
less precision. The arbiter serves requests in the order of their arrival time rounded to
the nearest ta . The larger ta becomes, the more requests may be served out of order.

When the timer rolls over from its maximum value to zero, care is required to
prevent new requests from being assigned smaller time stamps than older requests
and, hence, cutting to the head of the queue.

This unfair behavior can be prevented by XNOR-ing the most significant bit of
all time stamps with the most significant bit of the timer before comparison. For
example, consider the case in which �t = 16, so we have a wt = 4 bit timer, and
ta = 1. The maximum difference in request times is nTmax = 8. When the timer
rolls over from 15 to 0, all time stamps will be in the range of [8,15]. Thus, if we
complement the MSB of each time stamp, we translate the old time stamps to the
range [0,7] and new time stamps are assigned a value of 8. Similarly, when the
counter rolls over from 7 to 8, the oldest time stamp has a value of 0. At this point,
we uncomplement the MSB of the time stamps, so that new requests, which will be
assigned a time stamp of 8, will appear younger than these existing requests. This
approach does require that �t be twice the maximum difference in request times,
hence the factor of two in Equation 18.1. Exercise 18.7 investigates how to relax
this requirement so that �t need only be slightly larger than nTmax.

In applications where service times are small, range requirements are very mod-
est. For example, consider a four-input arbiter in which all service times are one cycle.
In this case nTmax = 4 and, with the MSB complement rollover method, �t = 8.
Thus, three-bit time stamps suffice. If we are willing to relax our precision so that
ta = 2, we can get by with two-bit time stamps. We could reduce the time stamps to
a single bit by choosing ta = 4. However, at that point the fairness achieved by the
queueing arbiter is no better than would be achieved by a round-robin arbiter.

Queueing arbiters are particularly useful at ensuring global (or system-level)
fairness through multiple stages of arbitration. This problem was discussed in Sec-
tion 18.2 and illustrated in Figure 18.3. To achieve system-level fairness, each request
(for example, each packet) is issued a time stamp when it enters the system and
before it is queued to wait for any arbitration. This is accomplished with a time-
stamp counter (synchronized across the system) and a stamp module at each entry

362 C H A P T E R 18 Arbitration

point to the system. Once it has been stamped at entry, each request keeps this
initial time stamp and uses it for all arbitrations. It is not assigned a new time stamp
at each arbiter. Also, all queues in the system must be ordered by time stamp so
that the oldest time stamps are served first. A system that uses arbiters that select
the lowest global time stamp in this manner will provide strong system-level fairness.
For example, in the case of Figure 18.3, all requesters will receive an identical fraction
(0.25) of the total bandwidth.

18.7 Exercises

18.1 Carry-lookahead arbiter. Sketch a 64-input fixed-priority arbiter that operates in time
proportional to the logarithm of the number of inputs. Hint: Partition the inputs into
4-bit groups and compute a propagate signal for each group that is true if a carry
entering the group will result in a carry leaving the group. That is, the carry will
propagate through the group. Then use these 4-bit propagate signals to generate
corresponding propagate signals for 16-bit groups.

18.2 Weighted round-robin. Suppose you have a 4-input weighted round-robin arbiter with
weights of 5, 5, 5, and 49, respectively, and that all inputs are making requests all
of the time. Describe the time sequence of grants returned by the arbiter in this
case and how it differs from the ideal time sequence. Optionally, sketch a weighted
round-robin arbiter that achieves the ideal time sequence.

18.3 Operation of a matrix arbiter. Suppose you have a 4-input matrix arbiter like the
one shown in Figure 18.9. The arbiter is initialized by clearing all 6 state bits. Then
the following request vectors are asserted during 4 cycles, one per cycle: r3, . . . , r0 =
1111, 1111, 1010, 1001. Which grant signals are asserted each cycle, and what is the
final state of the matrix?

18.4 Design of a queueing arbiter. You are to design a queueing arbiter that has 8 inputs. The
maximum service time for any input is 8 cycles. However, the sum of any 8 service
times is guaranteed to be less than 32 cycles. You can tolerate an arbiter timing
precision of ta = 4 cycles. How many bits of time stamp are required to construct
this arbiter, assuming you use the MSB complement scheme to handle timer rollover?

18.5 Timer rollover. Describe how to deal with timer rollover in a queueing arbiter along
the lines of the one in Figure 18.11 in which �t = nTmax + 1.

18.6 Errors in a matrix arbiter’s state. Is there any illegal state of a matrix arbiter (values
of wij for i > j) where a set of requests can result in multiple grants? Also, suggest
a simple way to detect and correct any errors in the state of the arbiter.

C H A P T E R 19

Allocation

While an arbiter assigns a single resource to one of a group of requesters, an allocator
performs a matching between a group of resources and a group of requesters, each
of which may request one or more of the resources. Consider, for example, a set
of router input units, each of which holds several flits destined for different output
ports of a switch. We have already been introduced to allocators in Section 17.2.2,
where we discussed their use to allocate crossbar switches. On each cycle, a switch
allocator must perform a matching between the input units and the output ports so
that at most one flit from each input port is selected and at most one flit destined to
each output port is selected.

19.1 Representations

An n × m allocator is a unit that accepts n m-bit vectors as inputs and generates n

m-bit vectors as outputs, as illustrated in Figure 19.1 for an n = 4 by m = 3 allocator.
When request input rij is asserted, requester i wants access to resource j . Each
requester can request any subset of the resources at the same time. For allocators
used in router designs, the requesters often correspond to switch inputs and the
resources correspond to switch outputs. So, we will usually refer to the requesters
and resources as inputs and outputs, respectively.

The allocator considers the requests and generates the grant vectors subject to
three rules:

1. gij ⇒ rij , a grant can be asserted only if the corresponding request is asserted.

2. gij ⇒ ¬gik∀k �= j , at most, one grant for each input (requester) may be
asserted.

363

364 C H A P T E R 19 Allocation

4 x 3
allocator

4 x 3
allocator

r00
r01
r02

r10
r11
r12

r20
r21
r22

r30
r31
r32

g
00

g
01

g
02

g
10

g
11

g
12

g
20

g
21

g
22

g
30

g
31

g
32

r0

3
r1

3
r2

3
r3

3

g
0

3
g

1

3
g

2

3
g

3

3

(a)

(b)

Figure 19.1 An n × m allocator accepts n m-bit request vectors and generates n m-bit grant vectors. (a)
Symbol for an allocator with individual request and grant lines shown. (b) Symbol with bundled
requests and grants.

3. gij ⇒ ¬gkj∀k �= i, at most, one grant for each output (resource) can be
asserted.

The allocator can be thought of as accepting an n × m request matrix R con-
taining the individual requests, rij and generating a grant matrix G containing the
individual grants, gij . R is an arbitrary binary-valued matrix.1 G is also a binary-
valued matrix that only contains ones in entries corresponding to non-zero entries
in R (rule 1), has at most one one in each row (rule 2), and at most one one in each
column (rule 3).

Consider, for example, the following request matrix R and two possible grant
matrices, G1 and G2:

R =

⎡
⎢⎢⎣

1 1 1
1 1 0
1 0 0
0 1 0

⎤
⎥⎥⎦ G1 =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥⎦ G2 =

⎡
⎢⎢⎣

0 0 1
0 1 0
1 0 0
0 0 0

⎤
⎥⎥⎦

Both G1 and G2 are valid grant matrices for request matrix R in that they comply with
the three rules listed above. G2, however is generally a more desirable grant matrix
in that it has assigned all three resources to inputs.2 A solution to the allocation
problem such as G2 containing the maximum possible number of assignments is
called a maximum matching. A matrix such as G1, in which no additional requests

1. In some applications, R can be integer-valued — where multiple requests can be made for the same
output. However, we shall not consider those applications here.

2. Actually, a maximum-size match is not always best for non-uniform traffic [124].

19.1 Representations 365

1

2

3

0

1

2

0

1

2

3

0

1

2

0

(a) (b)

Figure 19.2 Bipartite graph representation of the allocation problem. (a) Bipartite graph corresponding to
request matrix R. (b) Bipartite graph matching corresponding to grant matrix G2.

can be serviced without removing one of the existing grants, is called a maximal
matching.

Matrix G1 illustrates the difficulty of computing a good matching. Once grant
g00 is set in the first row of the matrix, a maximum matching is no longer possi-
ble. Because input 2 is requesting only resource 0, allocating this resource to any
other input causes input 2 to go idle. Allocating resource 1 to input 0 will also
prevent a maximum matching since inputs 1 and 2 cannot both be assigned to re-
source 0. For difficult request matrices, making one bad assignment can result in a
sub-optimal matching.

An allocation problem can also be represented as a bipartite graph.3 For example,
Figure 19.2(a) shows a bipartite graph representation of request matrix R. Cast in
this form, the allocation problem is identical to the bipartite matching problem: the
problem of finding a maximum subset of graph edges so that each vertex is incident
on at most one edge in the subset. Figure 19.2(b) shows a maximum matching of
the graph of Figure 19.2(a) corresponding to grant matrix G2.

A maximum matching for any bipartite graph can be computed in time that is
O(P 2.5) for a P port switch [83]. Generally speaking, computing a maximum-size
match requires backtracking — grants may be added temporarily, but later removed
during the course of the algorithm. Unfortunately, a switch allocator or virtual chan-
nel allocator cannot afford the complexity of such an exact solution and the necessity
of backtracking makes maximum-size algorithms difficult to pipeline. Since there is
typically only a single cycle, or at most a small number of cycles, available to per-
form an allocation, maximal-size matches become a more realistic target for a high-
speed implementation. However, as we shall see, maximal matches can also be quite
expensive and, in practice, hardware allocators often introduce simple heuristics that
give fast but approximate solutions.

3. Recall that in a bipartite graph, the vertices can be partitioned into two sets A and B, and all edges connect
a vertex in A to a vertex in B.

366 C H A P T E R 19 Allocation

19.2 Exact Algorithms

Although an exact maximum matching is not feasible in the time budget available
for most router applications, there are times when we can compute such match-
ings offline. Also, when evaluating a new heuristic, we would like to compute the
maximum matching for comparison with the result of our heuristic. In these cases,
we can compute a maximum matching by iteratively augmenting a sub-maximum
matching.

The augmenting path algorithm is similar in spirit to the looping algorithm used
to schedule Clos networks (Figure 6.11). First, we start with a sub-optimal matching
M of the bipartite graph. From this matching, we construct a directed residual graph.
The residual graph has the same edges and nodes as the bipartite graph representing
the request matrix, but the edges are oriented: if an edge is in the current matching
M, it points from its output to its input (from right to left in the Figure 19.3);
otherwise the edge points from its input to its output. Now, an augmenting path is
found, which is any directed path through the residual graph from an unmatched
input to an unmatched output. Then the matching is updated using this path: any
edge from an input to output in the path is added to the matching and the edge from
the output to the corresponding input in path is removed from the matching. This
gives a matching that includes one more edge, and this process is repeated until the
residual graph no longer admits an augmenting path.

To see how the algorithm works, consider the following request matrix:

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0
0 1 0 1 0 0
0 1 0 0 0 0
0 1 0 1 1 1
0 0 0 0 1 0
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19.1)

A bipartite graph representing this request matrix and the construction of a maxi-
mum matching on this graph are illustrated in Figure 19.3. Figure 19.3(a) shows the
graph with an initial matching shown in bold. Matched inputs and outputs are shown
in gray. This initial matching happens to be maximal. We construct the correspond-
ing residual graph, as shown in Figure 19.3(b). Panel (c) of the figure shows how
an augmenting path is constructed from an unassigned input (2) to an unassigned
output (0). The path traverses edge (i2,o1), edge (o1,i0), and edge (i0,o0). After
the path is found, the edges along the path change their assignment status in the
matching, as shown in panel (d) of the figure: left to right edges, (i2,o1) and (i0,o0),
are added to the matching, and the right to left edge, (o1,i0), is removed.

This process then repeats. Panel (e) shows how augmenting path from input 5 to
output 5 is found on the configuration of panel (d). Updating the edge assignments
along this second augmenting path gives the matching of panel (f). At this point, the
algorithm is done because no more augmenting paths exist in the residual graph. By
the theory of Ford and Fulkerson [67], we know that if no augmenting paths exist,
the matching is maximum.

19.3 Separable Allocators 367

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

(a) (b) (c)

(d)

4

5

4

5

3 3

4

5

4

5

3 3

(e)

0

1

2

3

0

1

2

3

(f)

3 3

4

5

4

5

3 3

0

1

2

0

1

2

4

5

4

5

3 3

0

1

2

0

1

2

4

5

4

5

3 3

0

1

2

0

1

2

4

5

4

5

3 3

Figure 19.3 Example of the augmenting paths algorithm.

19.3 Separable Allocators

While the augmenting path method always finds the maximum matching, it is dif-
ficult to parallelize or pipeline and is too slow for applications in which latency is
important. Latency-sensitive applications typically employ fast heuristics that find
a good matching, but one that is not guaranteed to be maximum, or in some cases
not even maximal. This lack of optimality can be compensated for by providing ad-
ditional speedup in the resource being allocated (Section 19.7) or by performing
multiple iterations (Sections 19.3.1 and 19.3.2), or both.

Most heuristic allocators are based on a basic separable allocator. In a separable
allocator, we perform allocation as two sets of arbitration: one across the inputs and
one across the outputs. This arbitration can be performed in either order. In an input-
first separable allocator, an arbitration is first performed to select a single request at

368 C H A P T E R 19 Allocation

each input port. Then, the outputs of these input arbiters are input to a set of output
arbiters to select a single request for each output port. The result is a legal matching,
since there is at most one grant asserted for each input and for each output. However,
the result may not even be maximal, let alone maximum. It is possible for an input
request to win the input arbitration, locking out the only request for a different
output, and then lose the output arbitration. This leaves an input and an output,
which could have been trivially connected, both idle.

Figure 19.4 shows a 4 × 3 (4-input × 3-output) input-first separable allocator.
Each input port has separate request lines for each output. For example, for a flit
at input 2 to request output 1, request line r21 is asserted. The first rank of four
three-input arbiters selects the winning request for each input port. Only one of the
signals xij will be asserted for each input port i. The results of this input arbitration,
the signals xij , are forwarded to a rank of three 4-input output arbiters, one for each
output. The output arbiters select the winning request for each output port and
assert the grant signals gij . The output arbiters ensure that only one grant is asserted
for each output, and the input arbiters ensure that only one grant is asserted for each
input. Thus, the result is a legal matching.

A separable allocator can also be realized by performing the output arbitration
first and then the input arbitration. A 4 × 3 output-first separable allocator is shown
in Figure 19.5. In this case, the first rank of three 4-input arbiters selects the winning
request for each output port. Only one of the resulting signals yij will be asserted for
each output port j . The four 3-input input arbiters then take yij as input, pick the
winning request for each input, and output this result on grant signals, gij ensuring
that at most one of gij is asserted for each input i.

Arb

r00

r01

r02

r10

r11

r12

r20

r21

r22

r30

r31

r32

x00

x01

x02

Arb

Arb

Arb

x10

x11

x12

x20

x21

x22

x30

x31

x32

Arb

g00
g10
g20
g30

Arb

Arb

g01
g11
g21
g31

g02
g12
g22
g32

Figure 19.4 A 4 × 3 input-first separable allocator. A separable allocator performs allocation using two ranks
of arbiters. With an input-first allocator, the first rank picks one request from each input. The
second rank picks one of these selected input requests for each output.

19.3 Separable Allocators 369

Arb

g00
g01
g02

g10
g11
g12

g20
g21
g22

g30
g31
g32

Arb

Arb

Arb

Arb

r00

r10

r20

r30

Arb

Arb

r01

r11

r21

r31

r02

r12

r22

r32

y00
y10
y20
y30

y01
y11
y21
y31

y02
y12
y22
y32

Figure 19.5 An 4 × 3 output-first separable allocator. The first rank of arbiters picks one request for each
output while the second rank picks one of the surviving requests from each input.

An input-first separable allocator takes a request matrix and performs arbitration
across the rows first and then down the columns. In contrast, an output-first separable
allocator performs arbitration down the columns first and then across the rows. For
square request matrices, both work equally well. For rectangular matrices, there is
an advantage to performing arbitration across the shorter dimension first (such as
performing input arbitration first for our 4 × 3 arbiter), since this tends to propagate
more requests to the output stage. Thus, for switches that have more input speedup
than output speedup, it is usually more efficient to perform allocation input-first.

For example, consider the request matrix

R =

⎡
⎢⎢⎣

1 1 1
1 1 0
0 1 0
0 1 1

⎤
⎥⎥⎦ . (19.2)

One possible input-first separable allocation for this matrix is shown in
Figure 19.6. In this example, each arbiter selects the first asserted input. Thus, the
intermediate request matrix X after the input arbiters is

X =

⎡
⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0

⎤
⎥⎥⎦ .

370 C H A P T E R 19 Allocation

Arb

r00

r01

r02

r10

r11

r12

r20

r21

r22

r30

r31

r32

x00

x01

x02

Arb

Arb

Arb

x10

x11

x12

x20

x21

x22

x30

x31

x32

Arb

g00
g10
g20
g30

Arb

Arb

g01
g11
g21
g31

g02
g12
g22
g32

Figure 19.6 An example separable allocation. In this example, each arbiter picks the first asserted input. The
result is a non-maximal matching.

Note that X has eliminated input conflicts and thus has at most one non-zero entry
in each row. The output arbiters then eliminate output conflicts, giving a final grant
matrix G with at most one non-zero in each column as well:

G =

⎡
⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0

⎤
⎥⎥⎦ .

We could have made an assignment to all three outputs if either the first or the last
input arbiter had selected its last request rather than its first.

Applying the same request matrix (Equation 19.2) to an output-first allocator
where each arbiter is also initialized to pick the first asserted input gives an interme-
diate matrix and a grant matrix, as shown below.

Y =

⎡
⎢⎢⎣

1 1 1
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ .

Here, only a single grant is made because the initialization of the output arbiters
caused all three to pick the same input. In practice, such complete alignment of
arbiters rarely happens. The impact of input- vs. output-first separable allocators is
explored further in Exercise 19.6.

Two techniques are commonly used to improve the quality of matchings pro-
duced by separable allocators. First, the high-priority inputs of the different arbiters
in a given stage can be staggered to reduce the likelihood that multiple input arbiters

19.3 Separable Allocators 371

will all select a request destined for the same output. For example, the wavefront
allocator (Section 19.4), while not a separable allocator, sets the high-priority input
of each input arbiter to be offset by one position from the previous input and ro-
tates this priority each cycle. The PIM (Section 19.3.1), iSLIP (Section 19.3.2), and
LOA (Section 19.3.3) allocators also act to stagger the input priorities using different
methods.

Second, if time permits, the matching of a separable allocator can be improved
by performing multiple iterations. In each iteration, requests that conflict, in either
row or column, with all grants made in previous iterations are eliminated and a
separable allocation is performed on the remaining requests. Any grants made during
an iteration are accumulated with the grants from previous iterations to generate the
cumulative grant matrix. For example, applying a second iteration to the example
shown above would result in all requests being suppressed except for r32, which
proceeds without interference to generate g32. The second request matrix R2, second
intermediate matrix X2, second grant matrix G2, and cumulative grant matrix for
this second iteration are

R2 = X2 = G2 =

⎡
⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ .

19.3.1 Parallel Iterative Matching

Parallel iterative matching (PIM) performs multiple iterations of a random separable
allocation. Each arbitration during each iteration is performed with randomized pri-
ority. Randomizing the arbitrations acts to probabilistically stagger the input arbiters,
which makes it unlikely that they will all pick the same input. Randomizing the ar-
bitrations also eliminates any possibility of pattern-sensitive starvation in which one
input is repeatedly locked out due to deterministic priority adjustments.

A single iteration of random separable allocation was described in Section 17.2.2
and the throughput of such an allocator as a function of switch speedup was derived
in Equation 17.1. The convergence of PIM is considered in Exercise 19.5.

19.3.2 iSLIP

iSLIP is a separable allocation method that uses round-robin arbiters and updates
the priority of each arbiter only when that arbiter generates a winning grant. iSLIP can
be used either in a single pass, or as an iterative matching algorithm. By rotating the
winning arbiters, iSLIP acts to stagger the priority of the input arbiters, resulting in
fewer conflicts at the output stage. The update of a priority only occurs when an
arbitration results in a grant and, as in a round-robin arbiter, priorities are updated
so that a winning request has the lowest priority in the next round.

For an example of iSLIP operation, suppose our request matrix is as shown in
Equation 19.2 and that the input and output arbiters start with input 0 being high

372 C H A P T E R 19 Allocation

priority. That is, the input priority vector is initially I0 = {0, 0, 0, 0} and the output
priority vector is initially O0 = {0, 0, 0}. Further, assume that the allocator uses a
single iteration and that the same request matrix is presented on each cycle.

On the first cycle, the allocation is identical to that shown in Figure 19.6.
Because only input arbiters 0 and 2 generated intermediate requests that subse-
quently generated winning grants, only these two arbiters have their priority ad-
vanced, giving I1 = {1, 0, 2, 0}. Similarly, the priority of output arbiters 0 and 1 are
advanced giving O1 = {1, 3, 0}. Note that even though input arbiter 1 has a winner,
r10 wins generating x10, the priority of this input arbiter is not advanced because x10
loses at the output stage. An input arbiter’s priority is only advanced if its winner
prevails at output arbitration.

With these new priority vectors, the arbitration on the second cycle results in:

X1 =

⎡
⎢⎢⎣

0 1 0
1 0 0
0 1 0
0 1 0

⎤
⎥⎥⎦ , G1 =

⎡
⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0

⎤
⎥⎥⎦ .

After this cycle, input arbiters 1 and 2 advance, giving I2 = {1, 1, 2, 2}. Output
arbiters 1 and 2 again advance, giving O2 = {2, 0, 0}. The process continues with:

X2 =

⎡
⎢⎢⎣

0 1 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

0 1 0
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎦ ,

I3 = {2, 1, 2, 0}

O3 = {2, 1, 0}

Note that while our iSLIP example has been shown in the context of an input-
first separable allocator, iSLIP can also be implemented using an output-first separable
allocator.

19.3.3 Lonely Output Allocator

Single-pass separable allocators often give poor matchings because many input ar-
biters all pick the same popular output while the few requests for lonely outputs
are less likely to make it through the input stage. The lonely output allocator, shown
in Figure 19.7, overcomes this problem by adding a stage before the input arbiters
that counts the number of requests for each output. The input arbiters then give
priority to requests for outputs that have low request counts — the lonely out-
puts. This reduces the number of conflicts at the output stage, resulting in a better
matching.

For example, the operation of a lonely output allocator on our example request
matrix is shown below in terms of the contents of the R, C, X, and G matrices.
The count (C) matrix tags each request with the number of requests competing
for the requested output. In this example, there are two requests for outputs 0
and 2 and four requests for output 1. Hence, the C matrix is identical to the R

matrix, but with all non-zeros in columns 0 and 2 replaced by 2 and all non-zeros

19.4 Wavefront Allocator 373

Arb

Arb

Arb

Arb

Arb

Arb

Arb

Count

Count

Count

r00

r10

r20

r30

r01

r11

r21

r31

r02

r12

r22

r32

x00

x01

x02

x10

x11

x12

x20

x21

x22

x30

x31

x32

c00

c01

c02

c10

c11

c12

c20

c21

c22

c30

c31

c32

c00

c10

c20

c30

c01

c11

c21

c31

c02

c12

c22

c32

g00
g10
g20
g30

g01
g11
g21
g31

g02
g12
g22
g32

x00

x10

x20

x30

x01

x11

x21

x31

x02

x12

x22

x32

Figure 19.7 A lonely output allocator. The first stage counts the number of requests for each output. The
input allocators in the second stage then give priority to requests for outputs that have the
lowest counts (lonely outputs). This reduces conflicts in the output arbiters in the final stage.

in column 1 replaced by 4. The input arbiters select one request per row, giving
priority to the lower-numbered requests4 generating matrix X. Giving priority to
low-count requests causes intermediate request matrix X to have entries in more
columns leading to fewer conflicts in the output stage. This, for example, causes the
arbiter for input 3 to assert x32 giving output 2 its only request. The output stage
selects one request in each to generate the grant matrix G.

R =

⎡
⎢⎢⎣

1 1 1
1 1 0
0 1 0
0 1 1

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

2 4 2
2 4 0
0 4 0
0 4 2

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦

19.4 Wavefront Allocator

The wavefront allocator, unlike the separable allocators described above, arbitrates
among requests for inputs and outputs simultaneously. The structure of the wave-
front allocator is shown in Figure 19.8 and the logic of each allocator cell is show
in Figure 19.9. The wavefront allocator works by granting row and column tokens

4. In this example, ties between two requests with the same count (for example, between c00 and c02) are
broken by giving priority to the lower-numbered request. In general, lonely output arbiters typically break
ties using priority that rotates when the arbitration results in a grant — as with iSLIP.

374 C H A P T E R 19 Allocation

to a diagonal group of cells, in effect giving this group priority. A cell with a row
(column) token that is unable to use the token passes the token to the right (down),
wrapping around at the end of the array. These tokens propagate in a wavefront from
the priority diagonal group, hence the name of the allocator. If a cell with a request
receives both a row and a column token, either because it was part of the original
priority group or because the tokens were passed around the array, it grants the re-
quest and stops the propagation of tokens. To improve fairness, the diagonal group
receiving tokens is rotated each cycle. However, this only ensures weak fairness. (See
Exercise 19.2.)

In an n×n arbiter, diagonal group k contains cells xij such that (i+j) mod n = k.
Thus, for example, in the 3 × 3 allocator of Figure 19.8, priority group 0, selected by
signal p0, consists of cells x00, x21, and x12. Because each diagonal group must contain
exactly one cell from each row and from each column, all wavefront allocators must
be square. A non-square wavefront allocator can be realized, however, by adding
dummy rows or columns to square off the array. For example, the 4 × 3 allocator of
our examples above can be realized using a 4 × 4 array. The priority groups in an
allocator need not be diagonals as long as they each contain one element of each row
and column. (See Exercise 19.2.)

The details of the allocator cell are shown in Figure 19.9. When the cell is a
member of the priority group, signal pri is asserted, which generates both a row
token xpri and a column token ypri via a set of OR gates. If the cell is not a
member of the priority group, row tokens are received via signal xin and column
tokens via yin. If a cell has a row token xpri, a column token ypri and a request

10

01

11

00 02

12

20 21 22

p2

p1

p0

Figure 19.8 A wavefront allocator simultaneously performs input and output arbitration by passing row and
column tokens in a 2-D array of allocator cells. Each cycle, row, and column tokens are granted
to one of the diagonal groups of cells (p0, p1, or p2). If a cell with a request has both a row
token, and a column token, it grants the request. A cell with a token that is unable to make a
grant passes the token along its row or column.

19.4 Wavefront Allocator 375

xin

yin

pri

reqij
ypri

xpri

grantij

xout

yout

Figure 19.9 Logic diagram of a wavefront allocator cell. To grant a request, a cell needs to acquire both
a row token xpri and a column token ypri. Both tokens are generated when the cell is a
member of the priority diagonal group and pri is asserted. Otherwise, tokens are received on
the xin and yin lines. A cell that receives one or more tokens and does not use them to grant
a request passes the tokens along on the xout and yout lines.

reqij , it generates a grant grantij via a 3-input AND gate. If a grant is asserted, it
disables further propagation of the row and column tokens via a pair of AND gates.
Otherwise, if a grant is not asserted, row (column) tokens are passed to the next cell
to the right (down) via xout (yout).

This cell is a 2-D generalization of the iterative arbiter cell of Figure 18.5. In
two dimensions, the inhibition of the token or carry must be performed by the grant
(as in Figure 19.9) rather than the request (as in Figure 18.5) to avoid blocking a
token when only one of the two tokens is received. As with the iterative arbiter of
Figure 18.5, the wavefront arbiter appears to contain logic with combinational cycles.
However, since one of the priority inputs is asserted at all times, all cycles are broken
by an OR gate with an asserted input. Thus, the logic is acyclic. However, the cyclic
structure causes problems with many modern timing-analysis CAD tools.

Figure 19.10 shows the operation of a wavefront allocator on our example 4 × 3
request matrix. A 4×4 wavefront allocator is used to handle this non-square problem
with no requests in column 3. In the figure, cells making requests are shaded and cells
receiving grants are shaded darker. Asserted priority and token signals are highlighted
with thick lines.

In the example, priority signal p3 is asserted, granting tokens to cells x30, x21, x12,

and x03. Of these cells, x21 has a request and thus uses the tokens to make a grant.
The other three cells, x30, x12, and x03, propagate their tokens to the right and down.
For example, x30 propagates its row token to the right, to x31. Even though x31 has a
request, it cannot use this row token, since x21 has consumed the column token for
column 1, so it passes the token on to x32. Cell x32 receives a row token from x30
and a column token from x12, and thus is able to make a grant. In a similar manner,

376 C H A P T E R 19 Allocation

01 02

20 21

p3

p2

p1

p0

13

00

10

3230 33

23

13

03

1211

22

31

Figure 19.10 Example of wavefront allocation. Shaded cells represent requests and darkly shaded cells rep-
resent requests that are granted. Thick lines show priority and token signals that are asserted.

x00 makes a grant after receiving a column token from x30 and a row token from x03.
Note that the row token for row 1 and the column token for column 3 are never
used and thus propagate the entire way around the cycle.

19.5 Incremental vs. Batch Allocation

In many routers, an allocation is needed only once every i cycles for some integer i. For
example, a router in which each flit is 4 times the width of the internal datapaths,
and hence takes 4 cycles to traverse the switch, need only perform an allocation
once every i = 4 cycles. This reduced allocation frequency can be exploited by
running i = 4 iterations of PIM or iSLIP, and hence improving the cardinality of
the matching generated by the allocator. Alternatively, instead of performing such a
batch allocation, the allocation can be performed incrementally with a portion of the
allocation completed each cycle.

With incremental allocation, a simple one-cycle allocator is used to generate the
best possible allocation each cycle. The flits that receive grants on a given cycle begin
traversing the switch immediately and the corresponding rows and columns of the
request matrix are removed from consideration until the flits complete their trans-
mission, just as in an iterative allocator. The difference from the iterative allocator
is that each flit begins transmission as soon as it receives a grant, rather than waiting
for the end of the batch period. Because each flit may start transmission during a
different cycle, they also may finish transmission during different cycles. This means

19.5 Incremental vs. Batch Allocation 377

1

2

3

4

0

5

In
pu

ts

1

2

3

4

0

5

O
ut

pu
ts

Cycle

1 2 3 4 5 6 7 8

(a) Incremental allocation

1

2

3

4

0

5

In
pu

ts

1

2

3

4

0

5

O
ut

pu
ts

Cycle

1 2 3 4 5 6 7 8

(b) Batch allocation

g21 g21

g21 g21

g44

g44

g44

g44

g13

g13

g13

g13

g00

g00

g00

g00

g35

g35

Figure 19.11 Incremental vs. batch allocation. (a) With incremental allocation, requesters are granted re-
sources as soon as they are available. This reduces latency but may reduce throughput and raise
fairness issues. (b) With batch allocation, all requesters are granted resources at the same time,
in a batch.

different ports become available during different cycles, rather than all becoming
available at the same time with batch allocation. This makes it much more difficult
to provide fair allocation.

Figure 19.11 shows the application of incremental and batch allocation to the
request matrix R of Equation 19.1. In this example, grants g21 and g44 are asserted
during cycle 1, grant g13 is asserted during cycle 2, and grants g00 and g35 are asserted
during cycle 3. With the incremental allocator (Figure 19.11[a]) each flit begins
traversing the switch on the cycle following the grant assertion. With batch allocation
(Figure 19.11[b]), on the other hand, transmission of all flits is deferred until cycle
5 after all 4 iterations of the allocator have completed.

Incremental allocation reduces latency and enables allocation to handle variable-
length packets that are not segmented into flits. These advantages come at the ex-
pense of slightly reduced bandwidth and reduced fairness. Latency is reduced because
each flit may traverse the switch as soon as it receives a grant rather than waiting
for an entire batch time. In a lightly loaded network, most flits depart after a single
allocation cycle. Bandwidth is slightly reduced because switching the start time of a
flit results in one or more idle cycles that would be filled with a batch scheduler.

378 C H A P T E R 19 Allocation

The ability to start and end switch traversal at arbitrary times also enables the
allocator to handle variable length packets. Each packet holds the switch resources
(input and output) for its entire length before releasing them. To do this with a batch
allocator would require rounding up each packet length to the next whole batch size.
While switching packets directly, rather than switching flits, eliminates segmentation
overhead, it also increases contention latency unless packet length is limited since
a competing packet potentially may have to wait for a maximum-length packet. A
compromise is to segment packets larger than a certain size X (for example, two
flits) and switch packets smaller than this size without segmentation. This bounds
the segmentation overhead to be less than X/(X + 1) (for example, 2

3
) while also

bounding contention delay to two flit times.
Special care is required to guarantee any type of fairness with an incremental

scheduler. Consider the situation of Figure 19.11 in which there is a continuous
assertion of r21 and r00 and in which a single packet has asserted r20. For r20 to be
serviced, it must acquire both input 2 and output 0. However, when input 2 becomes
available in cycle 2, output 0 is still busy handling g00. Thus, r20 cannot be granted
input 2 and a greedy scheduler will repeatedly allocate input 2 to r21. Similarly, a
greedy allocator will always allocate output 0 to r00 in cycle 4. As long as a greedy
allocator is used, r20 will never be served as long as r00 and r21 are asserted and are
being served in different cycles.

Fairness can be guaranteed in an incremental allocator by allowing a request to
acquire input ports and output ports independently after they have waited for a given
amount of time. In the example above, after r20 has waited for a period of time, say
16 cycles, it raises its priority to allow independent port acquisition. It then acquires
input 2 on cycle 2 and holds this input idle until it acquires output 0 on cycle 4.

19.6 Multistage Allocation

Some applications require multiple stages of allocation. For example, in a router,
we might want to grant requests to high-priority packets first and then allocate any
remaining resources to lower-priority packets. In another application, we might want
to grant requests for multicast traffic first (see Exercise 19.3) and then allocate re-
maining ports to unicast traffic.

Such prioritized multistage allocation can be performed as shown in Figure 19.12.
An example is shown in Equation 19.3.The high-priority allocation is performed first
— generating a grant matrix Ga from request matrix Ra. A mask matrix Ma is then
constructed from grant matrix Ga that masks all rows and columns that contain a
grant. A bit Maij of the mask matrix is set to zero, masking the downstream request,
if any bit in row i or column j of Ga is set. That is,

Maij =
(

¬
n−1∨
k=0

Gakj

)∧(
¬

m−1∨
k=0

Gajk

)
.

19.6 Multistage Allocation 379

Allocator

ra00

ra01

Allocator

ra02

ra10

ra11

ra12

ra20

ra21

ra22

row0

row1

row2 col2

ga00

col1

col0

ga01

ga02

ga10

ga11

ga12

ga20

ga21

ga22

rb00

rb01

rb02

rb10

rb11

rb12

rb20

rb21

rb22

gb00

gb01

gb02

gb10

gb11

gb12

gb20

gb21

gb22

Figure 19.12 Two-stage allocation. An allocation is performed on request matrix Ra, generating grant matrix
Ga. This grant matrix is also used to create a mask — eliminating rows and columns used by
Ga from a second request matrix Rb. The masked version of Rb is then used to perform a
second allocation generating grant matrix Gb. Because of the masking, Gb is guaranteed not
to interfere with Ga.

This mask is then AND-ed with request matrix Rb to eliminate requests that
would conflict with a grant in Ga. The remaining requests Rb′ = Rb ∧ Ma are input
to a second allocator that generates grant matrix Gb. The process can be applied
to more than two stages with the requests at each stage being masked by all of the
upstream grants.

380 C H A P T E R 19 Allocation

Ra =

⎡
⎢⎢⎣

1 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Ga =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Ma =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎤
⎥⎥⎦ ,

Rb =

⎡
⎢⎢⎣

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ , Rb′ =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , Gb =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

(19.3)

19.7 Performance of Allocators

To measure the performance of an allocator, the allocator can be used to schedule
flit transmission across a crossbar switch. In order to isolate the allocator from other
factors, such as finite buffer size, some ideal assumptions are made about the switch.
First, each input to the switch feeds into an infinite pool of buffers. Additionally,
each input buffer pool is split into virtual output queues. Virtual output queues are
essentially a set of virtual-channel buffers, with one virtual channel per output.When
an incoming flit arrives at an input, it is immediately stored in a virtual output queue
based on its desired output port. This prevents head-of-line blocking , where data
destined for one port of a switch is blocked behind data waiting for another port
of the switch. Finally, all latencies, such as routing and switch traversal, are ignored.
The delay of a flit is simply the time it spends in the input buffers — if it arrives and
is immediately scheduled, then this time is zero. For the following experiments, an
8 × 8 switch and uniform traffic are assumed.

Figure 19.13 shows the average delay vs. offered traffic of each allocator described
in this chapter. PIM saturates first, at around 66% offered traffic, and LOA improves
slightly on this, saturating at approximately 69%. However, LOA does offer good
average latency until its saturation point. Both the wavefront and iSLIP allocators
do eventually approach 100% throughput, which is beyond the latency scale of the
graph. Also, as shown, the wavefront allocator also offers significantly lower latency
compared to the simpler iSLIP technique.

While these single-iteration, separable techniques have reasonable performance
given their low complexity, additional iterations can significantly improve this perfor-
mance. Figure 19.14 shows the performance of PIM with multiple iterations. While
the single iteration PIM1 saturates at 66%, two iterations extend the saturation point
to near 90%, and with three iterations throughput approaches 100%. Little perfor-
mance benefit is seen beyond three iterations for this configuration. Not shown is the
benefit of additional iterations for iSLIP. Although iSLIP achieves 100% throughput

19.7 Performance of Allocators 381

0.2 0.4 0.6 0.8 1.0

Offered traffic (fraction of capacity)

0.1

1.0

10.0

100.0

A
vg

. d
el

ay
 (

cy
cl

es
)

PIM
iSLIP
LOA
Wavefront

Figure 19.13 Performance of single iteration allocators. Each curve shows the average delay versus offered
traffic for an 8 × 8 crossbar under uniform traffic.

0.2 0.4 0.6 0.8 1.0

Offered traffic (fraction of capacity)

0.1

1.0

10.0

100.0

A
vg

. d
el

ay
 (

cy
cl

es
)

PIM1
PIM2
PIM3

Figure 19.14 Performance of PIM with multiple iterations (e.g., PIM1 is PIM with a single iteration) on an
8 × 8 crossbar switch under uniform traffic.

382 C H A P T E R 19 Allocation

on uniform traffic with a single iteration, an additional iteration greatly reduces the
latency,making it competitive with wavefront. Only small improvements are realized
for increasing the number of iSLIP iterations beyond two in this case.

As mentioned in Section 17.2.2, another method to improve the performance
of an allocator is to provide an input speedup, an output speedup, or both to the
corresponding switch. Figure 19.15 shows an LOA with different input and out-
put speedups. Compared to the case with no speedup (IS=1,OS=1), which satu-
rates at approximately 69%, an input speedup of two (IS=2,OS=1) improves both
the saturation point, near 95%, and the latency of an LOA. Adding an output
speedup with the input speedup (IS=2,OS=2) improves the switch throughput
to 100%.

We can also speed up the crossbar and allocator relative to the channel rate to im-
prove the performance of a simple allocator: for each packet arriving at the channel
rate, S packets can traverse the crossbar, where S is the speedup. In Figure 19.16, the
performance of LOA with speedup is shown. A 25% speedup relative to the chan-
nel rate (S=1.25) gives an approximately 25% increase in the saturation throughput
to approximately 85%. This trend continues for a 50% speedup (S=1.5), where the
throughput approaches 98%. Beyond this point (S=1.75), additional speedup pro-
vides almost no gain in either throughput or latency.

0.2 0.4 0.6 0.8 1.0

Offered traffic (fraction of capacity)

0.1

1.0

10.0

100.0

A
vg

. d
el

ay
 (

cy
cl

es
)

IS=1,OS=1
IS=2,OS=1
IS=2,OS=2

Figure 19.15 Performance of LOA with input and output speedup on an 8 × 8 crossbar switch under uniform
traffic.

19.8 Case Study: The Tiny Tera Allocator 383

0.2 0.6 1.0
Offered traffic (fraction of capacity)

0.1

1.0

10.0

100.0

A
vg

. d
el

ay
 (

cy
cl

es
)

S=1.0
S=1.25
S=1.5
S=1.75

0.80.4

Figure 19.16 Performance of LOA with speedup relative to the channel rate on an 8 × 8 crossbar switch
under uniform traffic.

19.8 Case Study: The Tiny Tera Allocator

As mentioned in Section 7.4, the Tiny Tera is a fast packet switch originally archi-
tected at Stanford University and later commercialized by Abrizio [125]. The core
of the Tiny Tera is organized around a 32-port crossbar that must be reconfigured
every 51 ns. The designers chose the iSLIP allocation algorithm with an output-first
arbitration and three iterations (Section 19.3.2) for the design, which required both
pipelining and aggressive arbiter designs to meet their timing goals [79].

When performing multiple iterations of the iSLIP algorithm, it may seem that
both stages of arbitration in the separable allocator must be completed before
beginning the next iteration. Then the result of the iteration can be used to mask
(deactivate) any request corresponding to a matched input or output for the next
iteration. Using this approach, each iteration would take the time required for two
arbitration steps. However, a clever optimization allows the iteration time to be cut
nearly in half.

The optimization used in the Tiny Tera is based on the observation that if any
output arbiter in the first stage of the allocator selects a particular input, that input
will be matched after the second stage of arbiters. Therefore, the input masks can be
computed by appropriately OR-ing the results of the first stage of arbitration. The
pipelined architecture along with the logic to compute the input masks imi for a

384 C H A P T E R 19 Allocation

y00

Output
arb

y10

y20

y01

y02

new_match

im0

Input
arb

new_match

g02

g01

g00

om2

om1

om0

omi

g0i
g1i
g2i

new_match

r00
im0

r00
im1

r00
im2

output1 input1
output2 input2

output3 input3

Cycle
1 2 43

Ite
ra

tio
n 1

2

3

Figure 19.17 Logic for the pipelined implementation of a multiple iteration iSLIP allocator used in the Tiny
Tera packet switch. For clarity, a 3 × 3 allocator is used, of which only a portion is shown. The
new match signal is asserted during the first cycle of a new allocation. The pipeline diagram
for the operation of the allocator is also shown — the arbitration for outputs occurs in parallel
with arbitration for inputs from the previous iteration.

3 × 3 iSLIP allocator are shown in Figure 19.17. Creating the input masks from the
results of the first stage reduces the iteration time to that of a single arbitration plus
the time required for the OR, which is generally much smaller than the arbitration
time, especially for the large arbiters used in the Tiny Tera.

The second pipeline stage of the allocator contains the arbiters for the inputs,
which produce the grant signals. These grants are OR-ed similarly to generate the
output masksomi . However, instead of using the output masks at the original requests,
they mask the inputs to the second stage of arbiters. This does not prevent the
propagation of spurious requests from already matched outputs through the first
stage of allocators. However, the output masks are applied before the input arbiters,
so these spurious requests never affect the final grants.

To illustrate the application of the input and output masks during the alloca-
tor’s pipeline, consider the 2 × 2 allocation with 2 iterations shown in Figure 19.18.
As shown, all possible requests are asserted. During the first iteration, both output

19.9 Bibliographic Notes 385

0

1

0

1

Requests

0

1

0

1

y, iter=1

1

0

1

Grants, iter=2

0

2nd arbiter
Masked before

0

1

0

1

Grants, iter=1

1

0

1

y, iter=2

0

1 2 3cycle

Figure 19.18 Example of the pipelined iSLIP algorithm for a 2 × 2 allocation with 2 iterations. During each
step of the allocation, masked inputs (outputs) are indicated by left (right) nodes, gray.

arbiters choose input 0. This information is used to mark (gray) input 0 as matched
during subsequent cycles. In the second cycle, the first iteration’s input arbitration
grants the request from input 0 to output 0. Simultaneously, both output arbitrations
of the second iteration select input 1. By the beginning of the third cycle, the output
mask correctly reflects the fact that output 0 is matched. This allows the spurious
request from input 1 to output 0 to be masked before the second iteration’s grants
are computed.

19.9 Bibliographic Notes

The earliest algorithms for computing a maximum matching are due to Hall and to
Ford and Fulkerson.While the augmenting path algorithm has complexity O(|V ||E|),
Hopcroft and Karp developed an O(|V |1/2|E|) time algorithm [83]. As shown by
McKeown et al., a maximum-size matching does not guarantee a 100% throughput
on non-uniform traffic,while a more complex maximum weight matching does [126].
Several techniques have since been introduced to approximate maximum weight
matchings and still achieve 100% throughput [183, 71]. Parallel iterative matching
was first developed by Anderson et al. [11]. iSLIP was first studied and described
by McKeown [123] and implemented in the Tiny Tera packet switch [125, 79].
Tamir developed the wavefront allocator [180]. Incremental allocation was used to
advantage in the router of the Alpha 21364 [130, 131].

386 C H A P T E R 19 Allocation

19.10 Exercises

19.1 Performance of a separable allocator. Find the best possible and worst possible grant
matrix that could be generated by a single-pass separable allocator for the following
request matrix:

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

19.2 Randomization and history in a wavefront allocator. Consider a 4 × 4 wave-front allo-
cator with the priority groups wired as in Figure 19.10 and the request matrix

R =

⎡
⎢⎢⎣

1 0 0 1
0 0 1 1
0 1 1 0
1 1 0 0

⎤
⎥⎥⎦ .

(a) If the priority group is incremented each cycle (p0, . . . , p3, p0, . . .) and the
request matrix R remains fixed, what fraction of grants is given to the corre-
sponding entries of R? How does this affect the throughput of a switch using
this allocator?

(b) Does randomly choosing a priority group each cycle improve the performance
for this request matrix relative to the original strategy of simply incrementing
the priority group?

(c) In general, the wavefront allocator cells can be prioritized in any pattern that
contains exactly one cell from each row and column (the prioritized cells must
be a permutation). If the cell priorities are set each cycle using a random per-
mutation, how does the allocator perform on R relative to the previous two
approaches?

19.3 Multicast allocation. Explain how to extend a simple separable allocator to handle
multicast allocation in addition to unicast allocation. The multicast allocator accepts
two additional inputs per input port: a multicast request rm, which is asserted when
the port wishes to simultaneously allocate several outputs, and a multicast bit vector
bm with one bit for each output to indicate which outputs are to be allocated for the
multicast.

19.4 Incremental multicast allocation. In a router, a multicast request can be handled either
atomically, by insisting that the entire multicast be allocated at once, or incrementally,
by dividing the multicast set into smaller groups. In the extreme case, a multicast set
can be divided into a number of unicasts — one from the input to each of the
multicast outputs. Explain how to build a router that performs greedy incremental
multicast allocation by allocating as many outputs as are available each cycle and
then deferring the remaining outputs until later cycles.

19.10 Exercises 387

19.5 Convergence of PIM. What is the average number of iterations for PIM to converge
to a maximal matching under uniform traffic? What is the worst-case number of
iterations for convergence over all possible request patterns?

19.6 Input- vs. output-first allocation with input speedup. Consider the allocation of an SN

input by N output switch, where S is the input speedup and N is the number of
ports.

(a) If a single-pass PIM allocator is used and requests are uniform (all inputs request
outputs with equal probability),what is the throughput of input-first allocation?
What if output-first allocation is used?

(b) Now assume the number of ports N is large. What integer value of S gives
the largest difference in throughput between the input-first and output-first
allocators? What is that difference?

19.7 Simulation: Compare the performance of a four-iteration PIM allocator on a switch
with a speedup of one to a single iteration PIM allocator on a switch with a speedup
of two.

.
This Page Intentionally Left Blank

C H A P T E R 20

Network Interfaces

The interface between an interconnection network and the network client can often
be a major factor in the performance of the interconnection network.A well-designed
network interface is unobtrusive — enabling the client to use the full bandwidth at
the lowest latency offered by the network itself. Unfortunately, many interfaces are
not so transparent. A poorly designed interface can become a throughput bottleneck
and greatly increase network latency.

In this chapter, we look briefly at the issues involved in three types of net-
work interfaces. Processor-network interfaces should be designed to provide a high-
bandwidth path from the processor to the network without incurring the overhead
of copying messages to memory or the bottleneck of traversing an I/O interface. A
successful interface should minimize processor overhead and be safe, preventing an
errant process from disabling the network.

Shared-memory interfaces are used to connect a processor to a memory
controller via an interconnection network. They may implement a simple remote
memory access or a complex cache coherence protocol. Latency is critical in a shared-
memory interface because such interfaces are in the critical path for remote memory
accesses.

Line-card interfaces connect an external network channel with an interconnec-
tion network that is used as a switching fabric. The primary function of the line-
card interface is to provide queueing and packet scheduling. queueing is provided
between the input line and the fabric and between the fabric and the output line.
Input queues are typically provided for each output subport, packet class pair so that
packets destined for one subport will not block packets to a different subport and
so packets of a lower priority class will not block packets of a higher priority class.
As with the processor-network interface, there are issues of both performance and
safety in the design of such queueing systems. At the output side, the queues match

389

390 C H A P T E R 20 Network Interfaces

the rate of the fabric (which typically has speedup) to the rate of the output line and
may perform rate shaping for different classes of traffic.

20.1 Processor-Network Interface

Many applications of interconnection networks at their core involve passing messages
between processors attached to the network. The networks in message-passing paral-
lel computers obviously fall into this category, but less obviously, most I/O networks
and many packet switching fabrics also involve passing messages between processors
associated with the I/O devices or line interfaces.

Figure 20.1 shows a number of processor nodes,P1, . . . , PN that communicate by
exchanging messages over an interconnection network. In most applications, message
lengths are bimodal. Short messages, about 32 bytes in length, are sent to make
requests and for control (read disk sector x). Long messages, 1 Kbyte or longer, are
sent to transfer blocks of data (the contents of disk sector x). We are concerned with
the latency and throughput achieved for both short and long messages. In practice,
achieving good throughput on short messages is usually the hardest problem.

A good message-passing interface must do two things: it must provide a low-
overhead path to the network, and it must prevent a misbehaving process from using
the network to interfere with other processes. The access path should be low-latency
so a short message can be sent in a few cycles. The path should also avoid traversing
low-bandwidth choke points in the system — like the memory interface. In general,
a network interface should avoid copying messages, particularly to or from memory,
since this adds latency and often results in a bandwidth bottleneck.

A key aspect in the design of a network interface is where it attaches to the
processor node. Figure 20.2 shows a typical processor node. A processor chip, which
contains a register file and on-chip cache memory, connects to DRAM memory and
I/O devices via a bridge chip.1 A network interface can attach to any of these points.

The most efficient network interfaces attach directly to the processor’s inter-
nal registers. This permits small messages to be composed directly out of processor

Interconnection Network

P1 P2 PN

Figure 20.1 A number of processors, P1 to PN, pass messages to one another over an interconnection
network.

1. In modern PCs this is called the north bridge.

20.1 Processor-Network Interface 391

B
rid

ge

Processor

Regs
Cache

Memory

Buf1 Buf2

I/O

Figure 20.2 A typical processor node consists of a processor with internal registers and cache memory
connected to DRAM memory and I/O devices via a bridge chip. The network interface can be
connected to the I/O bus, integrated with the processor, or integrated with the bridge chip.

registers or the cache without the latency associated with traversing the off-chip
memory interface. Unfortunately, most network interfaces attach to the I/O bus
because this requires the least modification to existing components. These interfaces
transfer messages between the interconnection network and memory. This incurs
considerable latency as it can take more than 30 cycles to cause an external bus
cycle on modern processors. It also causes every word of the message to traverse the
memory interface twice at either end of the communication. This places a heavy load
on memory bandwidth and can become a bandwidth bottleneck in some situations.
This I/O-based network interface is similar in design to a standard peripheral interface
and will not be discussed further here.

20.1.1 Two-Register Interface

A simple two-register interface to an interconnection network is illustrated in
Figure 20.3.2 Messages are sent via a single network output register, to which each
word of outgoing messages is written and messages are received via a single network
input register, from which each word of incoming messages is read. To send a mes-
sage, the processor simply moves each word of the message to the network output
register. A special move instruction is used to transfer the last word of the message
and terminate the message. To receive a message, the processor reads the words of
the incoming message from the network input register. Each read dequeues the next
word of the message so that the next readfrom the same register returns the next
word of the register. To synchronize with the arrival of messages, the processor may
either test for the presence of a message before reading the input register or may
block on the input register until a message arrives.

The two-register interface provides a simple interface that efficiently handles
short messages without incurring any memory overhead. Short messages can be
sent directly from data in the processor registers and can be received directly into

2. This type of register network interface was used for both sends and receives in the MARS accelerator [4]
and for sends in the J-Machine [53].

392 C H A P T E R 20 Network Interfaces

Net out

Network

Net in

R0

R1

R31

Figure 20.3 A two-register network interface. Messages are sent by moving one word at a time to a network
output register. Messages are received by reading from a network input register.

the processor registers. This interface, however, has two limitations. First, for long
messages, particularly those that must transfer blocks of memory-resident data, the
processor is tied up serving as a DMA engine, transferring data between memory and
the network interface registers. This processor overhead can be prohibitive in some
applications.

A second problem with the two-register interface is that it does not protect
the network from software running on the processor. A misbehaving processor can
send the first part of a message and then delay indefinitely sending the end of the
message. The partial message can tie up network resources such as buffers and virtual
channels indefinitely, interfering with other processes’ and nodes’ use of the network.
A process can also tie up the network, interfering with other processes, by failing to
read a message from the input register.

For a network interface to be safe it must guarantee that a process cannot in-
definitely hold shared network resources. Any shared resource, such as a buffer or a
virtual channel used to send a message, must be released within a bounded amount
of time regardless of the behavior of the sending or receiving processes. Resources
that may be held indefinitely should not be shared. For example, a virtual channel
on each physical channel can be dedicated to every process if the process cannot
guarantee that it will be released in a bounded amount of time.

20.1.2 Register-Mapped Interface

One approach to solving the safety problem of the two-register interface is to send
a message atomically from a subset of the processor’s general purpose registers, as

20.1 Processor-Network Interface 393

illustrated in Figure 20.4.3 A processor composes a message in the processor registers
and then sends the message atomically into the network interfaces with a single send
instruction that specifies the registers that contain the first and last words of the
message. This mechanism for message transmission is safe, since there is no way for
a processor to leave a partial message in the network. This interface is very limiting,
however, as it prevents processors from sending long messages, which forces long
messages to be segmented, causes register pressure by consuming general registers,4

and still forces the processor to act as a DMA engine.

20.1.3 Descriptor-Based Interface

A descriptor-based message send mechanism, shown in Figure 20.5, overcomes the
limitations of the register send mechanism of Figure 20.4. With this approach, the
processor composes the message in a set of dedicated message descriptor registers.
This register set is large enough to hold a working set of message descriptors. Each de-
scriptor may contain an immediate value to be inserted into the message, a reference
to a processor register, or a reference to a block of memory. The example message
shown in the figure contains one of each of these descriptor types. The descriptor-
based message send is safe and eliminates the processor overhead associated with
register interfaces. In effect, it offloads the processor overhead to a co-processor that
steps through the descriptors and composes the message.

20.1.4 Message Reception

Performing a message receive in a safe manner and without processor overhead
is most easily accomplished by dedicating a co-processor, or separate thread of a

R0
R1

R31

Send Start End

Message

Figure 20.4 Short messages can be sent directly from the processor’s general purpose registers.

3. This type of message send mechanism was implemented in the M-Machine [112] (Section 20.4).
4. The register pressure issue can be addressed by forming messages in a special register set rather than in

the general-purpose registers.

394 C H A P T E R 20 Network Interfaces

+

Send Start

Immediate

Addr
RN

Length
END

R0
R1

R31

RN

Memory

Figure 20.5 A descriptor-based register network interface. A message is composed in a set of dedicated send
registers that contain descriptors. Each descriptor may contain an immediate value, a reference
to a processor register, or a reference to a block of memory.

multi-threaded processor, to receiving messages.5 The message thread handles sim-
ple messages itself and queues more complex messages for handling by the user’s
thread. Some common message types, such as shared memory references, may even
be handled by dedicated hardware for efficiency. This interface is safe in that the
receive thread can be validated to always remove the message from the network in
a bounded amount of time.

20.2 Shared-Memory Interface

In a shared-memory multiprocessor (Section 1.2.1) an interconnection network is
used to carry messages from processors to memories. In a system that does not per-
mit remote caching, such as the Cray T3E, the messages are simple read and write
requests and replies. In a system that supports coherent caching of remote data,
such as the SGI Origin 2000, a larger vocabulary of messages is used to imple-
ment a cache coherence protocol. In either case, two network interfaces are used. A
processor-network interface formats messages in response to processor load and store
operations that miss the cache and cache line evictions. At the memory controller
side, a memory-network interface receives requests from the network, carries out the
requested action, and sends reply messages. In a typical shared-memory processing
node, these two interfaces are co-located and may share network injection and extrac-
tion ports. However, their functions are logically separate. Because latency is critical

5. The M-Machine [112] uses two separate receive threads to handle two classes of arriving messages.

20.2 Shared-Memory Interface 395

in the interconnection networks for shared-memory multiprocessors, these interfaces
are optimized to inject request messages in response to processor or memory events
in just a few clock cycles.

20.2.1 Processor-Network Interface

A simplified block diagram of a processor-network interface is shown in Figure 20.6.
Each time the processor performs a load or store operation, it places a request in the
memory request register (Req Reg).6 The request record specifies the type of the
request (read or write, cacheable or uncacheable, and so on), the physical address to
be accessed,7 and for write requests the data to be written. Each request is tagged so
that the processor can identify the corresponding reply when it is returned from the
memory system. In many systems, the tag encodes how the reply is to be handled (for
example, store the reply data into register R62). The request is first presented to the
cache. If the address being accessed resides in the cache, the read or write operation
is performed in the cache, and the cache places a reply, including the requested data
for a read, into the memory reply register.

If the request misses in the cache, it is posted to a miss-status holding register
(MSHR) [105] and the status of the MSHR is initialized.The action taken in response
to an MSHR depends on the type of operation and whether or not the machine
supports a cache coherence protocol. First, let us consider a read operation on a simple
machine that does not permit caching of remote data. In this case, the MSHR status
is initialized to pending read. Upon seeing this status, the message transmit block
formats a read request message, addresses it to the node containing the requested
address, and injects it into the network. After the message is injected, the status of
the request is updated to read requested. A translation step is sometimes required to
convert the address to a node number — that is, to convert the memory address to a
network address. The read request message contains the destination node, the type
of message (read), and the address to be read.

The network will ultimately return a read reply message in response to the re-
quest. The address field of the read reply message is used to identify the MSHR(s)
waiting for the requested data. All matching MSHRs are updated with the data and
their status is changed to read complete. The completed MSHRs are forwarded in
turn to the processor reply register, where the tag field is used by the processor to
direct the data to the proper location. As each completed operation is forwarded
to the processor, its status is changed to idle, freeing the MSHR to handle another
request.

6. In high performance processors, the memory system is designed to accept several (typically two to four)
memory requests per cycle. For simplicity, we consider only a single request per cycle.

7. In most systems, the processor presents a virtual address, which is translated to a physical address in
parallel with the cache access.

396 C H A P T E R 20 Network Interfaces

MSHRs

Req reg

Processor

Addr DataType

Cache

Protocol
FSM

req

Tag

hi
t

Addr DataStatus Tag

Message
format & transmit

evict

Message
receive

To
network

From
network

replace

data

Reply reg DataType Tag

AddrRdReq

Addr DataWrReq

Dest

Dest

AddrRdRply

Addr

Data

WrRply

Figure 20.6 A processor-network interface for a shared-memory multiprocessor. Processor memory requests
that miss the cache are posted to a miss-status holding register (MSHR) and a request message
is transmitted to perform the requested operation. Reply messages received from the network
are matched to the pending operation in an MSHR and the completed operation is forwarded
to the processor.

Uncacheable writes are handled in a manner identical to reads except that data
is included in the request message and not in the reply message. Also, a write to an
address with a pending request requires a second write request message to be sent,
and a mechanism is required to guarantee that the two writes to the same address
are received in order.

20.2 Shared-Memory Interface 397

The MSHRs act as a scoreboard for all outstanding requests. When a request
misses in the cache, an entry is made in the MSHR and the status is initialized.
Agents that handle requests (the protocol FSM and the message transmit block)
monitor the status of the MSHR entries, and upon detecting an entry in a state that
requires an action, initiate the appropriate action. This monitoring is often done by
using a one-hot encoding of the status field and triggering an agent on the logical OR
of the bits reflecting a particular state.

The MSHRs also serve to combine requests to the same location. If a second
read is requested to a location that already has a pending read, the address match
will be detected when the second request is posted to an MSHR and no redundant
read request message will be sent. When a reply from the first request is received, it
will satisfy all pending requests for that address.

The number of MSHRs determines the number of memory references that can
be pending at any given point in time. When all MSHRs are full, the next memory
reference that misses the cache must stall in the request register until an MSHR
becomes available. Typical designs have between 4 and 32 MSHRs. Shared-memory
network interfaces that handle much larger numbers of outstanding references can
be built by eliminating the MSHRs and forwarding the entire state of each request
with the request message. In this section, however, we restrict our discussion to
MSHR-based interfaces.

20.2.2 Cache Coherence

In a machine that supports caching of remote data with a coherence protocol, oper-
ation is similar to that described above for uncacheable reads and writes, with three
main differences. First, all operations are performed in units of cache lines. A read
request, for example, reads an entire cache line that is then stored in the local cache.
Second, the protocol requires a larger vocabulary of messages. Separate messages
are used, for example, to request a cache line in a read-only state and a read-write
state. Additional messages are also used to forward and invalidate cache lines. Fi-
nally, coherence protocols require the processor-network interface to send messages
in response to messages received, not just in response to processor actions.

A complete discussion of cache coherence protocols is beyond the scope of this
book.8 However, a simple coherence protocol requires the processor to send: a read
request message (sent on a read miss), a read exclusive message (sent on a write
miss to acquire a line), a writeback message (sent to evict a dirty line to memory), a
forward message (sent to forward a dirty cache line to a new owner), and an invalida-
tion acknowledgment (sent to acknowledge that a clean line has been invalidated).
The processor is required to handle receipt of a read reply message (with a read-only
cache line), a forward message (with a read-write cache line), an invalidation request
(asking for a read-only line to be invalidated), and a forward request (asking for an

8. The interested reader is referred to [115, 116].

398 C H A P T E R 20 Network Interfaces

exclusive cache line to be forwarded). The receipt of each of these messages causes
an existing MSHR entry to be updated, or (for invalidation or forward requests) a
new MSHR entry to be created. The status field of the MSHR entry triggers the
protocol FSM and the message transmit unit to carry out any actions needed in re-
sponse to the message. For example, an invalidation request requires the protocol
state machine to invalidate the specified line and to send a reply message to signal
that the invalidation is complete. Similarly, a forward request message requires the
protocol FSM to invalidate a line and forward its contents to a specified node in a
forward message.

Coherence messages that carry data carry an entire cache line. Cache line sizes
on modern machines vary from 8 bytes (one word on the Cray X-1) to 512 bytes
(the L2 line size on the IBM Power4), and a line size of 128 bytes is typical. Transfer
of a 128 bytes line is typically done one or two words (8 to 16 bytes) at a time and
thus takes 8 to 16 cycles. To minimize latency, message injection is pipelined with
transfer of the cache line from the cache. The header of the message is injected as
soon as it is formatted from the data in the MSHR entry, rather than waiting for
the entire cache line to be read. Each word of the cache line is then injected as it
is read. Also, to reduce latency, many protocols read (and send) the requested word
first, sending the rest of the line in a wrapped order after this critical word.

A key issue in the design of processor-network interfaces for cache-coherent
shared-memory multiprocessors is occupancy, which is the amount of time a critical
resource is busy with (occupied by) each memory access. In a well-designed interface,
the resources (the cache, the MSHRs, and the message transmit and receive units)
are occupied for only a single cycle (or a single cycle per word) for each memory ac-
cess. In some interfaces, such as those that use software to implement the coherence
protocol, a resource may be occupied for tens of cycles (or longer). In such cases,
this busy resource quickly becomes a bottleneck that limits throughput.

20.2.3 Memory-Network Interface

A memory-network interface is shown in Figure 20.7.This interface receives memory
request messages sent by the processor-memory interface and sends replies. Like the
processor-memory interface, it is optimized for low latency.

Messages received from the network are used to initialize a transaction status
holding register (TSHR).A small request queue is used to hold a few request messages
when all TSHRs are busy to delay the point at which requests back up into the
network. Each TSHR, analogous to the MSHR on the processor side, tracks the status
of a pending memory transaction. The TSHRs are monitored by the memory bank
controllers and the message transmit unit, and changes in a TSHR status field trigger
the appropriate action in these units. Bank controllers for each of the N memory
banks perform read and write operations as required by the pending transactions,
moving data between the data fields of the TSHRs and the memory banks. The
message transmit unit formats and transmits messages in response to completed
transactions.

20.2 Shared-Memory Interface 399

Message
receive

Message
format & transmit

To
network

From
network

AddrRdReq

Addr DataWrReq

Src

Src

AddrRdRply

Addr

Data

WrRply

Request queue

TSHRs

Addr DataStatus Src

Dst

Dst

Bank control

Memory
bank 0

Memory
bank N-1

Memory
bank 1

Directory

by
pa

ss

Figure 20.7 Memory-network interface. Messages requesting memory operations are received from the
network and queued. Pending transactions are held in TSHRs while they access the directory
and/or memory banks. Completed transactions result in messages being formatted and injected
back into the network.

A non-cacheable read request, for example, initializes a TSHR with status read
pending and sets the address and source node fields.When the memory bank matching
the bank-select bits of the address is available, it starts a memory access and changes
the status to bank activated. Two cycles before the first word is returned from the
memory bank, it sets the status of the TSHR to read complete. This status triggers the
message transmit unit to format a read reply message header addressed to the source
node (Src) with the requested address. By the time the header has been injected into
the network, the first word from the selected memory bank is available and words
from the memory bank are injected directly into the network to complete the reply
message. Finally, the TSHR entry is marked idle.

If the requests are simple reads and writes, and if they are guaranteed to complete
in order, the design can be simplified by replacing the TSHRs with a simple queue, or
a queue per memory bank. As each request gets to the head of the request queue, it

400 C H A P T E R 20 Network Interfaces

waits for the memory bank it needs to become available (stalling all of the following
requests). Once the memory bank is available, the request is initiated and placed
into a pending request queue, which takes the place of the TSHRs. As the memory
operations complete, they are matched with their requests — now at the head of
the pending request queue — and the message transmit unit uses the combined
information to send a replay message. Queues are simpler and less costly thanTSHRs,
but cannot handle the actions required by a more complex protocol.

For a cache coherent request, a TSHR serves to hold the state of a transaction
between protocol messages.9 Consider, for example, a read-exclusive request. The
request creates a TSHR entry and sets the status to read-exclusive directory pending.
This activates the directory unit, which determines the current state of the requested
cache line. If the line is in a shared state, the directory unit sets the TSHR status
to read pending, invalidate pending and updates the TSHR with a list of the nodes
sharing the line, and a count of these nodes (in fields not shown). The selected (by
the address) memory bank is triggered to start reading the requested line by the read
pending portion of the status. In parallel, the message transmit unit is triggered by
the invalidate pending portion of the status to send invalidate messages one at a time,
updating the count in the TSHR as each is sent. When all the invalidate requests
have been sent, the TSHR status is set to awaiting invalidate reply. As each invalidate
reply is received, a count is updated, and when all have been received, the status
becomes invalidate complete. If the read is also complete, this triggers the message
transmit unit to send the reply message.10

20.3 Line-Fabric Interface

In a packet switch or router that employs an interconnection network as a switch-
ing fabric, the network interface must provide queueing both before and after the
interconnection network, as shown in Figure 20.8. The input queues are required
to prevent interference between packets destined for different outputs. If an output
A becomes momentarily congested, it is unacceptable to block all packets enter-
ing the network while they wait on a packet destined to A. In a network switch,
blocked packets are eventually dropped because there is no mechanism to provide
backpressure to stop packet arrival on the incoming line.

To avoid this head-of-line blocking at the input of a packet switch, the switch
provides a separate virtual output queue at each input for packets destined to each
output. A packet to a blocked output is queued before the fabric, allowing packets
destined to other outputs to proceed. In practice, queues are usually provided not just
for each output port of the network, but for each class of traffic times each subport
of each output port. This prevents high-priority traffic from being blocked by low-

9. This transient state could be held in the directory, but it saves directory space and accesses to factor it out
into the TSHRs.

10. Many machines optimize this process by having the invalidate acknowledgments forwarded to the receiv-
ing node to shorten the critical path of a read-exclusive transaction to three hops from four.

20.3 Line-Fabric Interface 401

Line in Packet
processing

Queue for
fabric

Queue for
line

Fabric
(network)

Line outPacket
processing

Figure 20.8 A packet router or switch requires queueing of packets before and after the interconnection
network. The input queue holds packets being scheduled for transmission over the network.
The output queue holds packets being scheduled for transmission over the line out.

priority traffic and prevents a subport of an output port (for example, one 1 Gbit
Ethernet interface on a 10-interface line card) from blocking traffic to other subports.

At the output of the interconnection network, a second set of queues holds
packets while they are scheduled for transmission on the output line. This set of
queues is required because the fabric typically has speedup; the bandwidth from the
interconnection network to the line card is higher than the bandwidth of the line out.
Fewer buffers are required at the exit side of the line card, just one per subport ×
class. However, the buffers on the exit side are usually quite large, since in many
applications they must buffer traffic during transient overloads of an output node
that may last 10 ms or longer.

For example, consider a router that has 256 line cards, each with 20 Gbits/s of
capacity divided among eight 2.5-Gbits/s subports. An interconnection network is
used for the fabric that connects the line cards and provides one input port and one
output port to each line card. The line cards define 4 classes of service with a strict
priority required between the classes. In this case, each line card must provide a total
of 8 K input queues (256 ports × 8 subports/port × 4 classes). On the output side,
each line card need only provide 32 queues (8 subports × 4 classes).

A typical line card also includes packet processing logic in both the input and
output paths. This logic rewrites packets and updates statistics counters. Its operation
is independent of the interface to the fabric and will not be discussed further.

In some applications, end-to-end flow control independent of the interconnec-
tion network is provided from the output queue manager to the input queue manager.
This is illustrated by the dotted lines in the figure. This flow control is usually im-
plemented by sending dedicated control packets over the interconnection network
to start or stop the flow of packets from a particular input queue.

To prevent low-priority packets from blocking high-priority packets, and to pre-
vent traffic to a congested output subport from blocking traffic of the same class to
a different output subport, the interconnection network must be non-interfering for
packets from different classes and destined to different output subports. One brute
force approach to providing this non-interference is to provide a virtual network (a
set of virtual channels for each physical channel) for each subport × class.

In practice, when a packet arrives on the input line, it is classified and assigned
an output port by the packet processor. The input queue manager11 then enqueues

11. The block that performs the queue manager and scheduler functions is often called a traffic manager.

402 C H A P T E R 20 Network Interfaces

it in the appropriate input queue. If the queue was empty, a request is sent to the
fabric scheduler, also part of the queue block in Figure 20.8. The fabric scheduler
keeps track of the status of the input queues and of the interconnection network
input port. Using this information, it repeatedly selects the highest priority packet
to an unblocked output from the set of waiting packets and inserts this packet into
the network.12

Because the interconnection network has a higher bandwidth than the input
line, the input queues are nearly always empty and the few that are non-empty are
usually quite short. Only when an output becomes blocked does an input queue
grow to any significant length.13 Because most queues are short, the input queue
manager can keep almost all of its queued packets in on-chip memory, avoiding the
power dissipation required to write these packets to off-chip memory and then read
them back.

A block diagram of a queue manager and scheduler is shown in Figure 20.9. The
queue manager maintains a state vector S, on-chip head and tail pointers h and t ,
and off-chip head and tail pointers H and T . The state vector indicates whether the
queue resides entirely on-chip (at addresses indicated by h and t) or whether the tail
of the queue is off-chip (at the addresses indicated by H and T) and the head of the
queue is on-chip (as indicated by h and t).

Packets arrive tagged with a queue number. On arrival, this number is used to
look up the queue state. If the state indicates that the off-chip portion of the queue
is empty and there is room to append the packet to the on-chip portion of the queue,

DRAM
bank

DRAM
bank

R
d

Q

W
r

Q

Int

R
d

Q

W
r

Q

Int

thS

S
ch

ed

TH

thS THQ0

Qn

RAM

Figure 20.9 A queue manager keeps short queues in on-chip memory and overflows long queues to an
off-chip, banked, DRAM memory.

12. In some applications, the scheduler may apply more sophisticated scheduling policies. For example, it
may rate shape the traffic by metering out packets from certain queues at regular intervals.

13. When this occurs, some routers start applying a random early discard policy to the blocked input queue
rather than waiting for these packets to get to the output node before applying this policy.

20.4 Case Study: The MIT M-Machine Network Interface 403

then the packet is inserted in the on-chip queue. Otherwise, it is inserted off-chip.
All queue accesses to off-chip memory are striped across multiple DRAM banks to
balance the load on the banks. Read and write queues associated with each bank
buffer requests until the bank becomes available.

While the queue manager inserts packets into the queues, the scheduler removes
them. When the scheduler selects a non-empty queue to supply the next packet,
it dequeues the packet from the on-chip queue. The head of all of the queues is
always on-chip, so the scheduler never reads packets from off-chip memory. If, after
dequeueing a packet, the size of an on-chip queue that has a non-empty off-chip tail
falls below a low watermark, a request to transfer sufficient data from the off-chip
queue to fill the on-chip queue is initiated.

Storing the heads of queues on-chip and the tails of queues off-chip results in
very little off-chip memory traffic because most queues never get long enough to
require the off-chip queue tail.

Because memory bandwidth is costly in terms of power and pin-count, it is
important that packets be queued, at most, once on their way into the line card and,
at most, once on their exit from the line card. This is analogous to avoiding memory
copies in a processor-memory interface. Regrettably many routers do not follow this
principle, queueing the packet multiple times: once in the packet processor, once in
a traffic manager that performs traffic shaping, and once in a fabric scheduler. With
careful design, the same functionality can be realized with the packet being written
to and read from memory a single time.

20.4 Case Study: The MIT M-Machine Network Interface

The M-Machine is an experimental multicomputer built at MIT and Stanford to
demonstrate mechanisms for fine-grain communication between multiple on-chip
multithreaded processors [93]. The M-Machine includes a 2-D torus interconnec-
tion network with a register-mapped network interface [112]. The interface
supports both message-passing and shared-memory models of computation. It pro-
vides low-overhead communication without sacrificing safety and isolation of pro-
cesses.

An M-Machine consists of a number of processing nodes connected in a 2-D torus
network. Each processing node was based on a Multi-ALU Processor (MAP) chip
(Figure 20.10). Each MAP chip contained three 64-bit multithreaded processors, a
memory subsystem, a 2-D torus router, and a network interface. Threads running the
the same thread-slot of different on-chip processors could efficiently communicate
and synchronize via registers. There are many interesting aspects of the M-Machine
architecture. In this section, we will focus on its network interface.

On the M-Machine, messages are directly composed in the processor registers
and sent atomically via a message SEND instruction, as described in Section 20.1.2
and shown in Figure 20.4. Each of the threads on each of the three processors on
a MAP chip has fourteen 64-bit integer registers and fifteen 64-bit floating-point

404 C H A P T E R 20 Network Interfaces

Figure 20.10 The Multi-ALU Processor MAP chip is the single-chip processing node used in the M-Machine.
The chip contains three 64-bit multithreaded processors, an on-chip two-bank cache, a memory
controller, a network interface and a 2-D torus router.

registers.14 A thread composes a message in a contiguous set of these registers starting
with register I4 or F4 (integer register 4 or floating-point register 4) and then sends
the message by executing a send instruction.

Figure 20.11 shows the format of an M-Machine SEND instruction. The instruc-
tion has four fields: length, dest, handler, and CCR. Length specifies the number of
registers to be read starting at I4 to compose the body of the message. Dest specifies
the register containing the destination virtual address. This address is translated to

14. On the prototype die only one of the three processors has a floating-point unit and floating-point registers.

20.4 Case Study: The MIT M-Machine Network Interface 405

SEND Length Dest Handler CCR
Regs

I4

I(4+length-1)

Dest addr

Handler IP

Handler IPDest addr I4 I(4+length-1)

SEND instruction

Message

Dest PE

Xlate

Src PE

Figure 20.11 The M-Machine SEND instruction sends the message composed in the register file starting at
register I4 (or F4 for FSEND). The instruction specifies the length of the message (the number of
registers to read), the destination virtual address, the message handler that should be run upon
message receipt, and a condition-code register to be set when the message has been accepted
by the network interface.

determine the destination processing element (PE) and is also include in the mes-
sage. The handler is the virtual address of the code that should be run to handle
the message upon receipt. This supports a message-driven model of computation
[53]. Finally, the CCR field specifies a condition-code register that is initially set
false and then set true once the message is launched into the network — at which
point the registers are free to be overwritten. Using the CCR field to signal comple-
tion allows completion of the SEND instruction to be overlapped with subsequent
instructions.

The register-mapped M-Machine SEND mechanism was designed to retain the
efficiency of the two-register SEND instruction of the preceeding J-Machine while
achieving safety by making the entire message send an atomic operation. Before the
send commits (as signaled by the CCR being set) no network resources are used and
all state is in the processor registers, which are swapped on a process switch. Once
the send commits, the message has been transferred entirely into the network input
queue where, because of the deadlock and livelock freedom of the network, it will
eventually be delivered to the destination node. Because the send is atomic, there
is no danger of a thread starting to send a message and then faulting or swapping

406 C H A P T E R 20 Network Interfaces

out and leaving the network interface blocked by a half-sent message, and hence
unusable by other threads — as could occur on the J-Machine.

The major limitation of the M-Machine SEND mechanism was due to the small
size of the M-Machine register files — 14 integer and 15 floating-point registers.
With such a small register set, message size was limited to a maximum of 10 or 11
and composing even modest-sized messages caused considerable register pressure,
resulting in spilling registers to the stack. The mechanism would be much more
effective with larger register files.

To ensure system-level (as opposed to network-level) deadlock freedom, the
M-Machine employed a return-to-sender convention. Each processing node main-
tained a buffer to handle returned messages. A free-space counter FS reflected the
available space in this buffer. Before sending a message, a node would check that
FS > L (where L is the message length) and then decrement FS by L, guaranteeing
that there is sufficient room in the buffer to hold the message being sent. When a
message was successfully received, an acknowledgement was sent that caused FS to
be incremented by L — returning the reserved space to the pool. If a receiving node
was unable to accept a message, it returned it to the sending node. Returns were
made on a separate set of virtual channels and injection/extraction buffers to avoid
request-reply deadlock. The sending node would buffer the returned message in the
space reserved for it and retry the send.

M-Machine network reception was via a pair of registers, as illustrated in Fig-
ure 20.12. Arriving messages are enqueued into one of two receive queues — one
for each of two logical networks. Only one is shown in the figure. For each queue, a
receive thread runs in a dedicated thread slot on the multithreaded processing node.
The receive thread can read the next word in the queue (the head of the queue)
by reading register 115 (the MsgBody register). To skip the remaining words of the
current message and advance to the head of the next message, the receive thread
reads register 116 (the MsgHead register). If the requested word, body or head, has
not yet arrived in the queue, the receive thread blocks until it arrives. After reading
either 115 or 116, the receive pointer is advanced to move the head of the queue to
just after the word read.

Because the receive thread must always be available to remove messages from the
network, it is permitted to perform only short, bounded computations in response
to arriving messages. This regulated by requiring the handler instruction pointer (IP)
word of each message to be an unforgeable pointer to a message handler, which has
been verified to have the required behavior. The system message handler reads the
handler IP and jumps to it. For messages that can be handled quickly with no chance
of a fault or delay (such as acknowledge, physical memory write, physical memory
read, and so on), the message handler performs the work directly. For other message
types, the message handler enqueues the message in an appropriate system queue
and returns to handle the next message.

The M-Machine provided special support for implementing shared memory
on top of the register-based messaging system described above. Memory requests
queried the on-chip cache and local translation lookaside buffer (LTLB). If the loca-
tion requested was in the cache or mapped to local memory, the access completed
in hardware. If the access missed in the LTLB, or if the LTLB indicated that a remote

20.5 Bibliographic Notes 407

A.Handler_IP

A.Dest_Addr

A.Data_1

A.Data_2

A.Data_3

B.Handler_IP

B.Dest_Addr

B.Data_1

B.Data_2

Receive queue

Rcv pointer

I15: MsgBody I16: MsgHead

Figure 20.12 M-Machine message reception. Arriving messages are stored in one of two receive queues.
Reading from I15 (MsgBody register) reads the next word of the message. Reading from I16
(MsgHead register) reads the header of the next message. In either case, the receive pointer is
advanced to point to the word after the word just read.

access was required, the required information — the reason for the event, the address
in question, the data to be written (if any), and the continuation (thread ID and reg-
ister number) to return data to — was enqueued in the node’s event queue. A thread
running in a dedicated event-handler thread slot processed events in this queue in
exactly the same manner that the message handler threads processed messages from
the two message queues.

For example, the event handler thread would handle a remote read by send-
ing a message to the address in question with the handler IP of the remote read
handler and containing the continuation information as payload. On the remote
node, the message handler thread would jump to the remote read handler IP, per-
form the read, and send a reply message. The resulting remote memory access
times were just slightly longer than for machines that performed remote memory
accesses with dedicated hardware [32]. Implementing these handlers in software,
however, enabled experimentation with different coherence protocols and memory
policies.

20.5 Bibliographic Notes

Most early processor network interfaces were attached to the I/O bus and used either
program transfers or DMA to transfer messages. Joerg and Henry study alternative
network interface architectures and locations [82]. The MARS accelerator used a
two-register interface for message send and receive [4]. The J-Machine used a send

408 C H A P T E R 20 Network Interfaces

instruction to compose messages out of the register file, but received messages to
local memory [53]. The AP1000 improved the speed of memory-based network in-
terfaces by associating the interface with the cache memory [80]. The M-machine
implemented a send instruction that transmitted a contiguous group of registers as a
message [112].The SHRIMP multicomputer [22,23] uses an I/O attached processor-
memory interface connected to standard workstation nodes. It reduces overhead by
mapping windows of memory between the address spaces of nodes. Myrinet [24]
also uses an I/O attached interface that includes a local processor for protocol pro-
cessing. The Berkeley NOW project [10] is an example of a multicomputer built
using such an I/O attached interface. Such I/O attached message interfaces are of-
ten used with message-passing libraries such as Berkeley’s Active Messages [189]
or Illinois Fast Messages [139]. The use of MSHRs to allow multiple cache misses
to be overlapped was introduced by Kroft [105]. DASH, one of the first network-
based shared-memory multiprocessors is described by Lenoski et al. [115]. The SGI
Origin 2000 is one of the first commercial machines of this type [108]. Shared mem-
ory multiprocessors are covered by Lenoski and Weber [116]. Split on-chip off-chip
queueing is described in U.S. Patent 6,078,565 [16] and by Iyer et al. [87].

20.6 Exercises

20.1 Comparing message interface overhead. Consider sending a short message (128 bits)
and a long message (32 Kb) using (a) a two-register interface, (b) a register-mapped
interface, and (c) a descriptor-based interface. Assume that the short message re-
sides initially in processor registers and the long message resides initially in mem-
ory. Compare the processor overhead (both the time required to send the mes-
sage and the processor’s occupancy) of sending each length of message on each
interface.

20.2 Cache coherence protocol. Consider a cache coherence protocol in which each cache
line can be in one of three states on each processor: invalid (this processor doesn’t have
a copy), shared (this processor has a read-only copy), and exclusive (this processor
has an exclusive copy that may be dirty). Describe the sequence of messages that
must be sent to handle a read or a write to a cache line in each of the possible
states.

20.3 Protecting a two-register interface. Explain how a malicious thread can tie up a network
using a two-register interface indefinitely. Write a small code fragment illustrating the
problem. Suggest a method to prevent this problem from occurring.

20.4 Long messages with register-mapped interface. Suppose you have a processor that has
64 general purpose registers and a register-mapped interface as described in Sec-
tion 20.1.2 and you need to send a 1,024-word message from a buffer in memory.
Write a short code fragment that performs this message send. Suggest a way to reduce
the overhead of sending long messages.

20.6 Exercises 409

20.5 Format a descriptor-based message. Write down the register contents for a descriptor-
based message that sends a 1,024-word memory buffer to another node. The message
should include the destination address, a header identifying the type and length of
the message, and the data itself.

20.6 Single-memory line-network interface. Consider a line-network interface in which pack-
ets are buffered in memory only on the output side of the fabric. A small on-chip
queue (100 packets) is all that is provided on the input side of the fabric. Suppose
that your router must support 128 line cards, each of which handles 4 classes of
traffic. Also, assume (unrealistically) that input traffic is uniformly distributed over
the output nodes. How can you guarantee that no packets will be dropped from the
small input queue? Sketch a solution.

.
This Page Intentionally Left Blank

C H A P T E R 21

Error Control

Many applications of interconnection networks require high reliability and avail-
ability. A large parallel computer requires that its interconnection network operate
without packet loss for ten thousands of hours. An Internet router can accept a small
amount of packet loss, but the router itself must remain up with an availability of
99.999% — five minutes of downtime allowed per year. I/O systems have similar
availability requirements.

Interconnection networks are often composed of hundreds (or thousands) of
components — routers, channels, and connectors — that collectively have failure
rates higher than is acceptable for the application. Thus, these networks must employ
error control to continue operation without interruption, and possibly without packet
loss, despite the transient or permanent failure of a component.

21.1 Know Thy Enemy: Failure Modes and Fault Models

The first step in dealing with errors is to understand the nature of component failures
and then to develop simple models that allow us to reason about the failure and the
methods for handling it. We classify failures that may occur in our system as failure
modes. A failure mode is a physical cause of an error. Gaussian noise on a channel,
corrosion on a connector, cold solder joint failure, an open output driver in a power
supply, alpha-particle strikes, electromigration of a conductor on a chip, threshold
voltage shift in a device, operator removing the wrong module, and software failure
are examples of failure modes.

Because failure modes are often complex and arcane, we develop simple fault
models that describe the relevant behavior of the failure mode while hiding most of

411

412 C H A P T E R 21 Error Control

Table 21.1 Failure modes and fault models for a typical interconnection network.

Failure Mode Fault Model Typical Value Units

Gaussian noise on a channel Transient bit error 10−20 BER (errors/bit)

Alpha-particle strikes on Soft error 10−9 SER (s−1)
memory (per chip)

Alpha-particle strikes on logic Transient bit error 10−10 BER (s−1)
(per chip)
Electromigration of a conductor Stuck-at fault 1 MTBF (FITs)
Threshold shift of a device Stuck-at fault 1 MTBF (FITs)
Connector corrosion open Stuck-at fault 10 MTBF (FITs)
Cold solder joint Stuck-at fault 10 MTBF (FITs)

Power supply failure Fail-stop 104 MTBF (FITs)

Operator removes good module Fail-stop 105 MTBF (FITs)

Software failure Fail-stop or Byzantine 104 MTBF (FITs)

the unneeded complexity. Table 21.1 gives a partial list of common failure modes
in interconnection networks. The table also shows typical values for the failure rates
of these different modes.1 Some failures, such as Gaussian noise and alpha-particle
strikes, cause transient faults that result in one or more bits being in error but do
not permanently impair machine operation. Others, such as a connector failure or
electromigration of a line, cause a permanent failure of some module.

Transient failures are usually modeled with a bit-error rate (BER) or soft-error
rate (SER). These rates have dimensions of s−1 and the inverse of these rates is the
time between errors.2 At one level, we model the permanent failures with a stuck-at
fault model in which we assume that some logical node is stuck at logic one or zero.
Other permanent failures we model as fail-stop faults in which we assume some
component (link or router) stops functioning and informs adjacent modules that
it is out of service. These failures are usually described in terms of their mean-time
between failures (MTBF) also in units of time (often expressed in hours). Sometimes
such failure rates are expressed in failures in 109 hours (FITs). Often, we design
systems to reduce stuck-at faults, or even excessively frequent transient faults, to a
fail-stop fault. A component, such as a channel, will monitor its own execution and
shut itself down (fail-stop) when it detects an error.

1. The values in this table are only an indication of the general magnitude of these error rates for typical
2003 systems. Error rates are very sensitive to a number of technology factors and can vary greatly from
system to system. In doing any error analysis, make sure to get the correct value for the technologies you
are using.

2. Link BER in errors/bit can be converted to an error rate in errors/s by multiplying by the link bandwidth
in bits/s.

21.1 Know Thy Enemy: Failure Modes and Fault Models 413

While at first glance the error rates in Table 21.1 appear quite small, in a large
system, they add up to significant totals. Consider, for example, a 1,024-node 3-D
torus network with 10 Gbits/s channels, each with a BER of 10−15. At first, 10−15

seems like a very small number. However, multiplying by the channel rate of 1010

bits/s gives a failure rate of 10−5 errors/s per channel. Summing over the 6,144
channels in the system gives an error rate of 6 × 10−2 errors/s — an error every 16
seconds. An even more reliable link with a BER of 10−20 gives an aggregate error
rate in this system of 6×10−7 — about 2 errors per month. In practice, we can build
very reliable systems from such links by controlling the effects of errors.

Some types of failures are Byzantine in that rather than stopping operation, the
system continues to operate, but in a malicious manner, purposely violating pro-
tocols in an attempt to cause adjacent modules to fail. Byzantine failures are ex-
tremely difficult to deal with, and fortunately are quite rare in practice. To avoid
Byzantine failures, we design systems with sufficient self-checking to shut down
failing modules before they can run amok. Software failures can sometimes ex-
hibit Byzantine behavior. However, they can be dealt with just like hardware fail-
ures, by monitoring their execution and stopping execution if they violate an
invariant.

The failures of components such as power supplies, cooling fans, and clock gen-
erators are handled by redundancy complemented by field replacement. Redundant
power supplies are provided so that the failure of any single supply is masked, the
failure is easily detected by supply monitoring hardware, and the supply is replaced
before a second supply is likely to fail. Cooling fans use a similar N + 1 form of
redundancy. On systems that require a global clock, multiple clocks are distributed,
with each module switching over when a clock fault is detected and using a local
phase-locked loop (PLL) to provide a reliable clock during the transient. For the
remainder of this chapter, we will assume that good engineering practice has been
applied to critical infrastructure such as power, cooling, and clocks, and will confine
our attention to link and router failures.

The failure rates shown in Table 21.1 refer to the failure rates of these com-
ponents during the bulk of their lifetimes. Many types of components have much
higher failure rates at the beginning and end of their lifetimes as shown in Figure 21.1.
Marginal components tend to fail after just a few hours of operation, a phenomena
called infant mortality, leading to a high failure rate early in life. After components
have survived a few hundred hours, the marginal components have been weeded
out and failure rate is relatively constant until the component begins to wear out.
Once wearout starts to occur, failure rate again rises. To eliminate infant mortality,
we typically burn-in components, operating them for a period of time (and under
stressful conditions) to weed out marginal components before installing them in a
system. Similarly, we eliminate wearout by replacing life-limited components before
they begin to fail. For example, we may burn-in a router chip for 100 hours at ele-
vated temperature, voltage, and frequency before installing it in a system to prevent
failures due to infant mortality. We will replace a disk drive that has an expected
lifetime of 105 hours (about 10 years) after 5×104 hours (about 5 years) to prevent
failures due to wearout.

414 C H A P T E R 21 Error Control

F
ai

lu
re

 r
at

e
(F

IT
S

)

Time (hours)

10

100

102

102

103

103

104

104

105

105

Infant
mortality

Wearout

Figure 21.1 The bathtub curve shows how failure rate varies over the lifetime of a component. Failure rate is
higher at the start of life as marginal components fail — a phenomenon named infant mortality.
During the middle of a component’s life, failure rate is relatively constant. As a component nears
the end of its life, failure rate again increases due to wearout.

For the rest of this section, we will assume that our system and components
have been designed so that all failure modes have been reduced to either transient
errors or fail-stop of a router, channel, or network interface. Further, we assume
that a combination of burn-in and planned replacement have reduced all error rates
to constants. Transient errors may occur as either errors in bits transmitted over
a channel or as state bits spontaneously flipping state. We will discuss some error
detection and monitoring methods below that are used to reduce other failures to
the fault models we will consider.

21.2 The Error Control Process: Detection,
Containment, and Recovery

All error control involves three basic steps: detection, containment, and recovery.
As in dealing with any problem, the first step is to recognize that a problem exists.
In an interconnection network, this is the step of error detection. For example, we
may detect a bit error on a channel by checking the parity or check character for a
flit. Once we have detected a fault or error, we must contain the error to prevent its
propagation. Continuing our example, if the error has corrupted the virtual channel
identifier portion of the flit, we must prevent the flit from erroneously updating
the virtual channel state of the wrong virtual channel. Finally, the third step of the
error control process is to recover from the error and resumenormal operation. In our

21.3 Link Level Error Control 415

example, we might recover from the bit error by requesting a retransmission of the
flit — either at the link level or from the original source.

21.3 Link Level Error Control

Most interconnection networks use a hierarchy of error control that starts at the
physical link level and then continues to the router level, network level, and system
or end-to-end level. At the link level, link logic acts to mask link errors (possibly
adding delay) and shuts the link down when errors cannot be masked — reducing
the fault to a fail-stop fault model. Logic modules at the two ends of the link work
together to detect, contain, and recover from bit errors on the link. In the event of
a hard error, the link logic either reconfigures the link around the error or shuts the
link down.

21.3.1 Link Monitoring

Error detection at the link level is performed by encoding redundant information
on the link, using an error control code (ECC).3 Simple parity is sufficient to detect
any single bit error. However, most links use a cyclic-redundancy check (CRC) of
sufficient length that the probability of a multibit error going undetected becomes
vanishingly small. An n-bit CRC field will detect all but 1 in 2n multibit errors and
all that involve fewer than n bits.

The error check can be made at different levels of granularity: flit, packet, or mul-
tipacket frame. Although performing checks over large-sized units (such as frames) is
more efficient, it delays detection of an error until the entire unit is received making
containment difficult. By the time a frame-level CRC detects an error, the erroneous
flit or packet may already have propagated over several additional channels and cor-
rupted the internal state of several routers. To avoid such error propagation, many
routers perform checks on every flit and may additionally separately protect critical
header information so it can be safely acted on before the entire flit is received and
validated.

As an example of link monitoring, Figure 21.2 shows a flit format that includes
two CRC fields to check for bit errors on the link. Field CRC1 checks the header
fields (virtual-channel ID, flit type, and credit) that are received during the first cycle.
The longer CRC2 field is a CRC over the entire flit (including CRC1). Providing a
separate CRC for the header fields that arrive during the first cycle of the flit allows
these fields to be used immediately without waiting for validation by the whole-flit
CRC. Including the header fields and their CRC in the calculation of the longer
CRC applies the greater error detection capability of the longer CRC to the header

3. A detailed discussion of ECC is beyond the scope of this book. For a good treatment of the subject,
see [21].

416 C H A P T E R 21 Error Control

VCID Flit type Credit CRC1

Payload 0

Payload 1

Payload 2

Payload 3 CRC 2

Figure 21.2 A typical flit format including error checking fields. Four-bit CRC1 is a CRC over the header
information that arrives during the first cycle of the flit. Eight-bit CRC2 is a longer CRC that
covers the entire flit but does not arrive until the fifth cycle. Providing a separate CRC for the
header information allows this information to be used safely before the final CRC is received
and validated.

information as well — although the error will have already propagated if it was
missed by the short CRC and caught by the long.

Link monitoring should be continuous. If an idle channel goes unchecked, an
error can remain latent for a long period until the next flit arrives. If the link is
idle, special idle flits should be sent over the link with random contents to exercise
and continuously test the link. Alternatively, a continuous frame-based monitoring
scheme can be used in addition to flit-based monitoring.

21.3.2 Link-Level Retransmission

Once an error has been detected, the link logic must proceed to the step of con-
tainment. Most link errors are contained by masking the error so that it is never
visible to the router logic. Masking both contains the error and recovers from the
error in a single step. Retransmitting the faulty flit is the simplest method to mask
the error. Masking can also be performed by using a forward error-correcting (FEC)
code. With a FEC code, sufficient information is sent with the unit of protection
(usually a flit) to not only detect the error, but also to correct it. However, in an
interconnection network with a relatively short round-trip latency, retransmission
is usually preferred because it is simpler and can correct more errors with lower
overhead.

A simple retransmission system is shown in Figure 21.3 and its timing is illus-
trated in Figure 21.4. As the transmitter transmits each flit, it retains a copy in a
transmit flit buffer until correct Receipt is acknowledged.4 Each transmitted flit is

4. In an implementation that employs an output buffer to handle switch output speedup, the transmit flit
buffer is usually combined with the output buffer.

21.3 Link Level Error Control 417

Tx flit
buffer

Sending router Receiving router

Channel

Error
check

Retransmit
control

Input
unit

Figure 21.3 Link errors can be masked, with a small delay, by retransmitting faulty flits. As each flit is
transmitted, it is also stored in a small flit buffer. If an error is detected, the flit is retransmitted
from the buffer.

Flit 1Tx channel

Rx channel

Flit 2 Flit 3 Flit 4

Flit 1 Error

Rx ack Ack 1 Error 2 Ignore

Tx ack

Flit 5 Flit 2 Flit 3 Flit 4 Flit 5

Flit 3 Flit 4 Flit 5 Flit 2 Flit 3 Flit 4 Flit 5

Ignore Ignore Ack 2 Ack 3 Ack 4

Ack 1 Error 2 Ignore Ignore Ignore Ack 2 Ack 3

Flit 6

Flit 6

Ignore

Flit 6

Ignore

Figure 21.4 Timing diagram for link-level retransmission. Flit 2 is received in error. The receiver detects the
error, signals the transmitter to retransmit, and begins ignoring flits. The transmitter sends four
additional flits (flits 3 through 6) before it receives notification of the error from the receiver.
Upon receiving notification, the transmitter retransmits flits 2 through 6.

tagged (typically with its address in the transmit flit buffer) to facilitate identifica-
tion of flits in acknowledgments. As each flit is received, the receiver checks the flit
for errors. If the flit is received correctly, an acknowledgment is sent to the trans-
mitter. The acknowledgment identifies the flit being acknowledged (using the tag
transmitted with the flit) and indicates the reception status — received correctly,
received in error, or ignored.5 Upon receiving this acknowledgment, the transmitter
discards its copy of the flit. If a flit is received in error, the transmitter switches the
multiplexer and retransmits the flit in question. In most cases, the error is transient
and the flit is received correctly on the second attempt.

5. Of course, the acknowledgment itself must be checked for errors and retransmitted if incorrect. This is
usually accomplished by piggybacking the acknowledgment on a flit traveling in the reverse direction and
retransmitting the whole flit if any part (including the acknowledgment) is in error.

418 C H A P T E R 21 Error Control

While it is only necessary to retransmit the one faulty flit, this would reorder
the flits on the channel and considerably complicate the router input logic. For ex-
ample, a body flit might be received before the head flit of its packet. To avoid
such complications, it is easier to simply roll back transmission to the faulty flit and
retransmit all flits in the transmit flit buffer starting at that point. Any new flits ar-
riving while these are being transmitted are added to the tail of the flit buffer. When
the transmit pointer into the flit buffer reaches the end, the multiplexer switches
back to transmitting flits directly from the switch.

An example of retransmission is shown in the timing diagram of Figure 21.4.
Each time the transmitter sends a flit, the receiver sends an acknowledgment or error
indication. Flit 2 is corrupted during transmission. Upon receipt, the receiver checks
the CRC of flit 2, detects an error, and sends an error indication to the transmitter.
The transmitter sends four more flits (3 through 6) before it receives notice of the
error. These flits are ignored by the receiver and retained in the transmit flit buffer.
When the transmitter receives notification of the error, it rolls back transmission
to flit 2 and resends all flits starting at that point. The receiver stops ignoring flits
and resumes normal operation upon receipt of the retransmitted flit 2. From the
receiver’s point of view, the error is masked, the only difference from operation
without the error is a delay of five flit times — as required for the round-trip error
notification.

The transmit buffer is managed using three pointers, as shown in Figure 21.5.
In the absence of errors, the transmit pointer, and tail pointer act as a head and
tail pointer for a FIFO transmit queue. New flits are added to the buffer at the
tail pointer and flits are transmitted starting at the transmit pointer. If the router
is transmitting directly from the switch (no delay in the transmit flit buffer) the
transmit and tail pointers point to the same location. Unlike a FIFO queue, how-
ever, a location in the flit buffer cannot be reused once the flit it contains has been
transmitted. The flit must be retained until it is acknowledged. The acknowledge
pointer identifies the oldest flit that has not yet been acknowledged. Each time an

Flit 1

Flit 2
Ack pointer

Flit 3

Flit 4Tx pointer

Flit 5

Flit 6
Tail pointer

Figure 21.5 Retransmission from the transmit flit buffer is managed by three pointers: the ack pointer
identifies the next flit to be acknowledged, the transmit pointer identifies the next flit to be
transmitted, and the tail pointer indicates the next free location in the buffer. The figure shows
the pointers just before flit 4 is retransmitted in Figure 21.4.

21.3 Link Level Error Control 419

acknowledge is received the acknowledge pointer advances, freeing one flit buffer.
If an error indication is received, the transmit pointer is reset to the acknowledge
pointer.

21.3.3 Channel Reconfiguration, Degradation, and Shutdown

One aspect of the containment process is to prevent a known bad component from
continuing to disrupt traffic. If a channel has repeated errors, or even a BER that is
much higher than expected, it is likely that some portion of the channel has suffered
a hard error. To detect such persistent errors, each channel is provided with an error
counter that keeps track of the error rate on that channel. If the error rate exceeds a
threshold, the channel is determined to be faulty. For example, if the expected error
rate on one channel is 10−5 errors per second (about 1 error per day) and a channel
logs more than 10 errors in a 104 second interval (3 hours), the channel is declared
faulty and taken out of service.6 This process of BER monitoring and faulting of
channels is typically performed by supervisor software that continuously polls the
status of network components.

Some multibit channels provide one or more spare bits, allowing the channel to
be reconfigured around errors affecting a single bit. When a hard error is detected
on such a channel, a diagnostic procedure is run to determine which bit(s) is (are)
in error and, if possible, the channel is reconfigured around the bad bits.

Figure 21.6 shows an 8-bit channel with 1 spare bit. A set of eight 2:1 multi-
plexers at the transmitter and receiver allow the 8 bits of the channel d0, . . . , d7 to
be steered over any working 8 of the 9 signal lines s0, . . . , s8. For example, when line
s3 fails (perhaps due to a bad connector), the channel is reconfigured by shifting bits
d3 −d7 to the left at the transmitter so they traverse lines s4 − s8. The bits are shifted
back at the receiver.

Some channels do not provide spare bits, but can be reconfigured to transmit at
a reduced rate, using only the good signal lines of a channel. For example, when 1
line of an 8-bit channel fails, transmission will continue on the remaining 7 lines at 7

8
of the original rate. This type of reconfiguration is an example of graceful degradation.
Instead of completely failing the link when the first bit fails, it gracefully degrades,
losing bandwidth a little at a time. We can apply graceful degradation at the network
level even if our links fail-stop on the first hard bit error.

If a channel cannot be reconfigured to mask the hard error, the channel remains
shut down (reducing the channel error to a fail stop) and error control is performed
at the next level of the hierarchy — at the network level by routing around the failed
channel. Flits that are in the transmit flit buffer when a channel is shut down are
either returned to an input controller for rerouting, or dropped.

6. A channel that fails on every flit will be taken out of service after the first 10 failures. There is no need
to wait the whole 104-second interval.

420 C H A P T E R 21 Error Control

d 0

d 1

d 0

d 1

d 2 d 2

d 3 d 3

d 4 d 4

d 5 d 5

d 6 d 6

d 7
d 7

(a)

d 0

d 1

d 0

d 1

d 2 d 2

d 3 d 3

d 4 d 4

d 5 d 5

d 6 d 6

d 7
d 7

s0

s1

s2

s0

s1

s2

s3

s4

s5

s4

s5

s6

s7

s8

s6

s7

s8

Tx Rx Tx Rx

(b)

Figure 21.6 (a) An 8-bit channel with 1 spare bit. (b) Bit 3 of the channel fails and the channel is reconfigured
by shifting bits 3 through 7 to the left.

A complication arises when a packet is split across a failed channel. The head
flit may be several hops downstream and the tail flit upstream when the channel
goes down. The headless tail of the packet, upstream of the failed link, must be
dropped, since it has no access to the routing information in the head flit and, hence,
does not know where it is going.7 More problematic is the tailless head. The head
flit will continue propagating on to the destination, allocating virtual channels along
the way. Unless these resources are freed, other packets needing to use these virtual
channels will be unable to make progress. To free these resources, an input controller

7. The Reliable Router [52] was able to reroute such severed tails by retaining a copy of the head flit at each
router that contained any flits of the packet.

21.4 Router Error Control 421

synthesizes a tail flit for each virtual channel that is mid-packet when the channel it
connects to fails. Packets dropped when split by a failing channel may be recovered
by using end-to-end error control (Section 21.6).

21.4 Router Error Control

While some failure modes cause link errors, others cause transient or hard router
errors. Although less frequent than bit errors on channels, soft errors in router mem-
ories and logic do occur and must be controlled to build large systems that have high
levels of reliability. As with link errors, the principles of detection, containment, and
recovery also apply to router errors.

Router errors are most easily detected by duplicating the router logic and com-
paring an exclusive-OR of representative signals on a cycle-by-cycle basis. One copy
of the router logic is the master and generates all primary outputs.The second, shadow
copy of the logic receives the same inputs as the master copy, but its outputs are un-
used except to compare against the master. A checker compares the outputs and
internal signals of the two copies. Comparing just the outputs of the two modules
is usually not adequate to catch errors in a timely manner. Many errors will corrupt
the internal router state without being observable at router outputs for thousands
of cycles. To simplify checking, the master and shadow typically generate a small
number (e.g., 32) of compressed state lines by exclusive-ORing a large number (thou-
sands) of internal signals and module outputs together. The checker then compares
the corresponding compressed state lines from the master and shadow. If a single
one of any of the thousands of internal signals differs, the compressed state lines will
differ and an error will be detected.

Errors in router memories and internal buses may be detected using an ECC.
Single error correcting, double error detecting (SECDED) codes are commonly used
on memories and buses to mask bit errors. An n bit memory or bus can be pro-
tected by a SECDED code by adding log2(n) + 1 check bits to the n-bit word be-
ing stored or transmitted. To mask memory errors, it is important to periodically
sweep the memory by reading each location and correcting any single-bit errors. De-
tecting and correcting errors soon after they occur — by sweeping — reduces the
probability of having an uncorrectable second error occur before the first is cor-
rected.

Router errors are also detected via consistency checks. Protocol consistency is
checked to ensure, for example, that there is at least one tail flit between one head
flit and the next head flit. Credit consistency is periodically checked to ensure that
the input controller at the receiving end of a channel and the output controller at the
sending end of a channel agree on the number of free buffers available in the input
controller. State consistency checks ensure that the inputs received are appropriate
for the state of the input controller or virtual channel. If any of these consistency
checks are violated, an error is detected and must then be contained.

Once a router error is detected, the error must be contained and recovered from.
For errors that cannot be masked, the simplest method of containment is to stop the

422 C H A P T E R 21 Error Control

router or the portion of the router (such as the input controller) having the error —
taking it out of service. Stopping the component involved with the error reduces
the error to a fail-stop and prevents the fault from corrupting the state of adjacent
routers. For purposes of containment, we divide the router into fault-containment
regions. Typically, each input controller is a separate fault-containment region, which
can be taken out of service separately and the entire router is an enclosing fault-
containment region, which is taken out of service when an error in the allocator or
other common logic is detected.

If the error is transient, the router or input controller can be restarted after reset-
ting all state to its initial condition. Packets en route through the faulty component
are dropped — just as packets enroute through a faulty link are dropped. When a
failed component is restarting, it must synchronize its state with that of adjacent
modules. For example, when a router is restarting, it must send a control flit to each
adjacent router to restart the channels between the two routers and initialize the
credit count.

On a hard failure, the failed component cannot be restarted and must be re-
placed. Part of a reliable design is a provision to replace failed modules while the
system is operating — often called hot swapping. Typically, all active components,
such as routers, are replaceable in this manner, although the granularity of replace-
ment (often called a field replaceable unit, or FRU) may be larger than a single router.
For example, four routers may be packaged on a single printed-circuit card. The en-
tire card must be removed, taking all four routers out of service, to replace one bad
router.

An alternative to field replacement is to overprovision the system with sufficient
extra units (channels and routers) so that it is highly probable that the system will
complete its planned lifetime with an adequate level of performance. This alternative
is attractive if the system is deployed in a location (e.g., orbit) where field servicing
is difficult.

21.5 Network-Level Error Control

The network level is the next level of the hierarchy of error control that started at the
link-level. At the network level, we model link and router failures as fail-stop links
and routers must route packets around these failed components. This network-level
error control is most easily realized using adaptive routing. The out-of-service links
are simply made unavailable to the adaptive routing function and all packets are
routed using one of the remaining available links.

Network level error control can also be realized with table-based oblivious
routing. Immediately after failure, packets continue to be routed via the table and
any packets selecting a path involving the failed link are either dropped or locally
rerouted. A packet is locally rerouted by replacing a single hop over a failed link
(east) with a series of hops that reaches the same intermediate point (north, east,
south). Eventually, the routing tables are recomputed to avoid the failed links.

21.7 Bibliographic Notes 423

21.6 End-to-end Error Control

If a packet is dropped during the containment of a link or router failure, it may
be recovered by using end-to-end packet retransmission. This operates in a manner
similar to that of link-level flit retransmission, except that packets rather than flits
are retransmitted and the retransmission is done over the entire route — from source
to destination — not over a single link.

End-to-end recovery starts by retaining a copy of each packet sent on the sending
node. This copy is held until an acknowledgment is received. If a timeout expires
before an acknowledgment is received, or if a negative acknowledgment is received
(as may occur for some types of errors), the packet is retransmitted. The process
repeats as necessary until an acknowledgment is received, at which time the packet
is discarded, freeing space in the transmit packet buffer.

It is possible with end-to-end retransmission for the destination of a packet to
receive two copies of the packet. This may happen, for example, if retransmission
occurred just before receiving a delayed acknowledgment. Duplicate packets are
dropped by giving each packet a serial number and retaining at each node a list of
the normal packets received and the retransmitted packets received in the last T

flit intervals. As each packet arrives, if it is a retransmission (indicated by a bit in
the header), its serial number is compared against the list of normal packets. If it is a
normal packet, its serial number is compared against the list of retransmitted packets.
In either case, the received packet is dropped if it is a duplicate. The check against
normal packets is costly, but performed rarely. The more common check against
retransmitted packets is inexpensive, as there are usually no retransmitted packets
and at most one or two.8

With end-to-end packet retransmission layered on top of network-level, router-
level, and link-level error control, an interconnection network can be made arbitrarily
reliable. However, the clients of the interconnection network, such as processing
nodes, network line cards, or I/O devices, are still subject to failure. Fortunately, the
same principles of reliable design can be applied to these devices (often by using
redundant clients attached to different network terminals), resulting in a complete
system of high reliability.

21.7 Bibliographic Notes

Siewiorek [167] gives a good overview of reliable system design, including a discus-
sion of failure mechanisms, fault models, and error control techniques. Error control
codes are described in [21]. A more mathematically rigorous treatment is given
in [19]. The MIT Reliable Router [52] incorporates many of the technologies de-
scribed in this chapter, including link monitoring, link-level retry, link shutdown, and
the network-level fault masking technique. Adaptive routing algorithms [36, 118]

8. The Reliable Router used a unique token protocol to avoid the need for a receiver duplicate check.

424 C H A P T E R 21 Error Control

are useful in routing around faulty links after they have been shut down. End-to-end
error control is described in [157], where it is argued that it is both necessary and
sufficient.

21.8 Exercises

21.1 System MTBF. Consider a 1,024-node, 3-D torus system with 2 logic chips and 8
memory chips per node. Each node is connected to its 6 neighbors via links with 16
Gbits/s of bandwidth each. Compute the MTBF for this system using the numbers
in Table 21.1.

21.2 MTBF with retry. For the machine of Exercise 21.1, recompute the MTBF assuming
that link-level retry masks all link errors, all routers are self-checked, and end-to-end
packet retransmission is employed.

21.3 Link-level retransmission. Consider a link-level retransmission system as described
in Section 21.3.2. Sketch a diagram showing what happens when a flit is received
correctly but the acknowledgment in the reverse direction is received in error.

21.4 Router restart. Suppose a router X detects an internal fault, shuts down, and restarts.
Describe how the input links and output links of the router must be sequenced to
bring the router back on-line while causing a minimum of disturbance to an upstream
router W and a downstream router Y . In particular, describe (a) what happends to a
packet with tail and body flits in W and head flit in X, (b) what happens to a packet
with body and tail flits in X and head flit in Y , and (c) what happens to a new packet
arriving from W to X following the packet with head flits in X when X restarts.

21.5 Relationship of bandwidth and error rate. Suppose a router uses an I/O link technology
that operates with an error rate of exp(−(tbit−200 ps)).The bit-time of the link is one
over its frequency, tbit = 1

f
. Further, suppose the router has a requirement to operate

with a flit error rate of less than 10−15. At what effective frequency (accounting for
ECC overhead) can the link operate with (a) no retry, (b) retry using simple parity
(that will detect any single-bit error), and (c) retry using an ECC that will detect any
double-bit error. Use a flit payload of 64 bits, 1 bit of overhead for parity, and 6 bits
of overhead for the double-error detecting code.

21.6 Link-level vs end-to-end retransmission. Saltzer et al. [157] argue that a system with
end-to-end error control needs no further error control. In this question we will
investigate this argument.

(a) Consider an interconnection network that sends 1,024-bit packets divided into
64-bit flits. Each packet travels an average of 10 hops, and each link has a BER
of 10−5. Link bandwidth is 1 Gbit/s and router latency is 20 ns per hop. The
system checks each packet at the destination and requests retransmission if
the packet is in error. To simplify analysis, assume that the error control code

21.8 Exercises 425

detects all possible errors and that delivery of the ack or nack message is error
free. What is the probability of a packet being received in error? What is the
resulting throughput and average latency for a packet?

(b) Now consider the same system, but with link-level retry in addition to end-
to-end retry. Each link checks each flit of each packet as it is received and
requests a retry if the flit is received in error. How does link-level retry affect
the throughput and average latency?

.
This Page Intentionally Left Blank

C H A P T E R 22

Buses

Buses are the simplest and most widely used of interconnection networks. A bus
connects a number of modules with a single, shared channel that serves as a broad-
cast medium. A bus is usually implemented as a set of signal lines (or a single line)
that is connected to all of the modules. One module transmits messages over the
bus that are received by all of the other modules. In many situations, the message
is addressed to one specific module and is ignored by the others. Often, the recipi-
ent of a message will respond by sending a reply message back to the sender of the
original message. To read from memory, for example, a processor sends a message
addressed to a memory module specifying the word to be read. The memory mod-
ule responds by sending a message back to the processor with the requested data
completing the transaction. A bus protocol determines which module has permis-
sion to transmit at any given time and defines the messages and transactions between
modules.

Buses have two key properties that are often exploited by higher-level communi-
cation protocols implemented on top of the bus: broadcast and serialization. Sending
a multicast or broadcast message over a bus is no more expensive than sending a
point-to-point message because every message transmitted on a bus is physically
broadcast to all of the modules. Thus, it is easy to distribute global information over
buses. Because only one module can transmit a message over the bus at any given
time, messages are serialized — they occur in a fixed, unambiguous order. Snooping
cache-coherence protocols exploit both of these properties. The address of a cache
line being written is broadcast to all modules so they can invalidate (or update) their
local copies, and writes are serialized so that it is clear what the last value written
to a particular address is. Such protocols become considerably more complex on a
general interconnection network where broadcast is not free and where serialization
requires explicit synchronization.

427

428 C H A P T E R 22 Buses

Because they are simple and inexpensive, buses have been widely used in app-
lications including data transfer within datapaths, processor-memory interconnect,
connecting the line cards of a router or switch, and connecting I/O devices to a
processor. Buses, however have limited performance for two reasons. First, it is elec-
trically difficult to make a multi-drop bus operate at high speeds [55]. Also, buses
are inherently serial — only one message can be sent over the bus at a time. In
applications that demand more performance than a bus can provide, point-to-point
interconnection networks are used.

22.1 Bus Basics

Figure 22.1 shows the datapath of a typical bus that connects four modules A through
D. Each module is connected to the bus through a bidirectional interface that enables
it to drive a signal T onto the bus when the transmit enable ET is asserted and to
sample a signal off the bus onto an internal signal R when a receive enable ER is
asserted. For module A to send a message to module C, module A asserts its transmit
enable signal ETA to drive its transmit signal TA onto the bus. During the same cycle,
module C asserts its receive enable signal ERC to sample the message off the bus
onto its internal receive signal RC .

Physically, the bus may be a single conductor, a serial bus, or a set of conductors
that carries an entire message broadside (a parallel bus). At intermediate points
between these two extremes, a message may be sequenced over a smaller set of
parallel conductors, taking several cycles to transmit a message.

Electrically, buses are very difficult to operate at high speeds because of the
stubs and impedance discontinuities caused by each connection to a module [55].
The electrical issues of this interface are beyond the scope of this book. Logically, the
transmit interface must permit each module to drive a signal onto the bus when that
module’s transmit enable is asserted. The transmit interface may be a tri-state driver
(Figure 22.2[a]), an open-drain driver (Figure 22.2[b]), or a dotted-emitter driver
(Figure 22.2[c]). The latter two interfaces have the advantage that overlap in the

ET

T R
Module A

ER
ET

T R
Module B

ER
ET

T R
Module C

ER
ET

T R
Module D

ER

Bus

Figure 22.1 The datapath of a typical bus. Four modules A through D communicate over a shared bus. At
a given time, any one module may drive its transmit signal T onto the bus when the transmit
enable ET is asserted. The signal is broadcast on the bus and can be received by any or all of
the modules by asserting their respective receive enable ER signals.

22.1 Bus Basics 429

Bus

ET

T
Bus

ET

T

Bus

ET

T

(a) (b) (c)

Figure 22.2 Typical bus transmitter interfaces: (a) a tri-state driver, (b) an open-drain driver, and (c) a dotted
emitter driver.

transmit enable signals does not result in a power-to-ground short. The receive inter-
face consists of a receiver appropriate for the signal levels on the bus and a register
that captures the message on the bus when the receive enable is asserted. For a serial
(or multicycle) bus, this register may assemble a message over several bus cycles.

Buses operate in units of cycles, messages, and transactions. As in any interconnec-
tion network, a message is a logical unit of information transferred from a transmitter
to a set of receivers. For example, to read a memory location, a processor module
sends a message containing an address and control information to one or more mem-
ory modules. In a serial bus (or a bus with fewer parallel lines than the message
length), each message requires a number of cycles during which one phit of informa-
tion is transferred across the bus line(s). Finally, a transaction consists of a sequence
of messages that are causally related. All transactions are initiated by one message
and consist of the chain or tree of messages generated in response to the initiating
message. For example, a memory read transaction includes a request message con-
taining an address from the processor to the memory modules, and a reply message
from the selected memory module to the processor containing the requested data.

Buses may be externally sequenced or internally sequenced. In an externally
sequenced bus, all transmit and receive enable signals are controlled by a central,
external sequencer. In an internally sequenced bus, each module generates its own
enable signals according to a bus protocol. For example, a microcoded processor
often uses an externally sequenced bus: centralized control logic generates the enable
signals to control data transfers between registers and function units. Most processor-
memory buses, on the other hand, are internally sequenced. The processor generates
its own transmit enable when it gains control of the bus, and the memory modules
monitor the messages on the bus to decided when to receive request messages and
transmit reply messages.

However they are sequenced, a bus cycle may be synchronous or asynchronous.
(See Figure 22.3.) With a synchronous bus, a bus cycle is a cycle of the bus clock.
The transmitter drives the bus starting at the beginning of the clock cycle and the
receiver samples the data off the bus at the end of the clock cycle.1

1. To tolerate clock skew between modules, some buses have the receiver sample data off the bus before
the end of the clock cycle. For example, the NuBus used on many Apple Macintosh computers sampled
data off the bus 3

4 of the way through the clock cycle.

430 C H A P T E R 22 Buses

Bus

ETA

ERB

Clk

Data

Req

Bus Data

Ack

(a) (b)

ETA

Figure 22.3 Bus synchronization: (a) In a synchronous bus, each cycle is synchronized with a clock signal.
(b) In an asynchronous bus, each cycle is sequenced by the edges of request and acknowledge
signals.

In an asynchronous bus, each bus cycle is sequenced by request and acknowl-
edgment signals. To perform a bus cycle, the transmitter drives the data onto the bus
and then asserts the request signal Req. Upon seeing the request signal, the receiver
samples the data off the bus and asserts an acknowledge signal Ack to indicate that
the data transfer is complete. Upon receiving the acknowledge signal, the transmitter
turns its driver off, freeing the bus for the next transfer.

Sending a message on an internally sequenced bus involves the steps of arbitra-
tion, addressing, transfer, and acknowledgment. Arbitration determines which mod-
ule gets to initiate a transaction. The winner of the arbitration is often called the
bus master. In the simplest buses, one module (e.g., the processor) is always the bus
master and no arbitration is needed. In more complex systems, a simple protocol is
used to elect a master.

The addressing phase selects the module (or modules) to receive a message. Some
buses perform addressing as a separate step, sending a broadcast address message
before each directed message, while others send the address as a part of each message
during the transfer. An example of such an internally addressed message is shown in
Figure 22.4. In this case, all of the modules on the bus receive the message and then
examine the control and address fields to determine if the message applies to them. In
serial buses, control and addressing information is sent first so a module can examine
these phits of the message and stop receiving as soon as it determines that it is not a
target of the message. Note that the address field here is the address of a module on
the bus and not an address at a higher level of protocol (such as a memory address).
A memory address, for example in a memory read request message, is considered
data by the bus protocol.

Control Address Data

Figure 22.4 A bus message with internal addressing. The message consists of a control field that specifies
the type of message (such as memory read), a bus address, and data to be transferred (such as
the memory address).

22.1 Bus Basics 431

The transfer phase actually moves the data from the transmitting module to
the receiving module. On simple buses, this is the only phase. Once the transfer
is complete, an acknowledge phase may follow in which the receiving module
acknowledges error-free receipt. If no acknowledge is received or if the receiver
flags an error during transmission, the transmitter may attempt error recovery, for
example by retrying the message.

Figure 22.5 shows a simple parallel bus that connects a single processor P to
sixteen memory modules M0 through M15. The bus consists of parallel signal lines
that carry 4 bits of control, 4 bits of module address, and 32 bits of data. The control
field identifies the type of bus cycle. The bus is configured so an idle cycle is indicated
if no module is driving the bus. The address field selects a memory module (one
of 16) for a read or a write transaction. The data field carries the payload of all
messages: memory addresses and data. The processor is the only module that initiates
transactions on the bus, so no arbitration is required. Addressing is performed in
parallel with transfer using the four address lines to select the memory module for
each transaction.

The timing diagram in the figure illustrates how read and write transactions
are performed on this bus. Both transactions involve two messages, one from the
processor to a particular memory module, M4 for the read transaction and M3 for
the write, and a second message from the selected memory module back to the

P

P

Control (4)

Address (4)

Data (32)

M0 M15

Clock

Control Rd

Address

100016Data

Reply

123416

WrA

200016

WrD

4 3 3

123416

Transmitting P M3

Ack

Cycle 2 31

PM
4

654

Figure 22.5 A simple bus connects a processor P to 16 memory modules M0, . . .,M15 via parallel control,
module address, and data signals. A memory read transaction consists of a single Rd cycle that
sends an address message to a memory module and a single Reply cycle in which the memory
module responds with the requested data. A memory write transaction takes two cycles WrA
and WrD to send a write message to the memory module. The module responds with a single-
cycle Ack message.

432 C H A P T E R 22 Buses

processor. For the read transaction, each of these messages takes a single cycle. For
the write transaction, the write request requires two cycles to transport both the
address and data over the data lines.

The read transaction takes place in cycles 1 through 3. During cycle 1, the pro-
cessor initiates the transaction by driving the control lines with Rd to send a read
request message to a memory module. The address lines select the target memory
module, in this case, M4, and the data lines carry the memory address within M4 to
be read (in this case, 100016). The bus is idle during cycle 2 as the memory module
accesses the requested data. The memory module drives the bus with a reply mes-
sage, control lines contain Reply, and the data lines contain the data in cycle 3. Even
though module M4 drives the bus in cycle 3, there is no need for arbitration because
it is simply responding to the processor’s request and not initiating a transaction. No
other module can respond at this time, so no arbitration is needed.

The write transaction follows the read in cycles 4 through 6. The processor
initiates the transaction by sending a two-cycle write request message to memory
module M3. Cycle 4 is a write address cycle in which the control carries WrA and
the data carries the address to be written, 200016. A write data cycle follows in cycle
5 with the control indicating the cycle type with WrD and the data lines carrying
the data to be written, 123416.

In either the read or the write transaction, if the addressed memory module did
not reply within some time limit, the transaction would timeout. After the timeout,
control of the bus returns to the processor module, which may then initiate a new
transaction. A bus timeout prevents a transaction to an unimplemented address or
an unresponsive addressed module from hanging up the bus indefinitely.

22.2 Bus Arbitration

In buses where more than one module may initiate transactions, modules must arbi-
trate for access to the bus before initiating a transaction. Any of the arbiters described
in Chapter 18 can be used for this purpose.

Radial arbitration, so named because the request and acknowledge lines run
radially like the spokes on a wheel to and from a central arbiter, is illustrated in
Figure 22.6. The request and grant signals between the modules and the arbiter typi-
cally share a connector with the bus lines and are bused together,but rather are routed
individually to the arbiter, as shown. When a module wishes to initiate a transaction,
it asserts its request line.When it receives a grant it becomes bus master and may initi-
ate a transaction. Fairness rules may require the module to drop its request during the
last cycle of its transaction to allow another module access to the bus. Alternatively,
the arbiter may monitor the bus transaction, deassert the grant signal during the last
cycle of the transaction, and grant the bus to another module during the same cycle.

Figure 22.7 illustrates the timing of bus arbitration for a synchronous bus.
Module 1 requests the bus during cycle 1, receives a grant during cycle 2, and starts
its transaction during cycle 3. Compared to a case in which module 1 is the only
bus master, or is already bus master, arbitration adds two cycles to the latency of

22.2 Bus Arbitration 433

Module
1

Module
2

Module
N

Arbiter

Bus

R
eq

G
ra

nt

R
eq

G
ra

nt

R
eq

G
ra

nt
Figure 22.6 A bus with radial arbitration. Each module that wishes to initiate a transaction asserts its request

signal to a central arbiter. When the arbiter responds with a grant, the module becomes bus
master and may initiate a transaction.

a transaction even when uncontested. Module 2 requests the bus after it has been
granted to module 1 and must wait until after module 1 releases the bus before
it can initiate its transaction. There is a two-cycle idle period between the end of
the first transaction and the start of the second due to arbitration. This idle period
could be eliminated by pipelining the arbitration, overlapping arbitration for the next
transaction with execution of the current transaction.

To eliminate the need for a central arbiter, some older buses used daisy-chain arbi-
tration, as shown in Figure 22.8. A fixed-priority arbiter (Section 18.3) is distributed
across the modules. Module 1 has its carry in, carry0, tied high and, hence, will

Clock

Req1

Grant1

Cycle 2 3 4 5 6

Bus Req 1

Req2

Grant2

Resp 1

7

Req 2

1

Figure 22.7 Timing of bus arbitration for a synchronous bus. Module 1 requests the bus in cycle 1, is granted
the bus in cycle 2, performs a transaction in cycles 3 and 4, and relinquishes the bus in cycle 5
by deasserting its request. Module 2 requests the bus in cycle 2 but must wait until cycle 6 to
receive its grant.

434 C H A P T E R 22 Buses

R
eq

1

G
ra

nt
1

C
ar

ry
0

C
ar

ry
1

Module 1

R
eq

2

G
ra

nt
2

C
ar

ry
1

C
ar

ry
2

Module 2

R
eq

N

G
ra

nt
N

C
ar

ry
N

-1

C
a

rr
yN

Module N

Figure 22.8 Daisy-chain arbitration. A fixed-priority arbiter is distributed across the modules, with each
module passing a grant signal to the next module unless it requires the bus.

always receive a grant when it makes a request. If it does not make a request, the carry
is passed down the chain to module 2, and so on. Daisy-chain arbiters are of mostly
historical interest. Because of their fixed priority and the high delay of running the
carry chain across multiple modules, they are rarely used in modern systems.

A sequential distributed arbiter uses the bus lines of a wire-or bus to perform
the actual arbitration. If a bus is implemented with open drain or emitter-follower
transmitters (Figure 22.2[b] or [c]) the signal on each bus line is the logical OR
(possibly with negative logic) of the signals driven by all enabled transmitters. The
logic performed by this ORing of signals can be exploited to perform arbitration
one bit of module address at a time by having each module perform the algorithm of
Figure 22.9. The algorithm starts with the most-significant bit of the module priority.
During each cycle of the algorithm, all competing modules drive their priority onto
the bus. The bus ORs these priorities together. The modules then check to see if the
current bit of the bus signal, the OR of all priorities, is higher than the current bit
of their priority. If it is, they drop out of competition. After scanning over all of the
bits, only the highest priority competing module is left participating and becomes
bus master.

For module i

bit = n-1 ; bit of priority currently being tested
participating = 1 this module still a contender
priority = pri(i) priority of module i

while (bit>=0 && participating) for each bit
drive priority onto bus one bus cycle here
if (bus[bit] > priority[bit]) someone has higher priority

participating = 0 drop out of competition
bit = bit-1 next bit

master = participating only winning module still participating

Figure 22.9 Algorithm for distributed arbitration using a wire-or bus.

22.2 Bus Arbitration 435

An example of distributed arbitration is shown in Table 22.1. Three modules
with priorities 9, 10, and 7 (1001, 1010, and 0111) compete to become bus master.
In the first cycle, all three priorities are ORed together driving the bus to a value of 15
(1111). Comparing to the most significant bit, the module with priority 7 drops out of
the competition. The other two modules then OR their priorities on the bus, giving a
result of 1011. Neither module drops out when they are comparing against bit 2, since
the value on the bus is zero. The module with priority 9 drops out when modules are
comparing against bit 1, leaving the module with priority 10 to become bus master.

The priorities used in the distributed arbitration scheme can be allocated in any
manner as long as they are unique. A fixed-priority arbitration scheme can be realized
by having each module use its address as its priority. A least recently served scheme
can be implemented by having the bus master take the lowest priority, zero, and
incrementing the priority of all other modules before each arbitration cycle.

Distributed arbitration has the advantage that it can be implemented using the
regular bus lines and without central arbitration logic. However, it has the disadvan-
tage of being slow and of tying up the bus lines during arbitration, which prevents
arbitration from being overlapped with bus transactions. Distributed arbitration is
slow because each iteration of the algorithm requires a complete bus traversal to
allow the wire-or signals to settle. In contrast, with a fast radial arbitration scheme,
once the request signals are gathered at the central arbiter, each iteration requires only
a few gate delays to complete — hundreds of picoseconds versus many nanoseconds.

Another alternative, which has been implemented on a number of shared-
memory multiprocessors, is to use a replicated arbiter. A copy of the arbiter is placed
on each bus module and all requests are distributed to all copies of the arbiter. At
reset time, all copies of the arbiter are initialized to the same state. During each
arbitration cycle, all of the arbiter copies start in the same state, receive the same set
of requests, and generate the same grant. The module that receives the grant uses
this information locally. All other modules ignore the grant.

This replicated-arbiter approach eliminates the need for a central arbiter, but
has a number of significant disadvantages. First, the number of bus lines is increased,
and the loading of request lines is increased by the need to distribute all requests to

Table 22.1 Example of distributed arbitration. Three modules with pri-
orities 1001, 1010, and 0111 compete to become bus
master.

Participating

Bit Bus 1001 1010 0111

3 1111 1 1 0
2 1011 1 1 0
1 1011 0 1 0
0 1010 0 1 0

436 C H A P T E R 22 Buses

all modules. More importantly, this approach commits the cardinal sin of replicating
state. The arbiter state is replicated in N copies of the arbiter for N modules. If
the state of any of these arbiter copies diverges, for example, due to a soft error
or synchronization error, two modules may be given a grant in the same cycle. To
prevent this from happening, additional complexity must be introduced to constantly
compare the state of the replicated arbiters and keep them synchronized.

22.3 High Performance Bus Protocol

22.3.1 Bus Pipelining

In Figure 22.7 the bus is idle for much of the time, waiting on arbitration. This
results in a significant loss of performance in buses used in applications — such as
shared memory multiprocessors, in which arbitration is performed for almost every
bus transaction. The duty factor of a bus can be improved in these cases by pipelining
the phases of a bus transaction.

Figure 22.10 shows the pipeline diagram and reservation table for a memory
write transaction (a) and for a memory read transaction with a single-cycle memory
latency (b). Each diagram shows the bus cycles needed to complete the transaction
along the top and the resources involved down the left side. The read transaction
starts with a three-cycle arbitration sequence: an AR cycle that asserts an arbiter
request, followed by an ARB cycle during which the arbiter makes a decision, and an

AR ARB AG

1 2 3 4 5

RQ ACK
Arb req
Arbiter

Arb grant
Bus

Arb req
Arbiter

Arb grant
Bus

1 2 3 4 5 6

AR ARB AG RQ P RPLY

(a)

(b)

Figure 22.10 Pipeline sequences and reservation tables for (a) a memory write transaction and (b) a memory
read transaction. The figure shows the sequence of bus cycles along the top and a list of
resources down the right side. A darkly shaded box indicates that a resource is exclusively used
by a transaction during a particular cycle. A lightly shaded box indicates that a resource may be
shared.

22.3 High Performance Bus Protocol 437

AG cycle in which the grant from the arbiter is signaled back to the requester. After
the arbitration, the read transaction consists of a request RQ in which the address
is sent to the memory module, a processing cycle P in which the memory access is
performed, and a reply cycle RPLY when the data is returned to the requester.

The reservation tables show which resources are busy during each cycle. The
darkly shaded boxes show the resources that are used exclusively by the transaction
during a given cycle. Only one transaction can receive a grant during a given cycle and
only one transaction can use the bus during a given cycle. The lightly shaded boxes
show resources that may be shared during a given cycle. Any number of transactions
may make requests and arbitrate during each cycle.

Reservation tables give us a simple rule for initiating transactions. A transaction
with fixed delays can be initiated in any cycle when its reservation table does not
request any exclusive resources that have already been reserved by earlier transac-
tions. Using this rule, we see that a read transaction can be initiated one cycle after
another read, but a third read would need to wait two cycles after the first two. We
also see that a write transaction must wait three cycles after a read to issue.

Figure 22.11 shows the timing of a sequence of six transactions on a pipelined
bus. On an unpipelined bus, in which arbitration does not start until the previous
transaction is complete, this sequence would take 34 cycles to complete two 5-cycle
writes and four 6-cycle reads with no overlap. The figure shows that the pipelined
bus completely hides the arbitration latency through overlap. Also, in some cases, the
bus is able to overlap transactions with non-conflicting reservations. For example, in
cycle 12 transaction Read 5 issues its request during the P cycle of transaction Read 4.

However, the bus still idles during the P cycle of a read transaction followed by
a write transaction because of mismatch between the read and write pipelines. For
example, transaction Write 2 cannot issue its request until cycle 7 to avoid a collision
between its ACK and the RPLY from transaction Read 1. This situation is worse when
dealing with transactions that have variable delay. For example, if a read transaction

AR ARB AG RQ P RPLYRead 1
AR ARB AG RQ ACKStallWrite 2

Read 4 AR ARB
AG RQ P

Stall
AR ARB AG RQ

P RPLY
Stall

Stall
Stall Stall
Stall Stall

Read 5 RPLY

Write 3 ACK
AG

AR Stall ARB
Stall
Stall

RQ

AG RQ PRead 6 RPLYAR Stall ARB Stall Stall

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Bus busy

Figure 22.11 Execution of four reads and two writes on a pipelined bus. The reads and writes have timing,
as shown in Figure 22.10. The sequence completes in 17 cycles as compared to 34 cycles for
an unpipelined bus.

438 C H A P T E R 22 Buses

took between zero and twenty P cycles, no other transaction could initiate until each
read was complete, idling the bus during all of the P cycles.

22.3.2 Split-Transaction Buses

Bus idling between the messages of a transaction can be eliminated by splitting the
transaction into two transactions and releasing the bus for arbitration between the
two messages. Such split-transaction buses are typically employed to free the bus
during long, variable-length waiting periods between request and reply messages. By
treating the reply messages as separate transactions that must arbitrate to become
bus master before sending its message, other transactions can make use of the bus
during the waiting period.

Figure 22.12 shows the sequence of Figure 22.11 executed on a split transaction
bus. Each transaction in Figure 22.11 is expanded into two transactions: one that
arbitrates for the bus and sends the request RQ message, and one that arbitrates for
the bus and sends the reply RPLY or acknowledge ACK message. For example, the
Read 1 transaction ends after sending its RQ message in cycle 4. The reply is sent by
the Rply 1 transaction in cycle 8.

Because arbitration is assumed to take three cycles on this bus, the minimum
latency between a request and a reply or acknowledge is four cycles, substantially
increasing the latency of individual operations. In exchange for this increase in latency,
bus utilization is maximized. As long as there are transactions waiting to initiate, the
bus is used every cycle to send an RQ, RPLY, or ACK.

Figure 22.13 shows that the throughput gains of split transactions can be consid-
erable when transactions have long and variable delays between request and response.
The figure shows a sequence of three transactions. Each transaction may take any-
where from one cycle (no wait cycles) to six cycles to complete.A pipelined bus with-
out split transactions must serialize these transactions as shown in Figure 22.13(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Read 1

Write 2

Read 4

Read 5

Write 3

Read 6

AR ARB AG RQ
Rply 1 AR ARB AG RPLY

AR ARB AG RQ
AR ARB AG ACKAck 2

AR ARB AG RQ
AR ARB AG ACK

AR ARB AG RQ
AR ARB AG RPLY

Ack 3

Rply 4

Rply 5

Rply 6

AR ARB AG RQ
AR ARB AG RPLY

Stall Stall Stall Stall

AR AG RQStall Stall Stall StallARB
AR ARB AG RPLY

15 16 17

Figure 22.12 Execution of the sequence of Figure 22.11 on a split-transaction bus. Latency for individual
operations is increased, but bus utilization is also increased by eliminating idle P cycles.

22.3 High Performance Bus Protocol 439

RQ A RP A
RQ B RP B

RQ C RP C

1 2 3 4 5 6 7 8 9 10 11 12 13 14

RQ A RP A
RQ B RP B

RQ C RP C

(a)

(b)

Figure 22.13 A sequence of variable-delay transactions: (a) on a pipelined bus, (b) on a split-transaction bus.
For clarity, arbitration, which takes one cycle, is not shown. The split transaction bus allows the
later transactions to run during the waiting cycles of the first transaction.

because each transaction must reserve the bus for its reply starting with the cycle af-
ter the request. The pipelining hides the arbitration (not shown), but does not allow
overlap of transactions.

With a split-transaction bus, the three requests can be overlapped completely, as
shown in Figure 22.13(b). Because the bus need not be reserved for the reply from
RQ A, request messages RQ B and RQ C and their respective replies can all be sent
during the waiting time of the first request. If reply RP C were delayed one cycle, it
would be ready to use the bus during the same cycle as RP A. The arbitration would
grant the bus to one of these two replies and the other would be delayed a cycle.

A split-transaction bus, like a general interconnection network, requires a means
to identify the reply associated with each request. In a bus without split transactions,
the reply is identified by the time it appears on the bus. With a split-transaction
bus, depending on arbitration, replies may appear in an arbitrary order. For example,
replies RP C and RP A in Figure 22.13 could easily appear in the opposite order.

To identify replies, each request includes a tag that uniquely identifies this request
from all other pending requests — those requests that have not yet received a reply.
The requester transmits the tag in the request message. The responder remembers
the tag and includes it in the reply message. By matching tags, the requester is able
to determine the reply that corresponds to a particular request.

In some buses, such as the bus of the original Sequent Symmetry multiprocessor,
the tag is explicitly sent as a separate field of the request message. In the case of the
Symmetry, tags are assigned to the requester from a central pool when the requester
wins bus arbitration. In other systems, such as the SCSI peripheral bus, the tag is
formed implicitly from the source address, destination address, and sequence number
fields of the request message.

22.3.3 Burst Messages

The overhead of a bus transaction is considerable. Arbitration, addressing, and some
form of acknowledgment must be performed for each transaction. If transactions
transfer only a single word, the overhead can easily be larger than the payload — an

440 C H A P T E R 22 Buses

overhead greater than 100%.The overhead of a transaction,expressed as a percentage,
can be reduced by increasing the amount of data transferred in each message. When
multiple words are being transferred, as, for example, when loading or storing a cache
line or transferring a block of data to a peripheral, sending a block of many words
in each message is much more efficient than sending a single word. Choosing the
amount of data transferred during each message is equivalent to choosing the flit size
for the bus.

Figure 22.14 illustrates the reduced overhead of burst mode messages.
Figure 22.14(a) shows a bus with two cycles of overhead per message that trans-
fers just a single word during a three-cycle message for an efficiency of 1/3. In
Figure 22.14(b) four words are sent in each message, increasing the efficiency to
2/3 or four words transferred in six cycles. With an eight-word message efficiency
would be further increased to 4/5. In general, with x cycles of overhead and n words
of data transferred, the efficiency will be n/(n + x).

One might think that when transferring a large block of data the largest possible
burst size should be employed to bring the efficiency as close as possible to one.
Increasing burst size, however, increases the maximum amount of time that a high-
priority requester may need to wait to gain access to the bus. If a request is made
during the first cycle of the message of Figure 22.14(b), the requester will need to
wait six cycles to receive a grant. If the burst size were 256 words, the requester
would need to wait 258 cycles. Such long arbitration latencies are unacceptable in
many applications.

To allow the efficiency of long burst messages and at the same time provide
low latency to higher priority requesters, some buses allow burst messages to be
interrupted and either resumed or restarted. Figure 22.15 shows an eight-data-word
message A being interrupted by a single data word message B and then resumed.
The first busy cycle of the resumed message is used to transmit a tag to identify the
message being resumed. This is needed in systems where the interrupting message
may itself be interrupted, resulting in multiple messages waiting to be resumed.
Alternatively, an interrupted message can be aborted and restarted from scratch.

Arb
Cmd Addr Data

Arb
Cmd Addr Data

Arb
Cmd Addr Data

Arb
Cmd Addr Data

Request

Arb
Cmd Addr Data Data Data Data

Burst request

(a)

(b)

Figure 22.14 Burst message: (a) Each bus message transfers a single word of data for an efficiency of 1/3. (b)
A four-word burst message amortizes the two cycles of overhead over four words to bring the
efficiency up to 2/3.

22.4 From Buses to Networks 441

Gnt A

Cmd Addr Data Data Data Data Data Data Data Data
Gnt B

Cmd Addr Data

Res A

Tag
Arbitration
Message A
Message B

Figure 22.15 Burst interrupt and resume. Message A is interrupted by message B and then resumed.

However, abort and restart schemes can adversely affect performance because of the
redundant data transfers required.

Interrupting long messages is analogous to dividing long packets into multiple
flits, so higher-priority packets need not wait for the whole packet to be transmitted
before being allocated channel bandwidth. One key difference is that each flit of a
packet must carry per-flit overhead, whereas the overhead of resuming a bus message
is only incurred if the message is actually interrupted.

22.4 From Buses to Networks

Many communication tasks that were formally performed using buses are now per-
formed with networks. As these tasks are migrated, many designers attempt to repli-
cate the characteristics of a bus on a point-to-point network. Some characteristics,
like having a common interface for all modules, are easily replicated on a network.
Others, such as serialization of all transactions and broadcast to all modules, are more
difficult to emulate.

One of the major advantages of a bus is that it provides a common inter-
face for all communicating modules. This facilitates modularity and interoperability
between modules. For example, most small computers today use a Peripheral Com-
ponent Interconnect (PCI) bus to connect to peripherals. Many computers and many
peripherals are designed to interface to this common bus and any PCI peripheral can
be used with any PCI computer.

The common interface of the bus is shared by most networks. The network
provides an interface (see Chapter 20) that is common to all modules connected
to the network. To date, such interfaces have not been standardized. However, this
situation is changing with the development of network interface standards such as
PCI-Express, Infiniband, and Fibre Channel Switched Fabric. Already, the modularity
facilitated by standard bus interfaces is being realized by networks.

Many systems would like to maintain the serialization and broadcast properties
of the bus, but cannot use a shared medium because of electrical constraints. For
example, the parasitic resistance and capacitance of on-chip interconnects requires
repeaters every few millimeters to maintain signaling speed. Thus, a large on-chip
bus cannot be realized as a single electrical node driven and sensed by many modules.

A communication system that is logically equivalent of a bus can be realized
entirely with short point-to-point links, as shown in Figure 22.16. Each module
drives its signal into an OR-network when it is enabled and drives zeros into the
OR-network otherwise. Thus, the output of the OR-network always reflects the

442 C H A P T E R 22 Buses

T1

Module 1

T2

Module 2

T3

Module 3

TN

Module N

Figure 22.16 A bus can be implemented logically with no shared media by ORing the transmit outputs of all
of the modules together. Only the currently transmitting module drives non-zero data into the
OR network. A repeater chain distributes the result of the OR network to the receive port of
each module.

value being driven by the currently enabled module. This value is then distributed
to all of the modules by a repeater chain. The high delay of the linear OR chain and
linear repeater chain can be somewhat reduced by building tree networks in place
of both chains. (See Exercise 22.5.)

Some systems would like to maintain the semantics of a serial broadcast bus,
for example, to support a snooping cache-coherence protocol, but cannot accept the
performance limitations of sending only one message at a time. Such systems usually
start out by making the bus very wide — for example, 256 bits wide to transfer a
32-byte cache line in parallel. However, while this can speed large data transfers, it
does not address the problem of needing to run multiple address cycles at once.

The next step in the search for performance is to run multiple parallel buses,
or at least multiple parallel address buses. For example, with four parallel address
buses, four address cycles can be run simultaneously. Serialization is still maintained
by assigning an ordering to the multiple buses. An address on bus i arriving during
cycle t is considered to have arrived before an address on bus j > i during the same
cycle.The expense of the bus interfaces increases more than linearly with the number
of buses since logic and connections are required to check each address against the
addresses on all earlier buses for collisions. While this is an expensive approach to
scaling bandwidth, it has been used successfully. The Sun Ultra Enterprise 10,000,
which was the leading SMP server for many years, employed a four-way duplicated
bus system [35].

The ultimate step in the search for performance is to give up on the semantics
of the bus and move to a network. This has advantages of performance, cost, and
scalability. Moreover, the cost of a full broadcast is avoided for the majority of mes-
sages that do not require broadcast. When broadcast is required, it can be provided
either via a hardware multicast facility or by sending multiple messages, possibly via
a distribution tree. Serialization can also be provided when required by sending all
messages that must be serialized to a common node. The order of receipt serializes
the messages. This approach serializes only related messages, whereas a bus serializes
all messages, needlessly slowing communication.

22.5 Case Study: The PCI Bus 443

Ordering is also required by some protocols that have traditionally been imple-
mented on the bus. In a shared memory machine, for example, two write messages
A and B from a processor P to a memory M need to be delivered in the same or-
der they are sent or the memory may be left in an incorrect state. Buses, since they
carry out only one communication at a time, inherently keep messages ordered. In a
network, however, it is possible for message B to pass message A somewhere in the
network. Ordering can be enforced in a network by requiring ordered messages to
always follow the same path (and use the same virtual channels), or by tagging them
with sequence numbers and reordering them at the destination.

Of course, running bus-based protocols on a network is a bit like trying to attach
a propeller to a jet engine. If one is building a machine around an interconnection net-
work, it is better to design protocols that are optimized for the characteristics of the
network, rather than to force-fit protocols intended for a serial, broadcast medium.
Today, for example, the largest shared memory machines use general interconnection
networks running directory-based protocols that do not require broadcast.

22.5 Case Study: The PCI Bus

Perhaps the most widely used bus today is the PCI bus [143],which is used to connect
peripherals to many different types of computer systems, ranging from embedded
systems to large servers. The PCI bus also brings together many of the properties of
buses described in this chapter.

The PCI bus is a synchronous bus with multiplexed address/data lines and
pipelined arbitration. It is available in both 32-bit and 64-bit versions and oper-
ates at speeds of 33 MHz, 66 MHz, and 133 MHz. In the widest and highest speed
configuration, 64-bit datapath at 133 MHz, the bus is able to sustain burst rates of
1 Gbyte/s.

Table 22.2 shows the major signals of the PCI bus. These 42 signal lines are
the core of a PCI bus. Other signals are included in the full bus specification for
configuration, error reporting, and other functions. These will not be discussed here.

A PCI-bus transaction consists of an address cycle followed by one or more
data cycles. Wait cycles may be interspersed between these address and data cycles
as needed to synchronize the initiator and the target. The PCI-bus supports both
single-word and burst transactions. For example, Figure 22.17 shows a two-word
PCI read transaction. The transaction is initiated by the master (initiator) asserting
FRAME#2 in cycle 1. In this cycle, the master also drives the address on the AD lines
and the bus command (memory read) on the C/BE lines. The master then asserts
IRDY# in cycle 2 to indicate that it is ready to receive the first word of data. However,
since TRDY# is not asserted, no data transfer takes place in this cycle. This idle cycle
is required in all read transactions to turn the AD bus around — from the master

2. The pound sign “#” is used in the PCI bus specification (and elsewhere) to denote a low-true signal —
that is, a signal that is true (asserted) when it is in the logic 0 state.

444 C H A P T E R 22 Buses

Table 22.2 Major PCI bus signals.

Name Description

CLK Bus clock: All bus signals are sampled on the rising edge of CLK.
AD[31:0] 32-bit address/data bus: During an address cycle, these lines are driven by the

bus master (initiator) with the address of the target device. During data cycles,
these lines are driven with data by the data provider, the initiator for writes,
and the target for reads.

C/BE[3:0] Command/byte-enable: During an address cycle, these lines encode the bus
command (such as memory read). During data cycles, these lines are used as
byte enables, specifying which bytes of a word are to be written.

FRAME# Transaction frame: The initiator starts a bus transaction by asserting FRAME#.
The first clock cycle in which FRAME# is asserted is the address cycle. The last
data cycle is started when FRAME# is deasserted.

IRDY# Initiator ready: Indicates when the initiator is ready to transfer data. Data is
transferred when both the initiator and target are ready (that is, when IRDY#
and TRDY# are both asserted).

TRDY# Target ready: Indicates when the target is ready to transfer data.
REQ# Bus request: A module asserts REQ# to request access to the bus as an initiator

or bus master.
GNT# Bus grant: A central (radial) arbiter examines the REQ# signals from each mod-

ule and asserts at most one GNT# signal. The GNT# signal indicates which
module will become the initiator when the current transaction completes.

driving to the target driving without overlap of drive current. The target provides
the data in cycle 3 and asserts TRDY#. Since IRDY# and TRDY# are both asserted,
the first word of data is transferred in this cycle. In cycle 4, the target provides the
second word of data and TRDY# remains asserted. However, this time IRDY# is not
asserted, so the second data transfer must wait on the master until cycle 5. During
cycle 5, the master asserts IRDY#, allowing the second data transfer to complete.
Also during this cycle, the master deasserts FRAME#, indicating that this will be
the last data transfer of this transaction. In cycle 6, both FRAME# and IRDY# are
deasserted, indicating the end of the transaction. The next bus master detects this
state and is free to initiate the next transaction in cycle 7.

A write transaction is nearly identical to the read transaction shown in
Figure 22.17, except that the initiator rather than the target drives the AD lines
during the data cycles. During a write, no idle cycle is required for bus turnaround
after the address cycle. This is because the same module, the initiator, is driving both
the address and the data.

Figure 22.18 shows how PCI bus arbitration is pipelined. During cycle 1 modules
1 and 2, both request to become bus masters by asserting their respective REQ# lines.
The global arbiter decides to grant bus mastership to module 1 and asserts GNT1# in
cycle 2. Module 1 receives this grant and starts a transaction by asserting FRAME#
in cycle 3. As soon as module 1 starts its transaction, the arbiter negates GNT1#
and asserts GNT2# in cycle 4. This signals to module 2 that it will become bus

22.5 Case Study: The PCI Bus 445

CLK

TRDY#

AD

ReadC/BE

Address Data1 Data 2

Driving AD Master

Cycle 1 2 3 4 5 6

IRDY#

FRAME#

Turn
around

Target Target Target Turn
around

Figure 22.17 A PCI bus read transaction.

master as soon as the current transaction completes. Module 1 continues to be bus
master, completing its transaction. In cycle 5, completion is signaled by FRAME# and
IRDY# both being deasserted. Module 2 becomes bus master when it recognizes this
completion and starts a transaction in cycle 6 by asserting FRAME#.

PCI transactions are not split. A read transaction includes both the request mes-
sage from the initiator to the target and the reply message from the target back
to the initiator. PCI, however, includes a mechanism for aborting and retrying a
transaction to avoid tying up the bus during a long latency operation. A target
device can latch the request information and then abort a transaction by assert-
ing STOP# rather than TRDY#. The master then retries the transaction at a later
time, hopefully after the target has completed the long latency operation and can

CLK

1 2 3 4 5 6

REQ2#

REQ1#

GNT2#

GNT1#

FRAME#

IRDY#

Bus master 1 1 Turn
around

21

Figure 22.18 PCI bus arbitration.

446 C H A P T E R 22 Buses

provide the requested data. The PCI specification calls such an exchange a delayed
transaction. Delayed transactions share with split transactions the ability to allow
other bus transactions to proceed during long latency operations. The delayed
transaction mechanism, however, is considerably less efficient than a split transac-
tion mechanism and is only intended to handle exceptional cases. A split transaction
mechanism is intended to handle most or all bus requests, and hence must be more
efficient.

The PCI specification includes a set of protocols for module initialization. In
addition to addressing modules using theAD bus during an address cycle, an alternate
addressing mechanism using a radial select signal, IDSEL, is used to select a module
by its slot number. Configuration read and write cycles can be run using IDSEL
addressing to read and write the configuration registers of a module. In a typical
initialization process, some configuration registers are read to identify the module
type. The controller then writes configuration registers to set the address of the
module, and to configure module options.

22.6 Bibliographic Notes

Buses have been around long enough that it is hard to identify when they first
appeared. They certainly existed in the early computers of the 1940s and 1950s.
Starting with Digital’s Unibus, buses became a standard peripheral interface. Both
the PCI bus [143] and the Small Computer System Interconnect (SCSI, pronounced
scuzzy) bus [173] are modern examples of peripheral interface buses. For a long
period of time (1960s to 1980s), a typical minicomputer or microcomputer used
a bus to connect memory modules to the CPU. In modern PCs this has been
replaced by point-to-point connection through a north-bridge chip. Perhaps one of
the most interesting and high-performance buses today is Rambus’s DRDRAM bus
used to connect to high-bandwidth DRAM chips [41]. The on-chip network offered
by Sonics uses the OR-tree approach to realizing a bus with point-to-point intercon-
nects [193]. The Sun Ultra-Enterprise 10,000 [35] also realizes a bus with point-to
-point interconnects. The UE 10,000 also provides multiple address buses to increase
throughput. It is perhaps a good advertisement for why one should use a network
rather than a bus. The Digital Bus Handbook [72] gives a more complete overview of
bus technology than there is room for in this chapter.

22.7 Exercises

22.1 Multiplexed versus non-multiplexed bus. Consider a bus on which all transactions
require sending an address message with a 32-bit address field and a 4-bit control
field from the bus master to a bus slave. Read transactions, that comprise 70% of all
transactions, are then completed by having a 32-bit data message sent from the slave
to the master. Write transactions, that comprise the remaining 30% of all transactions,
are completed by having a 32-bit data message sent from the master to the slave. This

22.7 Exercises 447

write data message can be sent at the same time as the address message, if resources
permit. You have a total of 40 bus lines to use for the design of your bus. Suggest a
bus design that maximizes bus throughput. Consider both multiplexed (shared data
and address lines) and non-multiplexed buses and assume that buses are maximally
pipelined.

22.2 Early win distributed arbitration. In the distributed arbitration method shown in
Figure 22.9, a full arbitration takes b cycles for b module address bits. Explain how
this arbitration could be optimized to be faster in some cases. Simulate the arbitra-
tion for i modules randomly requesting the bus for 0 < i ≤ b and b = 8. Plot the
average time required for arbitration as a function of i.

22.3 Pipelined bus with separate reply. Draw a timing diagram for the transaction sequence
of Figure 22.11 on a system with a separate reply bus, assuming that the reply bus
is separately arbitrated. How much faster is this sequence of transactions completed
with the separate reply bus?

22.4 Virtual channels on buses. Suppose a bus is built employing messages that are sub-
divided into flits, each of which is tagged with a virtual-channel number to enable
large messages to be interrupted by short, high-priority messages. Plot the amount of
overhead vs. maximum wait time as a function of flit size. Assume that the maximum
message size is 64 Kbytes and 8 virtual channels are supported.

22.5 Tree-based buses. Show how the logical bus using point-to-point links of Figure 22.16
can be realized with lower delay by arranging both the OR network and the repeater
chain into trees. Assume that this bus is being placed on a 12mm square chip, each
module is 2mm square, and a repeater or logic gate must be placed each 2mm along
a line to maintain signaling speed. Further assume that a signal takes one unit of
time to traverse 2mm of wire and one gate. Compare the maximum latency of this
36-module system with linear OR and repeater networks and tree-structured OR
and repeater networks.

22.6 Simulation. As an alternative to tagging requests and replies on a split-transaction
bus, a bus can be designed so that the replies are forced to occur in the same order
as the requests. Thus, each reply can be identified by its position in the stream of
replies. Suppose the delay of a transaction is uniformly distributed between 1 and
Tmax cycles. Use simulation to compare the average latency of a tagged bus and an
ordered-reply bus.

.
This Page Intentionally Left Blank

C H A P T E R 23

Performance Analysis

As we have seen throughout the book, the design of an interconnection network
begins with a specification of performance requirements combined with some pack-
aging and cost constraints. These criteria then drive the choice of topology, routing,
and flow-control for the particular network. To guide our initial decisions for each of
these aspects of network design, we also introduced some simple metrics to estimate
performance, such a zero-load latency and throughput. Of course, these metrics in-
volved some assumptions about the network. For example, in most of our analysis
of routing algorithms and topology, we assumed ideal flow control. Although it is
reasonable to work with simple models in the early stages of network design, more
detailed models become necessary to accurately characterize the exact performance
of the network.

In this chapter, we first define the basic performance measures of any network
and discuss how to estimate and interpret these measures. We then introduce a basic
set of analytical tools that are useful for modeling the behavior of networks at a high
level, including both queuing models and probabilistic methods. In Chapter 24, we
discuss the use of detailed network simulators. Finally, simulation results from several
network configurations are presented in Chapter 25.

23.1 Measures of Interconnection Network Performance

While there are many different ways to measure and present the performance of
a particular network, we will focus on three basic quantities: throughput, latency,
and fault tolerance. While these names sound generic, their exact definition de-
pends strongly on how we measure them or, more specifically, the measurement
setup.

449

450 C H A P T E R 23 Performance Analysis

The standard setup for interconnection networks is shown in Figure 23.1. To
measure the performance of an interconnection network, we attach terminal in-
strumentation to each terminal or port of the network. The instrumentation in-
cludes a packet source that generates packets according to a specified traffic pattern,
packet length distribution, and interarrival time distribution. Separating the packet
source from the network at each terminal is an infinite depth source queue. The sou-
rce queues are not part of the network being simulated, but serve to isolate the traffic
processes from the network itself. Between the packet source and the source queue,
an input packet measurement process counts injected packets and measures the start
time of each packet injected. It is important that this measurement process be placed
before the source queue rather than after the queue so that packets that have been
generated by the source but not yet injected into the network are considered and so
that packet latency includes time spent in the source queue. A complementary mea-
surement process at each output terminal counts packets and records each packet’s
finish time. Throughput is measured by counting the packets arriving at each output
and latency is measured by subtracting the start time from the finish time for each
packet.

In
te

rc
on

ne
ct

io
n

ne
tw

or
k

TerminalSource
queue

Packet
source

Input
count &
timing

Output
count &
timing

Terminal instrumentation

Terminal instrumentation

Terminal instrumentation

Figure 23.1 Standard interconnection network measurement setup.

23.1 Measures of Interconnection Network Performance 451

This open-loop measurement configuration enables the traffic parameters to be
controlled independently of the network itself. Without the source queues, a packet
source may attempt to inject a packet at a time when the network terminal is unable
to accept traffic — for example, when the network’s input buffers are full. In such a
case, the traffic produced by the source is influenced by the network and is not the
traffic pattern originally specified. Because our goal is generally to evalute the network
on a specific traffic pattern, we will used open-loop measurements for throughput,
latency, and fault tolerance in the following sections.

Closed-loop measurement systems, in which the network influences the traffic,
are useful for measuring overall system performance. For example, the performance
of a multicomputer may be estimated by running a simulation in which the terminal
instrumentation is replaced by simulations of the multicomputer’s processors. The
traffic generated consists of the inter-processor or processor-memory messages gener-
ated by running an application. Since the processors interact with the network, their
injection rate is not readily controlled. For example, processors waiting for memory
responses will make fewer requests due to limits on the number of outstanding re-
quests. Rather, a more typical application of this simulation setup would be to test
the sensitivity of the application run time to network parameters such as bandwidths,
routing algorithms, and flow control.

Most often,we are interested in measuring steady-state performance of a network:
the performance of a network with a stationary traffic source after it has reached
equilibrium. A network has reached equilibrium when its average queue lengths
have reached their steady-state values. Steady-state measurements are meaningful
only when the underlying process being measured is stationary — that is, the stastics
of the process do not change over time. Transient performance measures — the
response of a network to a change in traffic or configuration — are sometimes of
interest as well, but the bulk of our measurements will be steady state.

To measure steady-state performance, we run an experiment (or simulation) in
three phases: warm-up, measurement, and drain. First, we run N1 warm-up cycles to
bring the network to equilibrium. During the warm-up phase, packets are not timed
or counted. Once warm-up is complete, we run N2 measurement cycles. During this
phase, every packet entering the source queue is tagged with its start time. We refer
to these tagged packets as measurement packets. Finally, during the drain phase, we
run the network long enough for all of the measurement packets to reach their
destination. As these packets arrive at the destination, their finish time is measured
and they are logged. In addition, all packets arriving at the destination during the
measurement interval are counted. Throughput measures are computed from the
packet counts collected at the destination during the measurement phase. Latency
measures are computed from the start and finish times of all measurement packets.
It is important that the simulation be run long enough to measure the finish time of
every measurement packet or the tail of the latency distribution will be truncated.1

1. If a network is not fair, it may take a large number of cycles for the last of the measurement packets to
be delivered. If a network is subject to starvation, the drain phase may never complete.

452 C H A P T E R 23 Performance Analysis

During the warm-up and drain phases, the packet source continues to generate pack-
ets; however, these packets are not measured. They do, however, affect the measure-
ment by providing background traffic that interacts with the measurement packets.
The determination of the cycle counts N1 and N2 is discussed in Section 24.3.

23.1.1 Throughput

Throughput is the rate at which packets are delivered by the network for a particular
traffic pattern. It is measured by counting the packets that arrive at destinations
over a time interval for each flow (source-destination pair) in the traffic pattern
and computing from these flow rates the fraction of the traffic pattern delivered.
Throughput, or accepted traffic, is to be contrasted with demand, or offered traffic,
which is the rate at which packets are generated by the packet source.

To understand how network throughput is related to demand, we typically plot
throughput (accepted traffic) as a function of demand (offered traffic), as shown
in Figure 23.2. At traffic levels less than saturation, the throughput equals the de-
mand and the curve is a straight line. Continuing to increase the offered traffic, we
eventually reach saturation, the highest level of demand for which thoughput equals
demand. As demand is increased beyond saturation, the network is not able to deliver

Offered traffic (fraction of capacity)

0.0
0.0

0.1

0.2

0.2

0.3

0.4

0.4 0.6 0.8 1.0

0.5

T
h

ro
u

g
h

p
u

t
(f

ra
ct

io
n

 o
f

ca
p

ac
it

y)

Avg
Min

Figure 23.2 Throughput vs. offered traffic for an 8-ary 2-mesh under bit-complement traffic using dimension-
order routing. Both the average throughput and the minimum throughput over all source-
destination pairs are shown. Because the throughput does not degrade beyond the saturation
point, the network is stable.

23.1 Measures of Interconnection Network Performance 453

packets as fast as they are being created — or at least not for the traffic pattern we
require. Above saturation, a stable network continues to deliver the peak through-
put on the specified traffic pattern. Many networks, however, are unstable and their
throughput drops beyond saturation. The network of Figure 23.2, for example, is
stable with a saturation throughput of 43% of capacity. Figure 23.3 shows the per-
formance of a similar network that also saturates at 43% of capacity. However, this
network is unstable as indicated by the sharp drop in throughput just beyond the
saturation point caused by unfairness in the flow control mechanism. We investigate
these two networks further as part of the simulation examples in Section 25.2.5.

We typically present throughput as a fraction of network capacity. This gives
a more intuitive understanding of the performance of the network and allows di-
rect comparison between networks of differing sizes and topologies. For example, in
Figure 23.2, the total capacity of this 8-ary 2-mesh is �U,M = 4b/k = b/2 where b

is the channel bandwidth. Since each source is contributing an equal amount to the
offered traffic, each source generates packets at a rate equal to bλ/2 where λ is the
offered traffic as a fraction of capacity. Saturation occurs at 43% of this capacity.

For some unstable networks, the total number of packets delivered remains con-
stant beyond saturation, but the distribution of these packets does not match the
specified traffic pattern. To correctly measure throughput of such networks, through-
put must be measured on the specific traffic pattern.To do this,we apply the specified
traffic at all network inputs and measure the accepted traffic for each flow separately.
The throughput on the specified traffic pattern is the minimum ratio of accepted traf-
fic to offered traffic over all of the flows.

Offered traffic (fraction of capacity)

0.0
0.0

0.1

0.2

0.2

0.3

0.4

0.4 0.6 0.8 1.0

0.5

T
h

ro
u

g
h

p
u

t
(f

ra
ct

io
n

 o
f

ca
p

ac
it

y)

Avg
Min

Figure 23.3 Throughput vs. offered traffic for an 8-ary 2-mesh under bit-complement traffic using dimension-
order routing. Throughput drops drastically after saturation, revealing an unfair network.

454 C H A P T E R 23 Performance Analysis

Mathematically, we start with a traffic matrix � in which each row and each
column of � sums to unity. For offered traffic of α�, each source i generates packets
destined for each destination j with a rate of αλij . At the destinations we record the
arriving traffic from each source and compute a rate λ′

ij for each flow. Throughput
is then defined as the minimum ratio of λ′ to λ over all flows:

� = min
ij

(
λ′

ij

λij

)
. (23.1)

When demand is increased beyond saturation, the traffic matrix delivered to the
destinations can be thought of as taking the form:

�′ = �� + X (23.2)

That is, the traffic delivered to the destination consists of � units of the desired
traffic pattern plus extra traffic, X, where X is a strictly positive matrix. In measuring
throughput, we give no credit for this extra traffic since it does not conform to our
specified traffic pattern.

Network instability is often due to fairness problems in the network. Historically,
only the average accepted traffic across all flows has been reported beyond satura-
tion — in effect, giving credit for X. However, by reporting the minimum accepted
traffic over all of the flows, we can see if any flows are becoming starved as offered
traffic increases. Starvation is generally a result of unfair flow control. In Figure 23.2,
the accepted traffic remains approximately constant beyond the saturation point, so
we can be confident that this network is allocating an even amount of bandwidth to
each flow even beyond saturation. In Figure 23.3, however, throughput falls dramat-
ically after saturation, suggesting that the network may have unfair flow control.

It is also possible for the accepted traffic to decrease as the offered traffic increases,
even if the network is fairly allocating bandwidth between the flows. This situation
can be caused by non-minimal routing algorithms. Because the routing decisions are
made with imperfect information, misrouting often increases beyond the saturation
point due to the increasing contention. This increases the average number of hops a
packet travels, increasing channel load in turn. Without careful design of a routing
algorithm to avoid this, throughput can drop off quickly beyond the saturation point.

A similar situtation can occur with adaptive routing algorithms that use deadlock-
free escape paths.As offered traffic increases, more packets are forced onto the escape
paths and the accepted throughput eventually degrades to the throughput of the es-
cape routing algorithm, not the adaptive algorithm. These are discussed further in
Section 25.2.

While the accepted vs. offered traffic curve shows the detailed throughput perfor-
mance of the network under a specific traffic pattern, the performance of many traffic
patterns can be quickly presented by plotting a histogram of saturation throughputs
over those patterns. A typical experiment of this form might be to generate a large
number of random permutations, say 103 − 106, for the traffic patterns. Examples
of this plot are included in Section 25.1.

23.1 Measures of Interconnection Network Performance 455

23.1.2 Latency

Latency is the time required for a packet to traverse the network from source to
destination. Our evaluations of latency until this point have mainly focused on the
zero-load latency of the network. This ignores latency due to contention with other
packets over shared resources. Once we include contention latency, through mod-
eling or simulation, latency becomes a function of offered traffic and it becomes
instructive to plot this function. Figure 23.4 shows an example of latency vs. offered
traffic graph.

In measuring latency,we apply traffic using the measurement setup of Figure 23.1.
We typically sweep offered traffic α� from α = 0 to saturation throughput, α = �.
Latency is infinite and cannot be measured at traffic levels α > �. For each packet,
latency is measured from the time the first bit of the message is generated by the
source to the time the last bit of the message leaves the network. Overall latency
is reported as the average latency over all packets. In some cases, it is also useful to
report histograms of packet latency, worst-case packet latency, and packet latency
statistics for individual flows. As with throughput, we present offered traffic as a
fraction of capacity.

Latency vs. offered traffic graphs share a distinctive shape that starts at the hori-
zontal asymptote of zero-load latency and slopes upward to the vertical asymptote of
saturation throughput. At low offered traffic, latency approaches zero-load latency.

0.0 0.2 0.4 0.6 0.8 1.0

Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

Figure 23.4 Average latency vs. offered traffic for an 8-ary 2-mesh under uniform traffic with dimension-
order routing.

456 C H A P T E R 23 Performance Analysis

As traffic increases, increased contention causes latency to increase as packets must
wait for buffers and channels. Eventually, the latency curve approaches a vertical
asymptote as the offered traffic approaches the saturation throughput of the network.
The shape of this curve is largely explained by basic queuing theory (Section 23.2.1).

Although is it generally useful to look at the average latency of packets, it can
also be informative to study the latency distribution over all packets or just a subset
of packets. For example, with virtual-channel flow control, some channels may be
reserved for high-priority traffic. In this case, separate plots of high - and normal
priority traffic can reveal the effectiveness of the prioritorization scheme. Another
interesting subset of traffic can be all the packets that travel between a particu-
lar source-destination pair. This can be especially useful in non-minimal routing
algorithms and gives a general indication the length of paths between the source-
destination pair. Several latency distribution graphs are presented in Section 25.2.

23.1.3 Fault Tolerance

Fault tolerance is the ability of the network to perform in the presence of one or
more faults. The most significant bit of information about a network’s fault tolerance
is whether it can function at all in the presence of faults. We say that a network is
single-point fault tolerant if it can continue to operate (deliver packets between all
non-faulty terminals) in the presence of any one node or channel fault. For many
systems, being single-point fault tolerance is sufficient, because if the probably of
one fault is low, the chance of having multiple faults simultaneously is extremely
low. Moreover, most systems with high availability are actively maintained, so faulty
components can be replaced before another fault occurs.

The requirement for fault tolerance drives a number of design decisions. For
example, if a network must be single-point fault tolerant, it cannot use deterministic
routing lest a single channel failure disconnect all node pairs communicating over
that channel. We say that a network degrades gracefully in the presence of faults if
performance is reduced gradually with the number of faults. The performance of a
fault-tolerant network is explored in Section 25.3.

23.1.4 Common Measurement Pitfalls

In measuring interconnection network performance a number of common errors
have been made on numerous occasions.The authors confess to committing all of
these sins at one time or another and hope that by describing them here, you can
learn from our mistakes and not be doomed to repeat them.

No source queue: All to often, network performance measurements are taken with-
out the proper use of the source queue in the measurement setup. Figure 23.5 shows
two ways in which the effects of the source queue can be omitted from network mea-
surements. In Figure 23.5(a), there is simply no source queue. If the packet source

23.1 Measures of Interconnection Network Performance 457

TerminalPacket
source

Input
count &
timing

Output
count &
timing

Source queue omitted

TerminalPacket
source

Input
count &
timing

Output
count &
timing

Timing after source queue

Source
queue

(a)

(b)

Figure 23.5 Attempting to measure network performance without an infinite source queue. The resulting
system is closed loop. The traffic pattern applied is not the intended pattern and the latency
computed does not account for time waiting to enter the network. (a) The source drops or
delays packets when the input channel is busy. (b) Packet counting and timing is started at the
output of the source queue rather than the input.

generates a packet at a time when the input port is busy, the source must either drop
the packet, or delay injection until the input is ready. In the latter case, the generation
of subsequent packets must be delayed as well, otherwise a queue would be required.
In either case, the traffic pattern being generated is affected by contention in the net-
work. In Figure 23.5(b), a source queue is used but packets are counted and packet
timing is started at the output of the source queue rather than at the input.

Measurements taken without the source queue are invalid for two reasons. First,
the traffic pattern being applied at the measurement points2 is not the intended
pattern. For example, consider the simple two-node network of Figure 23.6. We set
up the packet sources to inject one unit of traffic from node 1 to 0 and the same
amount from 0 to 1. However, by measuring the packets after the source queue, we
count and time only the 0.1 unit of traffic that is actually accepted for routing from

2. The points at which packet counting and timing takes place.

458 C H A P T E R 23 Performance Analysis

0 1

0.1

1.0

Figure 23.6 A two-node network with one slow link is to route one unit of traffic from 0 to 1 and one unit
of traffic from 1 to 0. Measuring at the output, rather than the input of the source queue the
actual traffic pattern measured is 0.1 unit of traffic from 0 to 1 and one unit of traffic from
1 to 0.

0 to 1, but we do count the full unit of traffic in the opposite direction. This is not
the traffic pattern that we are interested in measuring.

The second problem with omitting the source queue is that packet latency is
understated. In networks with shallow queues and blocking flow control, a large
fraction of the contention latency at high loads is in the source queue. Once the
packet actually gets into the network, it is delivered fairly quickly. Omitting the
time spent waiting for an input channel can greatly underestimate the real latency,
which is the time from when the packet was created to when it was delivered.

Average instead of minimum delivered traffic: While omitting the source queue dis-
torts the measurement at the input side, reporting the average rather than minimum
delivered traffic across all flows distorts the measurement at the output side. The
problem here, again, is that the traffic pattern being measured is not the one specified.

Consider the network of Figure 23.6. If we average the traffic received across
the two destinations, we would conclude that the network saturated at 0.55 units of
traffic — the average of 1 and 0.1. However, this is not the case. The network is not
delivering

� = 0.55
[

0 1
1 0

]
, (23.3)

but rather is delivering

� = 0.1
[

0 1
1 0

]
+
[

0 0
0.9 0

]
. (23.4)

That is, the network is delivering 0.1 units of the specified traffic pattern plus some
extra traffic. Taking the minimum traffic received across the flows gives the true
picture.

In networks where some fraction of traffic is starved at high loads, reporting
average delivered traffic can completely hide the problem. For example, chaotic
routing [26] gives packets in the network absolute priority over packets entering the
network. For some traffic patterns, this causes flows from some inputs to be com-
pletely starved at high loads because they are unable to merge into busy channels.
Reporting average received traffic makes it appear as if the network is stable, contin-
uing to deliver peak througput at loads beyond saturation, while in fact the network
is unstable because some flows are completely throttled at these high loads.

23.1 Measures of Interconnection Network Performance 459

Combined latency and accepted traffic graphs: Some researchers attempt to show
both a latency vs. offered traffic curve and an accepted vs. offered traffic curve in a
single plot, as shown in Figure 23.7.3 The plot shows latency as a function of accepted,
not offered, traffic. Points along the curve indicate different amounts of offered traffic.
In an unstable network, where accepted traffic declines beyond saturation, the curve
is often shown to wrap back to the left, as shown in the figure.

The biggest problem with this format is that it clearly shows that a source queue
is not being included in the measurement. If the source queue were considered, then
latency would be infinite at all offered traffic levels above saturation and the curve
would not wrap back, but rather would reach an asymptote at the peak accepted
traffic.

BNF charts also do not usually reflect steady-state performance. In most unstable
networks, steady-state-accepted traffic drops abruptly to a post-saturation value at
offered traffic levels even slightly greater than saturation and then stays at this lower
level as offered traffic is increased further. This is because source queues start growing
without bound as soon as saturation is reached. In the steady state, these queues are
infinite — increasing offered traffic beyond saturation does not change their steady-
state size, only how fast they get there. Of course, running simulations to measure
the steady-state performance of networks beyond saturation takes a long time. Most
BNF charts that show a gradual fold back in accepted traffic as offered traffic is

0.0 0.1 0.2 0.3 0.4

Throughput (fraction of capacity)

0

100

200

300

400

500

A
vg

. d
el

ay
 (

cy
cl

es
) 0.4

0.425

0.45

Figure 23.7 An incorrect method of presenting latency and accepted traffic data. This graph plots latency
(vertical axis) as a function of accepted traffic (horizontal axis). Points beyond saturation are
labeled with their corresponding offered traffic as a fraction of capacity.

3. This form of plot is sometimes called “Burton Normal Form” after Burton Smith or BNF for short — not
to be confused with Backus Naur Form.

460 C H A P T E R 23 Performance Analysis

increased indicate that the simulation has not been run long enough to reach the
steady-state value.

Not measuring all the packets generated during the test interval: Often, latency
measurements will be taken by averaging the latency of all packets received at des-
tinations during the measurement interval rather than all packets generated during
this interval. This is incorrect because it uses a biased sample of packets to compute
average latency. This sample excludes long-latency packets that do not arrive until
long after the measurement interval and hence truncates the latency distribution
and underestimates average latency. Any unbiased sample of packets generated after
warm-up could be used for latency measurement. However, selecting packets based
on when they arrive is not unbiased.

Reporting results only on random traffic: Uniform random traffic is quite benign
because it naturally balances load across network channels. Although not quite as
nice as nearest-neighbor traffic, it is very close to being a best-case workload. It
can hide many network sins — in particular, poor routing algorithms. In most cases
much more insight can be gained by complementing random traffic with a number
of adversarial traffic patterns (Section 3.2) and a large sample of randomly generated
permutations.

23.2 Analysis

A number of tools are available to measure the performance of an interconnection
network. Analysis, simulation, and experiment all play roles in network evaluation.
We typically start using analysis to estimate network performance using a mathemati-
cal model of the network. Analysis provides approximate performance numbers with
a minimum amount of effort and gives insight into how different factors affect per-
formance. Analysis also allows an entire family of networks with varying parameters
and configuration to be evaluated at once by deriving a set of equations that predicts
the performance of the entire family. However, analysis usually involves making a
number of approximations that may affect the accuracy of results.

After approximate results are derived using analysis, simulations are usually per-
formed to validate the analysis and give a more accurate estimate of performance.
With good models, simulations provide accurate performance estimates but require
more time to generate estimates. Each simulation run can take considerable time and
evaluates only a single network configuration, traffic pattern, and load point. Also,
simulation gives summary results without directly providing insight into what factors
lead to the results.4 A simulation is as accurate as its models. A simulator that closely
matches most router timing, arbitration, and channel delays will give very accurate

4. However, with appropriate instrumentation, simulations can be used to diagnose performance issues.

23.2 Analysis 461

results. A simulator that ignores router timing and arbitration may give results of
very poor accuracy.

Once a network is constructed, experiments are run to measure the actual net-
work performance and to validate the simulation models. Of course, at this point it is
difficult, time consuming, and expensive to make changes if performance problems
are encountered.

In this section we deal with analysis, the first step in network performance eval-
uation. In particular, we introduce two basic tools for analytic performance analysis:
queuing theory and probability theory. queuing theory is useful for analyzing net-
works in which packets spend much of their time waiting in queues. Probability
theory is more useful in analyzing networks in which most contention time is due to
blocking rather than queuing.

23.2.1 Queuing Theory

Packets in an interconnection network spend a lot of time waiting in queues. Packets
wait in the source queue that is a part of our measurement setup and the input
buffers at each step of the route are also queues. We can derive approximations of
some components of packet latency by using queuing theory to predict the average
amount of time that a packet spends waiting in each queue in the system.

A complete treatment of queuing theory is beyond the scope of this book. How-
ever, in this section, we introduce the basics of queuing theory and show how they
can be applied to analyzing simple interconnection networks. The interested reader
should consult a book on queuing theory [99] for more details.

Figure 23.8 shows a basic queuing system. A source generates packets with a rate
of λ packets per second. The packets are placed in a queue while waiting for service.
A server removes the packets from the queue in turn and processes them with an
average service time of T seconds, giving an average service rate of μ = 1/T packets
per second.

In an interconnection network, the packet source is either a terminal inject-
ing packets into the interconnection network or a channel delivering packets from
another node. The packet arrival rate λ is either the traffic rate from an input ter-
minal, or the superposition of traffic on a network channel. Similarly, the server is
either a terminal removing packets from the network or a channel carrying pack-
ets to another node. In both cases, the service time T is the time for the packet to
traverse the channel or terminal and hence is proportional to packet length T = L/b.

λ
Source

Source
queue

μ
Server

Figure 23.8 A basic queuing system. A packet source injects packets with rate λ into a queue. A server
removes packets from the queue with rate μ = 1/T .

462 C H A P T E R 23 Performance Analysis

To simplify our analysis, we often make a number of assumptions that we know
are not completely accurate. To start, we will assume that queues have infinite length
and that both input inter-arrival times and output service times are exponentially
distributed.5 An exponential process is also called memoryless because the probability
that a new event occurs, such as a packet arrival, is independent of previous events.
While this is a simple model for arrivals and certainly a simplification for service
times, making these assumptions allows us to model our simple queuing system with
a Markov chain, as shown in Figure 23.9.

The Markov chain of Figure 23.9 represents the state transitions of a queue. Each
circle in the figure represents a state of the queue and is labeled with the number of
entries that are in the queue in that state. New packets arrive in the queue with a
rate of λ, and thus states transfer to the next state to the right at a rate of λ. Similarly,
states transition to the state to the left at a rate of μ corresponding to the rate of
packets leaving the queue. In the steady state, the rate into a state must equal the
rate out of a state. For state p0, we can express this equilibrium condition as

λp0 = μp1.

Here, λp0 is the rate out of state p0 and μp1 is the state into p0. We can write this as

p1 = λ

μ
p0.

Or, if we define the duty factor of the system as ρ = λ
μ

, we can rewrite this as

p1 = ρp0.

Writing the equilibrium equation for p1, we can derive that p2 = ρp1 and
repeating this process for each state gives us

pi = ρpi−1 = ρip0.

Then, using the constraint that
∑

i pi = 1, we see that

p0 = 1 − ρ,

0 1

μ

λ

2

μ

λ

3

μ

λ

Figure 23.9 A Markov chain model of a queue. Each state reflects a different number of packets in the
queue. A transition to a state that has greater occupancy occurs with rate λ. A transition to a
state with lower occupancy occurs with a rate of μ.

5. A variable x is exponentially distributed if P (x < y) = 1 − exp (−y/μ).

23.2 Analysis 463

and
pi = (1 − ρ)ρi.

Now that we have an expression for the probability of being in each state, we
can compute the expected number of entries in the queue as

E(NQ) =
∑

i

ipi =
∑

i

i(1 − ρ)ρi = ρ

1 − ρ
. (23.5)

Because an arriving packet must wait for each of these queued packets to be served,
the expected waiting time is

E(TW) = E(T)E(NQ) = Tρ

(1 − ρ)
= ρ

μ(1 − ρ)
. (23.6)

This relationship between waiting time TW , service time T , and the number of packets
in the queue NQ is a useful relationship, often referred to as Little’s law.

We can calculate the variance of the number of queue entries in a similar man-
ner as

E(σ 2
NQ

) =
∑

i

i2pi =
∑

i

i2(1 − ρ)ρi = ρ

(1 − ρ)2 . (23.7)

We have now calculated the properties of the famous M/M/1 queuing system.
That is, a system with exponentially distributed inter-arrival times, exponentially
distributed service times, and a single server. To highlight the effect of variance in
service time on queuing behavior, we note (without derivation) that the expected
occupancy of an M/D/1 queue,with deterministic service time is half as much as an
M/M/1 queue:

E(NQ) = ρ

2(1 − ρ)
(M/D/1). (23.8)

In general an M/G/1 queue with an arbitrary service time distribution has an occu-
pancy of

E(NQ) = λ2X2

2(1 − ρ)
(M/G/1) (23.9)

where X2 is the second moment of the service time [20]. Because, in many networks
packet length and hence service time is constant, or at least closer to constant than
exponential,we typically use Equations 23.8 or 23.9 rather than using Equation 23.5.

At the risk of stating the obvious, it is worth pointing out that Equations 23.5
through 23.9 are invalid for λ ≥ μ or ρ ≥ 1. These equations evaluate to a negative
value in this invalid region when in fact, latency is infinite, or undefined, when λ ≥ μ.
All too often, these expressions are combined into a larger equation that is then
evaluated in this invalid region.

Figure 23.10 illustrates how queuing theory is used to model a simple four-
terminal butterfly network. We assume for now that uniform traffic is applied to the

464 C H A P T E R 23 Performance Analysis

0

1

2

3

Switch
00

0

1

2

3

λ
λ /2

λ
 /2

λ

λ
λ /2

λ /2

λ

λ
λ /2

λ
 /2

λ

λ
λ /2

λ /2

λ

μc

λ /2
λ

λ

λ

λ /2
λ

μ

μ

μ

μ

μc

μc

μc

(a)

(b)

Switch 00

Switch
10

Switch
11

Switch
01

Figure 23.10 Modeling a network as a queuing system. (a) A 2-ary 2-fly network delivers uniform traffic. (b)
A queuing model of the network of (a). Sources have rate λ, each switch output is modeled as
a queue, internal channels are servers with rate μc, and destinations are servers with rate μ.

network.6 Each source becomes a packet source that generates a stream of packets
with rate λ. Each destination becomes a server with rate μ or, equivalently, service
time T = 1/μ.

Each 2 × 2 switch is modeled as a splitter on each input, a combiner on each
output, and a pair of output queues. Each splitter takes the λ rate input stream and
splits it into two λ/2 streams, one destined for each of the switch outputs. Note
that if the traffic were non-uniform, the splitter could split the stream unevenly with
different amounts of traffic to each switch output. At each switch output, a combiner
takes the λ/2 rate streams from each input and combines them into a λ rate stream
into the output queue. The output queue of each switch accepts the traffic stream
summed by the combiner — this defines the arrival rate of the queue. The queues
are served by the internal channel with rate μc for the first stage and by the terminal
with rate μ for the second stage.

The splitter and combiner in the switch model take advantage of the properties of
the Poisson arrival process. Splitting a stream of packets with an exponential inter-
arrival time gives multiple streams of packets, each with exponential inter-arrival

6. In Exercise 23.1, we will consider a more challenging traffic pattern.

23.2 Analysis 465

times that have the sum of the rates of the individual streams equal to the rate of the
input stream. Similarly, combining multiple streams with exponential inter-arrival
times gives a single stream with exponential inter-arrival times that have a rate given
by the sum of the rates of the input streams.

We model the switch as an output queued switch (whether it is or not) because
there is no easy way to model the switch contention of an input queued switch,
or a switch with virtual output queues, in a queuing model. If in fact the output
channel is idled some fraction of time due to switch contention, this can be modeled
by reducing the service rate out of the queue to account for this idle time.

If we assume that the packets have equal length, then the servers, both the
internal channel and the destination terminal,have deterministic service time. Hence,
we model the queues using the M/D/1 model of Equation 23.8, giving a contention
latency for this network of

Tc = λ

2μc (μc − λ)
+ λ

2μ (μ − λ)
. (23.10)

The first term is the time spent waiting in the queue of the first stage switch and
the second term is the time spend waiting in the second stage queue. In general, an
expression for queuing model latency includes a term for each queue in the system
between source and destination. If our network had non-uniform traffic, the average
latency expression would be written as the weighted sum of the latency of each
distinct path through the network (Exercise 23.1).

Figure 23.11 plots contention latency TC as a function of offered traffic λ for
the case in which internal channel bandwidth is 1.5 times the terminal bandwidth,
μc = 1.5μ. The curve is normalized by setting μ = 1. The figure shows three
curves: the average waiting time in each queue and the sum of these times, the
total contention latency. We see that the single-queue curves have the characteristic

ρ

1−ρ
shape of queue delay. The overall curve is dominated by the delay of the more

heavily loaded of the two queues — in this case, the second stage queue. In general,
the bottleneck queue always dominates the latency-throughput curve, both when
queues are in a series, as in this example, and when queues are in parallel, as occurs
with unbalanced load (Exercise 23.1).

23.2.2 Probabilistic Analysis

To complement queuing theory, we use probabilistic analysis to study networks and
network components that are unbuffered. We have already seen an example of using
probabilistic analysis to estimate the performance of a network with dropping flow
control in Section 2.6. In this section, we show how to estimate the performance of
networks with blocking flow control.

Consider, for example, a 2 × 2 switch that has blocking flow control and no
queuing, as shown in Figure 23.12. Suppose the service time on each output port
is identical, deterministic, and equal to To; the input traffic rates are equal, λ1 =
λ2 = λ; and traffic from both inputs is uniformly distributed across the two outputs,

466 C H A P T E R 23 Performance Analysis

0.0 0.2 0.4 0.6 0.8 1.0

Offered traffic (fraction of capacity)

0.01

0.10

1.00

10.00

100.00

Q
u

eu
in

g
 d

el
ay

 (
cy

cl
es

)

Total
1st stage
2nd stage
Simulation

Figure 23.11 Contention latency vs. offered traffic (λ) curve for queuing model of Figure 23.10 for μ = 1
and μc = 1.5. Zero-load contention latency is zero. The network saturates at λ = 1. This graph
shows the time spent waiting in each queue as well as the overall contention latency.

λij = λ/2 ∀i, j . To calculate Ti the amount of time an input channel — say, i1 — is
busy, we first compute the probability Pw that a packet on i1 will need to wait.

Pw = λTo

2
= ρo

2
. (23.11)

This is just the fraction of time that the desired output is busy handling traffic from
the other input.

In the event that a packet arriving on i1 does have to wait, the average waiting
time is

Twc = To

2
. (23.12)

Combining Equations 23.11 and 23.12, we see that over all packets, the average
waiting time is

Tw = PwTwc = λT 2
o

4
= ρoTo

4
.

Thus, the input busy time is

Ti = To + Tw = To

(
1 + λTo

4

)
= To

(
1 + ρo

4

)
. (23.13)

23.3 Validation 467

i1

i2

o1

o2

T

T

λ1

λ2

o1

i1

Ti

To

Tw

(a)

(b)

Figure 23.12 Calculating latency and throughput for a switch without buffering. (a) A 2 × 2 switch with no
buffering connects two packet sources to two servers. (b) The average input channel busy time
Ti is the sum of the output service time To and the average time spent blocked waiting for the
output Tw.

From Equation 23.13 we see that the busy time at the input of the switch is increased
by an amount proportional to the duty factor of the output link ρo = λTo.

The average waiting time given a collision, Twc, depends strongly on the variance
of the service time. For a deterministic service time, Equation 23.12, an average
packet reaches the busy switch when it is half done with a packet from the other
input and hence waits To/2. If output service times were exponentially distributed,
the expected waiting time given a collision is twice this amount:

Twc = To, (Exponentially distributed T)

Tw = λT 2
o

2
= ρoTo

2
,

Ti = To

(
1 + λTo

2

)
= To

(
1 + ρo

2

)
.

This increase in waiting time with variance of service time occurs because packets
are more likely to wait on packets with long service times than on packets with
short service times. This is because the packets with long service times account for
more of the total busy time. When we analyze multistage networks, the variance may
be different at each stage. For example, with deterministic output service time, the
switch of Figure 23.12 has non-zero variance.

23.3 Validation

The ability of queuing theory, probabilistic analysis, or simulation to predict the
performance of an interconnection network is only as good as the model used in the
analysis. To the extent that the model captures all of the relevant behavior of the

468 C H A P T E R 23 Performance Analysis

interconnection network, analysis can be quite accurate and can provide a powerful
tool to evaluate large portions of the design space quickly and to shed insight on
factors affecting performance. However, incomplete or inaccurate modeling of a key
aspect of the network or making an improper approximation can lead to analyses
that give results that differ significantly from actual network performance. The same
is true of simulation models. An inaccurate model leads to inaccurate simulation
results.

Validation is the process of checking the accuracy of an analytical model or of
a simulation against known good data. For example, if we have latency vs. offered
traffic data collected from an actual network, we can validate a simulation model
or analytical model using this data by generating the same numbers via analysis and
simulation. If the numbers match, we have confidence that the model accurately
accounts for the factors that are important for that particular network under the
particular operating conditions tested. It is likely that the models will also accurately
handle similar networks and similar operating conditions.

If we have high confidence in a simulation model, we will sometimes validate
analytical models against simulation. This can be useful in cases where experimental
data is not available. Figure 23.11 is an example of this type of validation.

To validate a model, we need to compare its results against known data at a
representative set of operating points and network configurations. Validating a model
at one operating point does not imply that the model will be accurate at vastly
different operating points, where different factors affect performance. For example,
validating that a model gives the same zero-load latency as the actual network does
not imply that it will accurately predict the latency near saturation.

23.4 Case Study: Efficiency and Loss in the
BBN Monarch Network

BBN Advanced Computer Systems designed the BBN Monarch [156] as a follow-on
to the Butterfly TC-2000 (Section 4.5). The Monarch incorporated many interest-
ing architectural features. Unfortunately, the machine was never completed. The
Monarch was a uniform-memory-access shared memory machine. N processors (up
to 64 Kbits) made accesses to N memory modules over a butterfly-like network. The
network used dropping flow control,hashed memory addresses to randomize the des-
tination memory module, and access combining to handle hot-spot traffic. Accesses
were made synchronously to simplify combining. Time was divided into frames, and
each processor could initiate one memory access at the start of each frame. Accesses
to the same location during the same frame were combined at an internal node of the
network and a single combined access packet was sent on to the memory module.

The Monarch network consisted of alternating stages of switches and concen-
trators, as shown in Figure 23.13. Each switch had up to 12 inputs and up to 32
outputs and could resolve up to 4 address bits. The output ports of a switch were
configured in groups to allow multiple simultaneous packets to proceed in the same
direction. For example, a switch could be configured with 16 output groups of 2 ports
each or 8 output groups of 4 ports each. A packet arriving at any input of the switch

23.4 Case Study: Efficiency and Loss in the BBN Monarch Network 469

SW1.0

0

7

8 16x2

SW1.1

8

15

SW1.4096

32,760

32,767

C1.0

C1.1

C1.4096

32 1x12 0

11
SW2.0

SW2.1

12 16x2

SW2.4096

C2.0

C2.1

C2.4096

32 1x12 0

11
SW3.0

SW3.1

12 8x3

SW3.4096

SW4.0

Resolves
addr[3:0]

Resolves
addr[6:4]

Resolves
addr[10:7]

Resolves
addr[14:11]

SW4.1

SW4.8192

12 16x2 0

15

16

31

65,520

65,536

Figure 23.13 The BBN Monarch network (1990) was composed of alternating stages of switches and con-
centrators. The concentration ratio at each stage was adjusted to maximize efficiency and min-
imize loss due to the dropping flow control. Each channel operated serially with a bandwidth
of 350 Mbits/s.

would arbitrate for one of the output channel groups. If it succeeded in acquiring any
channel of the requested group, it would proceed to the next stage of the network.
Otherwise, it would be dropped.

The concentrator components acted to multiplex a large number of lightly loaded
channels onto a smaller number of more heavily loaded channels. This might be done,
for example, just before an expensive channel that must traverse several packaging
levels. Each concentrator chip had up to 32 inputs and up to 12 outputs. All inputs
and outputs were equivalent. Each frame, up to 12 packets, arriving on any 12 of
the 32 inputs would be routed to the 12 outputs. Any additional packets arriving on
other inputs during that frame would be dropped.

We can use probabalistic analysis to compute the probability of packet loss at
each stage of the Monarch network. We assume that all input channels are loaded
uniformly and that traffic is distributed uniformly over the outputs. The address
hashing and access combining help make this assumption realistic. Let the probability
that an input is busy (the input duty factor) be Pi on a switch with I inputs, G output
groups, and C channels per output group. Then the probability that a particular input
i has a packet for a particular output group j is Pij = Pi/G. Then, over all of the
inputs, the probability that there are k requests for output j is given by the binomial
distribution

Pk =
(

I

k

)(
Pi

G

)k (
1 − Pi

G

)I−k

.

The probability that an output channel is busy, Po, can be computed by summing
over the cases of output channel occupancy k. For k ≤ C, the probability that output

470 C H A P T E R 23 Performance Analysis

channel j is not busy is C − k/C. For k ≥ C the probability is zero. This gives us the
summation:

Po = 1 −
C−1∑
k=0

(
C − k

C

)
Pk

= 1 −
C−1∑
k=0

(
C − k

C

)(
I

k

)(
Pi

G

)k (
1 − Pi

G

)I−k

. (23.14)

Now that we have the output duty factor, the efficiency of the stage, the fraction of
packets that arrive at an input that successfully acquire an output, can be calculated
as the total output traffic divided by the total input traffic:

P (transmit) = GCPo

IPi

, (23.15)

and the loss is just

P (drop) = 1 − P (transmit) = 1 − GCPo

IPi

. (23.16)

Table 23.1 lists the connection pattern of a 64-K-port Monarch network and
presents an analysis of packet loss in that network. For each stage, we apply Equa-
tion 23.14 to compute Po for that stage and hence Pi for the next stage. Given Pi and
Po for each stage, we then compute the efficiency and loss by using Equations 23.15
and 23.16.

Table 23.1 shows that the 64-K Monarch network configured as shown has a
loss of less than 10% with 100% input load. This is achieved at significant cost by
overprovisioning the links so that the inputs to the switches (except the first) are
less than 65% busy and the inputs to the concentrators are less than 25% busy. We
explore the relationship between link duty factor and loss in Exercise 23.7.

Adding buffering to a network can reduce loss by delaying a packet until an
output is idle rather than dropping it. With buffering (but no backpressure) a packet
is dropped only when all outputs are busy and all buffers are full. We explore the
analysis of a Monarch-like network with buffering in Exercise 23.9.

23.5 Bibliographic Notes

A good general reference to queuing theory is Kleinrock [99], while Bertekas [20]
presents modeling techniques more specialized to networks. Examples of proba-
bilistic analyses of networks are given by Dally [46] and Agarwal [2]. An analysis
modeling partially full finite queues is also given by Dally [47]. Pinkston and War-
nakulasuriya develop models for deadlocks in k-ary n-cube networks [152].

23.6 Exercises 471

Table 23.1 Specification and analysis of a 65,536-port Monarch network (from [156]). For each of the
six stages (four switch stages and two concentrator stages) the columns I , G, and C specify
the connectivity of the network by describing the number of inputs I , separately addressed
output groups G, and channels per output group C. The remaining columns show the results
of analyzing this network configuration assuming a 100% duty factor on the input channels of
switch 1. Pi gives the input load to each stage (equal to Po of the previous stage). The efficiency
and loss columns give the probability of a packet being transmitted or dropped, respectively, at
each stage.

Stage I G C Pi Efficiency Loss

Switch 1 8 16 2 1.00 0.977 0.023
Concentrator 1 32 1 12 0.24 0.993 0.007
Switch 2 12 16 2 0.65 0.975 0.025
Concentrator 2 32 1 12 0.24 0.995 0.005
Switch 3 12 8 3 0.63 0.986 0.014
Switch 4 12 16 2 0.62 0.977 0.023

TOTAL 0.907 0.093

23.6 Exercises

23.1 Non-uniform traffic — a queuing model. In the example of Figure 23.10, consider the
case in which sources 0 and 1 distribute their traffic uniformly over destinations 2
and 3 and vice versa. Compute the latency vs. offered traffic curve for the queuing
model under this traffic pattern. What is the average occupancy of the first stage and
second stage switch queues?

23.2 Queuing delay in a concentrator. A 4:1 concentrator is fed by four terminals that
each transmit 16-byte packets at a rate of 1 Gbit/s with an average rate of one
packet per microsecond (an average bandwidth of 128 Mbits/s). The network chan-
nel of the concentrator has a bandwidth of 2 Gbits/s. Assuming that the inter-arrival
interval is exponentially distributed, compute the following: (a) the probability that
the 2 Gbits/s network channel is over-subscribed (more than two inputs transmitting
packets simultaneously), and (b) the average waiting time (queuing delay) seen by a
packet at the input of the concentrator.

23.3 Queuing model of dropping flow control. Derive the queuing model given in Exer-
cise 2.9. Assume packets are dropped halfway through the network on average and
are immediately reinjected into an input queue.

23.4 Throughput of a circuit-switched butterfly. Use probabilistic analysis to calculate
expected throughput of a 2-ary 3-fly with circuit switching. Assume uniform traffic
and a service time of T0 = 4 cycles.

23.5 Probabilistic modeling of a k input switch. Extend Equation 23.13 for a k input switch
with uniform traffic.

472 C H A P T E R 23 Performance Analysis

23.6 Probabilistic modeling of arbitrary traffic patterns. Extend the equation you derived in
Exercise 23.5 to handle an arbitrary traffic matrix in which λij is the traffic from
input i to output j .

23.7 Tradeoff of duty factor and loss in the Monarch network. Plot a graph of network loss as
a function of (a) switch input duty factor and (b) concentrator input duty factor for
Monarch networks similar to the one analyzed in Table 23.4. You will need to vary
the parameter C for each stage to adjust the duty factor.

23.8 Tradeoff of cost and loss in the Monarch network. Assume that the cost of the Monarch
network is proportional to switch and concentrator pin count. Plot a graph of network
loss as a function of network cost by varying G and C. At each point on the graph,
experimentally determine the network configuration that requires minimum cost
(pin-count) to achieve a given loss.

23.9 Buffering in the Monarch network. The probability of dropping a packet, Equa-
tion 23.16, in a network with dropping flow control can be greatly reduced by adding
some buffering and dropping a packet only when all buffers are full. Redo the analysis
of Table 23.4 assuming that each input has buffering for F packets. With each frame,
all new input packets and all buffered packets compete for the outputs. For packets
requesting a particular output group j , the first C packets acquire output channels.
The first F packets at each input that are not granted an output channel are buffered.
Any additional packets at each input are dropped. What is the dropping probability
for the configuration of Table 23.4 for the case in which F = 8?

23.10 Simulation. For the model and traffic pattern of Exercise 23.1, plot the saturation
throughput as a function of internal channel bandwidth μc. Compare this model to
a simulation of the network.

23.11 Simulation. Compare the throughput result from Exercise 23.4 to a simulation of
the network. Comment on any differences.

23.12 Simulation. For the buffered Monarch network of Exercise 23.9, compare the model
with simulation. Comment on any differences.

C H A P T E R 24

Simulation

The queueing theory and probabilistic analysis techniques discussed in Chapter 23
can model many aspects of a network, but there are some situations that are simply
too complex to express under these models. In these cases, simulation is an invaluable
tool. However, simulation is a double-edged sword — while it can provide excellent
models of complex network designs, simulators and simulations are equally complex.
To that end, the quality of simulation results is only as good as the methodology used
to generate and measure these results.

In this chapter, we address the basics of simulation input, measurement, and
design. Not all network simulators need to model the intricate details of router
microarchitecture, and we begin with a discussion of the different levels of simula-
tion detail available to a network designer. As important as choosing the appropriate
modeling accuracy is selecting the workload or input for a network simulation. Both
application-driven and synthetic techniques for generating workloads are covered.
Once the input and model for a simulation are defined, the performance of the
network must be measured. Several statistical approaches for both measuring net-
works and assessing the accuracy of those measurements are presented. Finally, the
basics of simulator design are introduced along with several issues specific to network
simulators.

24.1 Levels of Detail

Before simulation of a network begins, the designer must choose an appropriate
level of detail for the simulation. Using an extremely accurate simulator is always
safe in the sense that modeling inaccuracies will be avoided, but it is also expen-
sive in terms of the time required to both write and run the simulator. A more

473

474 C H A P T E R 24 Simulation

reasonable and efficient approach is to choose a level of simulation detail that will
capture the aspects of the network’s behavior important to the designer and avoid
simulating unnecessary details of the network.

A typical range of levels of detail for network simulations is shown in Figure 24.1.
The least detailed interface level provides only the functionality of the network
interface combined with simple packet delivery. This level is also often referred to a
behavioral simulation. Behavioral simulations are most useful in early design stages,
where aspects of a design which use the network, such as coherence protocols, need
to be tested. Although the details of the final network implementation may not be
known, the interface level can still provide the general behaviors of the network.

The capacity level is introduced as an intermediate level between purely behav-
ioral and very detailed network models. At this level, basic constraints are placed
on the capabilities of the network, such as channel bandwidths, buffering amounts,
and injection/ejection rates. With these capacities in place, initial performance of
the network can be assessed and the simulator is still simple enough to be quickly
changed based on preliminary results.

Finally, the microarchitectural details of the network are incorporated at the flit
level. Individual flits are modeled in this level, requiring the introduction of structures

Interface level

Models network interfaces and provides packet delivery.

Generates simple approximations for packet latency based purely on distance.

Capacity level

Adds simple constraints on resource capacities, such as channel bandwidths
or bounds on the total number of packets in flight.

Resource contention can affect packet latency.

Flit level

Resource usage is tracked on a flit-by-flit basis, requiring a detailed modeling
of most router components, including buffers, switches, and allocators.

Packet latency is accurately modeled in terms of flit times or router cycles.

Hardware level

Adds implementation details of the hardware, yielding area and timing
information.

Latencies can be expressed in terms of absolute time (that is, seconds).

Figure 24.1 A hierarchy of simulation levels of detail. The topmost levels provide the least accuracy, but
simulate quickly. Moving down the list gives increasing simulation detail at the cost of longer
simulation times.

24.2 Network Workloads 475

for buffering, switching, and arbitration. Assuming a correct modeling of these struc-
tures, the performance information at this level of detail can be very accurate, but is
generally expressed in terms of flit times (cycles). By moving to the hardware level, flit
times are replaced with the timing information from a physical design and detailed
information about the implementation cost/area of the router microarchitecture is
determined.

24.2 Network Workloads

The network workload refers to the pattern of traffic (such as packets) that is applied
at the network terminals over time. Understanding and modeling load enables us
to design and evaluate topologies and routing functions. The most realistic traffic
patterns are application-driven workloads generated directly by the clients using the
network. For example, in a shared-memory interconnect, the network traffic consists
of coherence messages send between the various processing nodes. If we model not
only the network, but also the application running on the processors, our workload
is exactly that required by the application. While application-driven workloads give
us the most accurate modeling of the network, it is often difficult achieve a thorough
coverage of expected traffic with these methods exclusively. Following our shared-
memory example, workloads are tied directly to applications, so expanding the set
of workloads involves creating new applications, which is generally quite expensive.
Alternatively, a carefully designed synthetic workload can capture the demands
expected for the interconnection network, while also remaining flexible.

24.2.1 Application-Driven Workloads

Ideally, the performance of an interconnection network is measured under application-
driven workloads. That is, the sequences of messages applied to the network are gen-
erated directly from the intende d application(s) of the network. One approach for
generating these workloads is to simulate the network clients in addition to the net-
work itself. For example, in a processor-memory interconnect, models for both the
processors and memory modules would be required. Then, performance of the inter-
connection network is evaluated by running relevant applications on the processing
elements. The memory and inter-processor messages generated by the application
are the network traffic. This “full-system” simulation approach is often called an
execution-driven workload. An execution-driven workload is certainly accurate, but
one drawback is that feedback from the network influences the workload. This can
make it difficult for a designer to isolate bottlenecks in the interconnection network
— any change in the network design not only affects the network, but it can also
affect the workload.

An alternative to simultaneously modeling the network and its clients is to in-
stead capture a sequence of messages from an application of the network and then
“replay” this sequence for the network simulation. These trace-driven workloads can

476 C H A P T E R 24 Simulation

either be captured from a working system or from an execution-driven simulation, as
discussed above. For example, in an IP router application,a sequence or trace of packet
arrivals could be recorded for a period of time. For each arrival, the time, length, and
destination of the packet would be stored. Then, this sequence is simply recreated
for the network simulation. In a trace captured from an execution-driven simu-
lation, the network being simulated might offer only a low level of detail so the
simulation can be performed quickly. This trace could then be reused for a detailed
simulation of the network only. Since the traces are captured in advance, feedback
from the network does not affect the workload. Although this can reduce accuracy,
for some applications this may not be a significant issue. For example, in an IP router,
feedback only affects the workload on long time scales.

24.2.2 Synthetic Workloads

As mentioned previously, application-driven workloads can be too cumbersome to
develop and control. This motivates the inclusion of synthetic workloads, which
capture the salient aspects of the application-driven workloads, but can also be more
easily designed and manipulated. We divide our discussion of synthetic workloads
into three independent axes: injection processes, traffic patterns, and packet lengths.
In some situations, these axes may not be truly independent and we highlight this
issue in Exercise 24.3.

The first parameter of interest for any injection process is the average number of
packets it injects per cycle, or its injection rate. Perhaps the simplest means of injecting
packets at a rate r is with a periodic process. Figure 24.2(a) shows the behavior of
a periodic injection process with rate r. The binary process A indicates a packet
injection when its value is 1 and is 0 otherwise. As shown, the period T between
injections is always 1/r, so the average injection rate is obviously r.

From inspection, the periodic injection process may seem overly simplistic, as it
does not incorporate fluctuations that might be expected from a realistic injection

(a)

Time

In
je

ct
io

n
pr

oc
es

s

T=1/r

(b)

Time

In
je

ct
io

n
pr

oc
es

s

E [T]=1/r

Figure 24.2 The behavior of a periodic (a) and Bernoulli (b) injection process with rate r over time. As shown,
the periodic source has a constant period T = 1/r and the Bernoulli process has an expected
period of E[T] = 1/r.

24.2 Network Workloads 477

process. This leads to perhaps the most common injection processes used in network
simulations, the Bernoulli process. For a Bernoulli process with rate r, the injection
process A is a random variable with the probability of injection a packet equal to
the process rate, P (A = 1) = r. This is equivalent to flipping a weighted coin with a
probability r of heads each cycle — if the flip results in heads, a packet is injected.
As shown in Figure 24.2(b), this gives geometrically spaced packet injections.

Although the Bernoulli process does incorporate randomness into the injection
process, it is still quite simple as it lacks any state. This prevents it from modeling
time-varying or correlated traffic processes. In practice, many traffic sources are in
fact time-varying. For example, Internet traffic is diurnal as more people are on-line
during the day than at night. The Bernoulli process may still be a good estimate for
short periods of time in a slowly varying process, but many injection processes also
vary rapidly on small time scales.

A rapidly changing injection process is often called bursty. Many models have
been proposed to capture particular burstiness aspects of different traffic sources
such as voice connections, video streams, and HTTP traffic. One popular model for
modeling burstiness is the Markov modulated process (MMP). In an MMP, the rate
of a Bernoulli injection process is modulated by the current state of a Markov chain.

An example of a two-state MMP is shown in Figure 24.3. As labeled, the two-
states represent an “on” and “off” mode for the injection process, with the respective
injection rates being r1 and 0. Each cycle, the probability of transitioning from the
off state to the on state is α and from on to off is β. This MMP describes a bursty
injection process, where during the bursts injections occur with rate r1 and outside a
burst, the injection process is quiet. Also, the average length of a burst is given by 1/β

and the average time between bursts is 1/α. To determine the injection rate of this
system, the steady-state distribution between the on and off states is determined.
First, let x0 represent the probability of being in the off state and x1 the probability
of the on state. Then, in steady-state

αx0 = βx1.

Since x0 + x1 = 1, the steady-state probability of being in the on state is

x1 = α

α + β
.

off on

β

α

rate=0 rate= r1

Figure 24.3 A two-state Markov-modulated process (MMP). In the off state, no injections occur and in the
on state injections are Bernoulli with rate r1.

478 C H A P T E R 24 Simulation

100 1000

Packet size (bytes)

1e0

1e1

1e2

1e3

1e4

1e5

O
cc

u
ra

n
ce

s

Figure 24.4 A distribution of Internet (IP) packet lengths captured at the University of Memphis on October
4, 2002.

Therefore, the injection rate of this MMP is

r = r1x1 = αr1

α + β
.

A more complex MMP is studied in Exercise 24.1.
The basics of traffic patterns were presented in Section 3.2, which leaves the

determination of packet lengths. A straightforward approach for choosing packet
lengths is to use a packet length distribution captured from an application-driven
workload, as described in Section 24.2.1. Figure 24.4 shows an example of such a
trace gathered from an IP router. Then, for each injected packet, the corresponding
length is chosen with a probability equal to the fraction of occurrences of that packet
length in the captured distribution.

24.3 Simulation Measurements

When estimating network performance, there are two main sources of error: system-
atic error and sampling error [66]. Systematic errors are errors introduced by bias in
the measurements or simulation itself and for network simulation are generally a re-
sult of the initialization of the simulator. By choosing an appropriate warm-up period
for a simulation, as discussed in Section 24.3.1, the impact of systematic errors can
be minimized.

24.3 Simulation Measurements 479

Once the network is warmed up, it has necessarily reached a steady state. That
is, the statistics of the network are stationary and no longer change with time.
At this point, the focus shifts to sampling the network so that an accurate esti-
mate of a particular network parameter can be determined. Two common sampling
approaches, the batch means and replication methods, are presented in Section 24.3.2.
Using one of these methods combined with an confidence interval (Section 24.3.3)
for the measurement provides a rigorous, statistical approach to both measure a
network parameter and also to assess the accuracy of that measurement.

24.3.1 Simulator Warm-Up

For simplicity, most simulators are initialized with empty buffers and idle resources
before any packets are injected. While easy to implement, this introduces a sys-
tematic error into any measurement of the network. For example, packets that
are injected early in the simulation see a relatively empty network. These pack-
ets have less contention and therefore traverse the network more quickly. How-
ever, as buffers begin to fill up, later packets see more contention, increasing their
latencies. Over time the influence of the initialization becomes minimal, and at this
point the simulation is said to be warmed up. By ignoring all the events that hap-
pen before the warm-up point, the impact of systematic error on measurements
can be minimized. Unfortunately, there is no universal method for determining the
length of the warm-up period, but most approaches follow the same basic
procedure:1

1. Set the initial warm-up period Twu based on a heuristic.

2. Collect statistics, ignoring samples during the estimated warm-up period.

3. Test the remaining samples to determine if they are stationary. If stationary,
use Twu as the warm-up period. Otherwise, increase Twu and repeat steps 2
and 3.

Although many complex approaches have been proposed for the details of the
above procedure, we describe a relatively simple approach that tends to work well in
practice. First, the initial estimate of the warm-up period is picked to be a number of
events that can be quickly simulated (on the order of 100 to 1,000 events). This small
initial guess limits the overhead of estimating the warm-up period for simulations
that quickly reach steady state.

Statistics are collected from a simulation run, ignoring events during the warm-
up period. For the example we discuss here, we are estimating average packet latency,
so batch averages of the events are computed. That is, a single sample point is the

1. This procedure is adapted from [142].

480 C H A P T E R 24 Simulation

average of many individual packet latencies. The number of samples per average is
called the batch size and should be statistically significant: at least 30 to 50 samples.
For our example, the batch size is 100, so the first sample represents the first 100
packet arrivals, the second the second 100 arrivals, and so on.

Using the samples after the warm-up period, a linear fit of the data is performed.
If the line is approximately flat within some predetermined precision, the network is
considered in steady state. Otherwise, the warm-up is lengthened and the procedure
repeated.

Figure 24.5 shows an example time-evolution of the packet latency in a mesh
network. Even with a batch size of 100 samples, a single simulation does not seem
steady after the first 6,000 packet arrivals. This is simply because we are sampling
a random process, which naturally introduces some sampling error. By averaging
several independent simulator runs into an ensemble average, this sampling error can
be greatly reduced. Figure 24.5 shows that with an ensemble of 10 independent
simulation runs, the system appears to stabilize after around 4,000 sample points.

While the warm-up period can be estimated from a single simulator run, an
ensemble of several runs will greatly reduce the chance of underestimating the warm-
up period.2 Of course, this comes at the expense of additional simulation time.

0 2000 4000 6000

Total packet arrivals

0

50

100

150

P
ac

ke
t

la
te

n
cy

 (
cy

cl
es

)

Single simulation
Ensemble

Figure 24.5 Average packet latency in an 8-ary 2-mesh at 70% capacity. Each sample is a time average of
100 individual packet latencies and the ensemble average is composed from 10 independent
simulation runs.

2. It is generally not useful to create an ensemble of more than 20 to 30 independent runs.

24.3 Simulation Measurements 481

24.3.2 Steady-State Sampling

Given a simulation that has reached steady state after an appropriate warm-up period,
the next step is to measure the underlying process. We present two basic approaches
for making these measurements, the batch means method and the replication method,
both of which are reasonable techniques to use in a network simulator.

In the batch means method, measurements are taken from a long, single simu-
lation run. Like the batching used to smooth the samples when determining the
warm-up period, the samples are split into many batches and statistics are first
accumulated for these batches. Unlike our warm-up batches though, the batch size
used for this approach is selected based on the entire length of the simulation so
that there are 20 to 30 batches total. Given a set of observations {X0, X1, . . . , Xn−1}
from a single simulation, individual batches B are created based on the number of
batches k and batch size s. For simplicity, we let n = sk and then batch means are
computed as

B̄i = 1
s

s−1∑
j=0

Xsi+j , 0 ≤ i < k.

Then the sample mean is simply the mean of the batch means:

B̄ = 1
k

k−1∑
i=0

B̄i .

The usefulness of batching might be unclear at this point because the overall mean
we have computed B̄ is equal to the mean of original samples. However, as we will see
in the next section, an estimate of the standard deviation of the underlying process
is useful for accessing the quality of our sample mean. For batch means, an estimate
of the standard deviation σS is

σ 2
S = 1

k − 1

k−1∑
i=0

(B̄ − B̄i)
2.

Since each sample in the batch means method is an average over many of the original
samples, the variance between batch means is greatly reduced, which in turn reduces
the standard deviation of the measurements. This leads to better confidence in our
estimates of the mean.

The main drawback of the batch means approach comes from an analysis of its
statistical implications. Ideally, one would want each batch collected to be indepen-
dent from all the other batches. Otherwise, measures such as the overall mean B̄

could be biased by correlation between the batches. In reality, batches from a single
simulation run are not independent because the packets queued in the network at
the end of one batch remain in the network at the beginning of the next batch. This
effect can be reduced by making the batches as large as possible, which explains the
choice of using only 20 to 30 total batches.

482 C H A P T E R 24 Simulation

An alternative sampling approach, the replication method, solves the problem
of correlation between batches by taking samples from many independent runs of
the network simulator. Instead of a single long run, as in batch means, several smaller
runs are collected. Generally, using more than 30 total runs yields little improvement
in accuracy; rather, the length of the individual runs should be increased. Also, it is
important that each individual run contain at least hundreds of samples to ensure sta-
tistical normality. For the kth simulation run and its observations {X(k)

0 , X
(k)

1 , . . . , X
(k)

n−1}
a single mean is computed:

R̄k =
n−1∑
i=1

X
(k)
i , 0 ≤ k < r.

The sample mean R̄ is then the mean of the means from the individual runs

R̄ =
r−1∑
k=0

Rk

and the standard deviation can be estimated as

σ 2
S = 1

r − 1

r−1∑
k=0

(R̄ − R̄k)2.

While replication eliminates correlation between the mean samples Ri , it is more
susceptible to systematic errors introduced by initialization. Unlike the batch means
method that has only a single initialization to affect the samples, many initializations
are performed in the replication method. To minimize the impact of this on the
replication means, it is suggested that 5 to 10 times more samples be collected in
each run as were discarded during the warm-up period.

24.3.3 Confidence Intervals

Once a designer has collected samples of a simulation, either through the batch
means or replication method, the next logical question is: How well does this data
represent the underlying process? Confidence intervals are a statistical tool that let us
quantitatively answer this question. Given a particular group of samples, a confidence
interval is a range of values that contains the true mean of the process with a given
level of confidence.

To compute a confidence interval, it is assumed that the underlying process
being measured is stationary and normally distributed. For network simulations, the
warm-up procedure described in the previous section ensures that the process is sta-
tionary. While we cannot assume the process being measured is normally distributed,
the central limit theorem tells us that the cumulative distribution of many observa-
tions of an arbitrary random process approaches the normal distribution. Because

24.3 Simulation Measurements 483

most simulations capture hundreds to thousands of samples, this is an issue that can
generally be ignored.

For a set of n observations of the stationary process {X0, X1, . . . , Xn−1}, the
sample mean X̄ is computed as

X̄ = 1
n

n−1∑
i=0

Xi

and is our best guess at the actual mean of the process X̃. A 100(1 − δ) percent
confidence interval then bounds the range in which the actual mean falls in terms of
the sample mean:

X̄ − σStn−1,δ/2√
n

≤ X̃ ≤ X̄ + σStn−1,δ/2√
n

.

This equation tells us that there is a 100(1 − δ) percent chance that the actual mean
of the parameter being measured X̃ is within the interval defined by the sampled
mean X̄ plus or minus an error term. As shown, the error term falls off as n−1/2 and
is also proportional to both the sample’s standard deviation σS and the parameter
tn−1,δ/2. The standard deviation can be estimated directly from the samples as

σ 2
S = 1

n − 1

n−1∑
i=0

(X̄ − Xi)
2

or from the standard deviations corresponding to the sampling methods discussed in
Section 24.3.2.

The last parameter of the error term tn−1,δ/2 is Student’s t -distribution and roughly
accounts for the quality of our estimate of the standard deviation based on the
number of samples used to compute σS minus one n − 1, often referred to at the
degrees of freedom, and the half confidence interval δ/2. Several values of t are given
in Table 24.1 for 95% and 99% confidence intervals. More values of t can be found
in standard mathematical tables, such as those in [201].

Table 24.1 Student’s t-distribution for 95% and 99% confidence levels.

n − 1 95% 99%

1 6.3137 31.821
5 2.0150 3.3649
10 1.8125 2.7638
50 1.6759 2.4033
100 1.6602 2.3642
∞ 1.6449 2.3263

484 C H A P T E R 24 Simulation

10

Total packet arrivals (x 100,000)

150

160

170

180

A
vg

. l
at

en
cy

 (
cy

cl
es

)

0 2 4 6 8

Figure 24.6 Average packet latency and 95% confidence intervals in an 8-ary 2-mesh near saturation sam-
pled using the batch means method (30 batches total) vs. the number of arrivals sampled. The
upper and lower limits of the confidence intervals are indicated by the level of the horizontal
stops at the ends of the vertical lines. Simulation starts after a 5,000 arrival warm-up.

Figure 24.6 shows the confidence intervals given by the batch means method on
average latency versus the number of packet arrivals sampled. At each intermediate
confidence interval shown, all samples up to that point are split into 30 equal-sized
batches. While the convergence of the confidence intervals may appear slow, the
interval size follows the expected n−1/2 shape.The slow convergence is also explained
by the fact that the network under test is operating near saturation. In terms of relative
confidence, the intervals close to 5% of the average latency in approximately 300,000
arrivals while taking nearly 1,000,000 arrivals to close to roughly 2.5%. Also note
that the final average latency is not within the confidence range of the of first several
confidence intervals, indicating the negative affects of correlation between batches
on the accuracy of the intervals.

24.4 Simulator Design

Although a general discussion of discrete-event simulator design is beyond the scope
of this book, there are several basic areas that any network simulator designer or user
should understand. We begin with a simple explanation of two basic approaches

24.4 Simulator Design 485

to simulator design, cycle-based and event-driven simulators. We then address an
issue specific to network simulation — modeling the infinite source queues used to
decouple the injection process from the network. Next , almost any simulator needs
a source of random numbers to model the injection processes and we discuss the key
issues associated with random number generation. Finally, we provide some practical
advice for designers encountering unexpected behavior from their simulator.

24.4.1 Simulation Approaches

There are two common approaches for designing a network simulator: cycle-based
and event-driven simulation. To explain both design approaches and highlight their
differences, we will use both to model a simple output-queued router node. In this
node, arriving packets are immediately forwarded to a single output queue corre-
sponding to their output port. The output queues have enough write bandwidth to
simultaneously accept packets from all the input ports. For simplicity, the total delay
of the node is assumed to be one simulator cycle, and an infinite buffer will also be
used.

In cycle-based simulation, time proceeds in two phases, generally, one phase is
loosely associated with reading global state and the other with writing that state. By
separating the simulation into reading and writing phases, any procedure that needs
to read the global state can be invoked before the procedures that can update this
state.

To illustrate this concept, consider our example of the shared memory switch
modeled using cycle-based simulation (Figure 24.7). At the beginning of a simulation
cycle, packets are arriving at each node and the first phase of the simulation occurs.
Any function that reads the global state, such as ReadInputs in our case, must be
registered with the simulator and is invoked during this first phase. For this example,
ReadInputs is called once per node simply to read any packets arriving at the inputs
of the node and store them in the appropriate queue.

In the second phase of the cycle, the functions that write global state are
invoked — WriteOutputs for this example. WriteOutputs selects an appro-
priate packet for each output and writes it to the inputs of the next node to be
read by ReadInputs in the subsequent cycle. This simple two-phase procedure is
repeated for the duration of the simulation. While the definition of the functionality
of either stage is loose, the critical invariant is that all the functions within a phase
can be evaluated in any order without changing the outcome of the simulation. This
is explored further in Exercise 24.6.

An alternative to cycle-based simulation is event-driven simulation. Unlike cycle-
based simulations, event-driven simulations are not tied to a global clock, allow-
ing for significantly more flexibility in modeling. This is especially useful when the
underlying design is asynchronous. Event-driven simulations are built on a very sim-
ple framework of individual events. Each event is a data structure with three fields:
an invocation time, an action (function call), and data (function arguments). Simula-
tion proceeds by creating a event queue of all pending events, sorted by their execution

486 C H A P T E R 24 Simulation

void ReadInputs(int node) {
Packet *p;
int input, output;

// Visit each input port at the node and read
// the arriving packets

for (input = 0; input < NumInputs(); inputs++) {
p = ReadArrival(node, input);

if (Valid(p)) {
output = OutputPort(node, p);
AddToQueue(node, output, p);

}
}

}

void WriteOutputs(int node) {
Packet *p;
int output;

// Visit each output queue at the node and select
// a packet to be forwarded to the next node

for (output = 0; output < NumOutputs(); outputs++) {
if (! OutputQueueEmpty(node, output)) {

p = SelectFromQueue(node, output);
WriteOutgoing(node, output, p);

}
}

}

Figure 24.7 A C-like code snippet for a simple cycle-based simulation of a network of output queued
switches.

times. The pending event with the lowest time is removed from the list and its
corresponding action is invoked. Event actions can update state as well as issue future
events that occur as a result of the given action.

To better understand the nature of event-driven simulation, the same output
queued switch design considered in the cycled-based case is shown in Figure 24.8
written for an event-driven simulator. Simulation begins with the creation of an
Arrival event for a packet at a given node. As before, the arriving packet is queued
corresponding to its output port, but in the event-driven simulator, we also need an
event to trigger the scheduling of output. Our implementation gives this responsi-
bility to the first packet that arrives in the queue to ensure that a non-empty queue

24.4 Simulator Design 487

void Arrival(int node, Packet *p) {
int output;

// Add the arriving packet to the queue
// corresponding to its desired output

output = OutputPort(node, p);

// If the queue is empty, add an
// output scheduling event

if (OutputQueueEmpty(node, output)) {
AddEvent(1, ScheduleOutput, node, output);

}

AddToQueue(node, output, p);
}

void ScheduleOutput(int node, int output) {
Packet *p;
int next;

// Select a packet from the output queue
// and forward it to the next node

p = SelectFromQueue(node, output);
next = DownStreamNode(node, output);

AddEvent(1, Arrival, next, p);

// If the output queue still contains
// packets, another ScheduleOutput event
// should occur in the next cycle

if (! OutputQueueEmpty(node, output)) {
AddEvent(2, ScheduleOutput, node, output);

}
}

Figure 24.8 A C-like code snippet for a simple event-driven simulation of a network of output queued
switches.

always gets a scheduling event and no duplicate events are created. The new event
is placed on the event queue by the AddEvent call. The first argument gives the
time the event should be invoked relative to the current time which for this

488 C H A P T E R 24 Simulation

example is one cycle from the current time. The AddEvent call takes the action
name, ScheduleOutput, followed by its arguments.

The ScheduleOutput action is responsible for selecting a packet from the
output queue and forwarding it to the next node in the network. The forwarding is
performed by creating another Arrival event for the packet at the next node. One
more step is necessary to ensure that the output is scheduled any time the output
queue is empty. If any packets remain in the queue,another ScheduleOutput event
is scheduled two time units in the future.The two-time-unit space is required because
we have synchronized all arrivals on every other time step, leaving the remaining time
steps for output scheduling, much like the two-phase approach used in the cycle-
based simulator. Again, any events assigned to the same time step must be able to be
performed in any order without affecting the correctness of the simulation.

Unlike the simple two-phase simulation loop of a cycle-based simulator, an
event-driven simulation must maintain a sorted list of events in order to deter-
mine the next event to be executed. Additionally, insertion into this list should be
efficient. This naturally leads to a heap-based implementation. A simple binary heap
gives O(log n) insertion and removal of the next event, but specialized data structures
designed specifically for event-driven simulators yield even more efficient implemen-
tations. For example, the calendar queue [31] gives O(1) insertion and removal of
the next event.

24.4.2 Modeling Source Queues

As discussed in Section 23.1, the standard open-loop measurement setup for an in-
terconnection network decouples each injection process from the network with an
infinite queue. Although the presence of this queue does allow independent control
of the injection process, it can cause some practical problems for networks that are
being simulated beyond saturation. In this case, the source queue’s size becomes
unbounded and stores a number of packets roughly proportional to the length of
the simulation. If the simulator naively allocated memory for every packet in this
queue, the memory footprint of the simulation would also be unbounded. To further
complicate any attempt to compactly represent the input queues, it could be neces-
sary to track the exact age of the packets in the queue, which would be needed, for
example, by a flow control technique that uses age-based priorities.

In a straightforward implementation, the injection processes are operated in
lock-step with the rest of the network simulation. During each simulator cycle,
the injection process has an opportunity to add a new packet to its corresponding
injection queue. However, for any given cycle, the network sees only the first packet
in any source queue and additional queued packets do not immediately affect the
simulation. This observation leads to a simple and efficient solution for modeling
the source queues without explicitly storing all the packets. Instead of forcing each
injection process to be synchronized with the network, they are allowed to lag
behind, operating in the past. Then the time of the injection process is advanced
only when its corresponding source queue becomes empty.

24.4 Simulator Design 489

An example of the operation of a source injection queue is shown in Figure 24.9.
A portion of the injection process history is shown as a segment of tape, with slots
corresponding to each simulation cycle. If the slot is empty (grayed) no packet is
injected during that cycle; otherwise, the slot is filled with a packet to be injected.
Similarly, a source queue is shown as grayed when empty and labeled with the corre-
sponding packet name when occupied. Because of the lagging injection process, the
source queue needs enough storage for only a single packet.

The example begins with both the network time and injection process time
synchronized at cycle 0 and no packet in the source queue (Figure 24.9[a]). As the
network time is advanced, the state of the source queue is checked. Since it is empty
in this case, the injection process time is also advanced until a packet is injected or

(a) (b)

(c) (d)

IP Net

B

Source
queue

BA C

IP
Net

A

Source
queue

BA C

IP
Net

A

Source
queue

BA C

Injection
process

time

Network
time

Source
queue

To
network

Injection
processBA C

Time

0 1 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

2

Figure 24.9 Example operation of a lagging injection process.

490 C H A P T E R 24 Simulation

it matches the network time. This causes packet A to be injected and the injection
process time to advance one cycle (Figure 24.9[b]). This procedure is repeated for
cycles 2 and 3, but since the source queue is still occupied by packet A, the network
time advances two cycles and the injection process time remains fixed at cycle 1
(Figure 24.9[c]). Packet A leaves the source queue during cycle 3, leaving the queue
empty at the beginning of cycle 4. The injection process time is first advanced to
cycle 2, but since no packet is injected, it continues to cycle 3, causing packet B to
be injected (Figure 24.9[d]).

24.4.3 Random Number Generation

Because many of the traffic processes used in network simulations are stochastic, a
network simulator needs to generate random numbers in order to properly imple-
ment these sources. For example, the following C-like pseudo-code models a typical
Bernoulli injection process with rate r:

if (random() < r) {
inject_packet();

}

The function random generates a floating-point value uniformly distributed between
0 and 1. This code might look deceivingly simple; however, we have hidden the sticky
issue of actually generating the random number.

First, there are several methods for generating truly random numbers that are
employed in many digital systems, especially those involved in security and
encryption. These approaches generally sample a natural random noise source, such
as thermal noise (Johnson noise) in a resistor or a reverse-biased diode. However, for
practical reasons, most software opts instead for pseudo-random number generators
(PRNGs).

Most software PRNGs have the same basic structure. The state of the PRNG
is stored using a seed value. Then, when the user requests a new random value, the
PRNG algorithm computes both the “random” value and a next state. The value is
returned to the user and the seed is updated with the next state. Of course, there is
nothing actually random about this process, but as long as the PRNG algorithms are
chosen appropriately, the outputs from the function will meet many statistical tests
of randomness.

Unfortunately, for some of the most common random number generators avail-
able to programmers, the PRNG algorithms are sub-optimal. Notable examples are
the rand and drand48, which are part of many C libraries. The low bits generated
by rand tend to have small periods and are not very random. Although drand48 is a
slight improvement, it still suffers from some significant problems. Instead, designers
should adopt random number generators that have a rigorous theoretical justifica-
tion in addition to empirical verification. Good examples include Knuth’s [101],
Matsumoto and Kurita’s [121], and Park and Miller’s [141].

24.5 Bibliographic Notes 491

Finally, a good PRNG can have an important practical advantage over a truly
random number source. Because PRNGs are deterministic, as long as their initial
seed is fixed, the sequence of random numbers, and therefore the behavior of the
program, is also deterministic. This allows randomization between runs by changing
the seed value, but also allows repeatability of runs for recreation of specific results
and for debugging.

24.4.4 Troubleshooting

As with most simulators, the best methodology for using them is to first develop an
intuition and back-of-the-envelop or modeling calculation for the results that you
expect. Then use the simulator to verify this intuition. If you follow this procedure,
most of the time your results will be close to that of the simulation. However, there
will be disagreements from time to time and there are some general techniques for
tracking down these problems in a network simulator:

Verify that you are simulating your network with enough detail.

Check for unfairness or load imbalance between resources.This is an especially
common problem and is often overlooked by simple models.

Narrow down the problem by identifying the bottleneck resource. For exam-
ple, if you increase the flow control resources (such as the number of virtual
channels and buffer sizes), but a network still under-performs a throughput
estimate, then the flow control is probably not the culprit. Now continue with
the routing function, and so on.

Gather statistics. Is all the traffic going where it is supposed to?Are a few pack-
ets staying in the network much, much longer than the majority? Anomalies
in statistics are often a good clue.

Configure the simulator to a simple case, such as uniform traffic, Bernoulli
arrivals, low offered load, and large buffers, so it can be compared to an ana-
lytical solution.

Simulators can have bugs, too. Compare against another simulator or delve
into your current simulator’s code.

24.5 Bibliographic Notes

For more information on the basics of simulation, including simulator design, input
processes, measurements, and PRNGs, both [29] and [109] are excellent references.

There are many sources for application-driven workloads. Parallel computing
benchmarks such as SPLASH [169, 194] or database benchmarks [77] are possi-
ble tests for processor interconnection networks. Internet packet traces are widely
available on-line from a varity of sources.

492 C H A P T E R 24 Simulation

Using MMPs to model voice and data traffic is discussed by Heffes and Lucantoni
[81], while Jain and Routhier introduce packet trains as another technique for mod-
eling burstiness [90]. However, it is important to note that even models that capture
burstiness can be quite simple compared to the statistics of real traffic flows. For
example, Leland et al. observed that Ethernet traffic can have a self-similar nature,
which cannot modeled at all in many simple models [202]. The impact of packet size
on interconnection network performance is addressed by Kim and Chien [96], who
found that the interaction between long and short messages can have a significant
effect.

Knuth [101] was an early pioneer in the rigorous analysis of PRNGs. The survey
paper by Park and Miller [141] introduced a minimal standard PRNG, which still
stands as a well-tested and adequate technique. More recent advances in PRNG
are surveyed in [111]. Many implementations of truly random number generators
exist — for example, [149] uses a large on-chip resistor as a noise source.

24.6 Exercises

24.1 Four-state MMP. Compute the average injection rate r for the four-state MMP shown
in Figure 24.10. Explain how this process is related to the simple on-off process
shown in Figure 24.3.

24.2 Performance of a (σ, ρ) regulator. Consider the on-off MMP in Figure 24.3 as the
unregulated source to a (σ, ρ) regulator (Section 15.2.1). Let σ = 1 and ρ = 1/2,
with one token created every other time slot. What conditions on the “on” injection
rate r1 of the injection process are necessary so that this system is stable (that is, the
packet queue in the regulator has a finite expected size)? Create a Markov chain
model of this system to determine the average size of the regulators packet queue for
α = 1

4 and β = 1
8 . Simulate this model for different values of r1, record the average

queue size and use Little’s law, Equation 23.6, to also find the expected delay of the
regulator.

24.3 Correlated workloads. Although the three aspects of network workloads were pre-
sented as independent in this chapter, many network applications could have strong
correlations between several of these aspects. For example, longer packets may be
more infrequent than shorter packets when communicating between a particular

0

rate=0 rate= r1

1

β

3α

2

2β

2α

3

3β

α

rate=2r1 rate=3r1

Figure 24.10 A four-state MMP.

24.6 Exercises 493

source-destination pair. Describe an application in which this situation may arise
and propose an approach for incoporating this correlation into the injection process.

24.4 Fairness of a coin. You are given a coin and asked whether the coin is fair. That is,
does the coin indicate heads 50% of time and tails the other 50%? The first 11 flips
of the coin give the sequence

{H, T , T , T , H, T , H, H, T , H, T },
which contains 5 heads (H) and 6 tails (T).

(a) Can you say, with 95% confidence, that this coin is nearly fair (49% to 51%
chance of heads)? If not, is there any property of the coin you can say with the
same confidence? Since the number of degrees of freedom in this example is
11 − 1 = 10, the Student’s t-distribution in Table 24.1 will be helpful. It may
also be useful to assign a value of 1 to a flip of heads and 0 to tails.

(b) If you flip the coin 90 more times (101 total samples) and see 36 more heads
(41 total) can you make a stronger statement about the fairness of this coin?

24.5 Fairness of a die. Perform a similar experiment to the one described in Exercise 24.4,
but replace the coin with a fair die. Roll the die until you are 95% confident that the
mean value is (1+2+3+4+5+6)/6 = 3.5 within 0.05. How many rolls did it take?
(It will be faster to simulate your die with a PNRG.) Use Student’s t-distribution for
an infinite number of degrees of freedom when computing the confidence intervals.
Are you also confident that the die is fair — that is, are all sides equally likely? If not,
explain how you could be.

24.6 A single-phase simulation. Consider a “single-phase” simulation approach for the
output queued switch example in Figure 24.7 where the ReadInputs and
WriteOutputs functions are merged. Explain how problems in determining the
order in which to evaluate nodes could arise. Are there situations in which this
single-phase approach could work? Hint:Consider the topology of the network under
simulation.

24.7 A lagging injection process. Write pseudo-code for a lagging injection process described
in Section 24.4.2 to be called once per network cycle. Use the following functions to
access the state of the network: sourceq empty() returns true if the source queue
does not contain a packet and false otherwise, get net time() returns the current
network time, and inject packet() runs the injection process for a single cycle
and returns true if a packet was injected, false otherwise. Assume the lagging source
queue’s time is stored in the variable q time.

24.8 Quality of a PRNG. The following code implements a common type of PRNG known
as a multiplicative linear congruential generator.3

3. This particular generator was used in a FORTAN library as mentioned in [141].

494 C H A P T E R 24 Simulation

int seed;

int random() {
seed = (65539*seed) % 0x8000000L;
return seed;

}

The seed value is set before first calling the random routine. Also note that % is C’s
modulo operator and that the hexadecimal value 0x8000000 is 231.

A typical use of this code in a network simulator might be to select a destination
node in a 64-node network under uniform traffic:

dest = random() % 64;

Implement this random number generator and its corresponding call to generate
random destination nodes. Comment on the“randomness”of the destinations created.
Hint: This is not a good random number generator.

C H A P T E R 25

Simulation Examples

Now that we have discussed aspects of network design along with the tools of network
simulation, several simulation examples are presented.These examples are not meant
as a detailed study of any particular aspect of network or router design. Rather, they
are designed to both introduce several useful experiments that can be performed
on a typical interconnection network and emphasize some interesting and perhaps
counter-intuitive results.

All simulations in this chapter were performed with the detailed, flit-level simu-
lator described in Appendix C. Unless otherwise stated, the routers are input-queued
with an input speedup of 2 and virtual-channel flow control.There are 8 virtual chan-
nels per input port and each virtual channel contains 8 flit buffers, for a total of 64
flits of buffering per input port. All packets are 20 flits in length. Both virtual-channel
and switch allocation is performed using the iSLIP algorithm. Realistic pipelining is
assumed and the per-hop latency of the routers is 3 cycles.

25.1 Routing

As we have seen in previous chapters, routing is a delicate balance between low la-
tencies at low offered traffic and a high saturation throughput as traffic increases. We
first focus on the latency of routing algorithms and examine the connection between
our simple metrics of zero-load latency and ideal throughput and the actual perfor-
mance of the network. Interestingly, different algorithms achieve different fractions
of their ideals. In addition to typical aggregate latency measures, we also examine the
distribution of message latencies induced by different routing algorithms. The sec-
ond set of experiments focuses completely on the throughput of routing algorithms
and compares the performance of two algorithms on a random sampling of traffic
patterns.

495

496 C H A P T E R 25 Simulation Examples

25.1.1 Latency

In this set of experiments, the impact of routing from a latency perspective is
explored on an 8-ary 2-mesh. We begin with perhaps the most common graph in
interconnection networks research — latency versus offered traffic under uniform
traffic, shown in Figure 25.1. The graph compares the performance of four routing
algorithms: dimension-order routing (DOR), the randomized, minimal algorithm de-
scribed in Section 9.2.2 and [135] (ROMM),Valiant’s randomized algorithm (VAL),
and a minimal-adaptive routing algorithm (MAD). The MAD implementation is
created with Duato’s algorithm using dimension-order routing as the deadlock-free
sub-function.

At low traffic, zero-load latency gives an accurate estimate of the simulated
latencies. Using the time it takes a flit to traverse a channel as our definition of cycles,
the router model has a delay of tr = 3 cycles and the serialization latency is 20 cycles
because the packet length is 20 flits. So, for example, the minimal algorithms have a
zero-load latency of

T0 = trHavg + Ts = 3
(

16
3

)
+ 20 = 36 cycles,

as shown in the figure. Similarly, the zero-load latency of VAL is computed as 52
cycles. Of course, as traffic increases, the contention latency begins to dominate
and the vertical asymptotes of the latency curves are determined by the saturation
throughputs of the different routing algorithms.

Since we are accurately modeling flow control, the routing algorithms saturate at
a fraction of their ideal throughputs. For the minimal algorithms (DOR, ROMM, and
MAD), the ideals are 100% of the network’s capacity, while Valiant would ideally

0.0 0.2 0.4 0.6 0.8 1.0

Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

DOR
ROMM
MAD
VAL

Figure 25.1 Performance of several routing algorithms on an 8-ary 2-mesh under uniform traffic.

25.1 Routing 497

achieve only 50% of capacity. Perhaps surprisingly, the simulation reveals that the
algorithms achieve different fractions of their capacity. For example, DOR nears
90% of its ideal, with ROMM and MAD only reaching around 75% of theirs. The
reason for this difference is because we have partitioned the virtual channels to avoid
deadlock for the ROMM and MAD algorithms. DOR is naturally deadlock-free in the
mesh; therefore, each route can freely use any of the virtual channels. As with most
partitionings, this creates the opportunity for load imbalance, which in turn reduces
the achieved throughput of the ROMM and MAD algorithms. Although VAL also
requires partitioned resources to avoid deadlock, it still achieves about 85% of its
ideal do to its natural load-balancing properties.

Figure 25.2 shows another latency vs. offered traffic curve for the same topol-
ogy and same four routing algorithms, but with the transpose traffic pattern. This
asymmetric pattern is more difficult to load-balance as demonstrated by the poor
performance of DOR, which saturates at about 35% of capacity. ROMM fares bet-
ter, improving the throughput to roughly 62%. However, MAD outperforms all the
algorithms, more than doubling the throughput of DOR and saturating past 75%
of capacity. VAL beats DOR in this case, again reaching about 43%. Performance
on difficult traffic patterns such as transpose is often important for networks, but
so is the performance on easy, local patterns such as neighbor traffic, as shown in
Figure 25.3. Again, while the minimal algorithms all have the same ideal throughput
on the neighbor pattern, DOR’s simplicity and natural deadlock freedom give it an
advantage over the more complex ROMM and MAD algorithms. As expected, VAL
performs the same as in the previous two traffic patterns.

In addition to using aggregate latencies, as in the previous three simulations, in-
dividual packet latencies can give insight into the range and distribution of latencies
observed in a particular simulation. For example, Figure 25.4 shows a distribution

0.0 0.2 0.4 0.6 0.8 1.0
Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

DOR
ROMM
MAD
VAL

Figure 25.2 Performance of several routing algorithms on an 8-ary 2-mesh under transpose traffic.

498 C H A P T E R 25 Simulation Examples

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

DOR
ROMM
MAD
VAL

Figure 25.3 Performance of several routing algorithms on an 8-ary 2-mesh under neighbor traffic.

0 50 100 150 200

Packet delay

0

100

200

300

400

F
re

q
u

en
cy

Packets from (0,0) to (0,3)

0 50 100 150 200

Packet delay

0

100

200

300

400

F
re

q
u

en
cy

Packets from (0,0) to (4,4)

(a) (b)

Figure 25.4 Latency distributions for (a) packets traveling between (0,0) and (0,3) and (b) between (0,0) and
(4,4) in an 8-ary 2-mesh under uniform traffic with dimension-order routing and offered traffic
at 20% of network capacity.

of packet latencies between two source-destination pairs taken from the previous
simulation of an 8-ary 2-mesh under uniform traffic with dimension-order routing.
The offered traffic is held at 20% of the network’s capacity. At this low load, little
contention is observed by the packets and most are delivered in the minimum number
of cycles, denoted by the large spikes in the distributions at their left edges. The

25.1 Routing 499

increased latency of the packets from (0,0) to (4,4) is simply due to their larger
number hops.

The same simulation performed with Valiant’s routing algorithm reveals a more
interesting distribution (Figure 25.5). Because packets first travel to a random inter-
mediate node, there is a wide range of path lengths. For each particular path length,
a distribution similar to ones observed in dimension-order routing is created and the
net distribution for Valiant’s algorithm is simply a weighted superposition of many
of these distributions. As seen in the figure, when routing from (0,0) to (0,3), most
packets travel a non-minimal distance, giving the distribution a bell shape. The source
and destination are further apart for the packets traveling from (0,0) to (4,4), which
increases the chance the intermediate is in the minimal quadrant. When the inter-
mediate falls within this quadrant, the overall path is minimal, explaining the shift
of the distribution toward the left in this case.

25.1.2 Throughput Distributions

We now shift our focus exclusively to the throughput performance of particular rout-
ing algorithms. Although the standard traffic patterns used to test an interconnection
network reveal the performance of the network at its extremes, these patterns do not
necessarily give a good indication of the average behavior of a network. To remedy
the limitations of using a few traffic patterns, the throughput of the network can be
tested over a sampling of many random permutation traffic patterns.

0 50 100 150 200
Packet delay

0

10

20

30

40

F
re

q
u

en
cy

Packets from (0,0) to (0,3)

0 50 100 150 200
Packet delay

0

10

20

30

40

F
re

q
u

en
cy

Packets from (0,0) to (4,4)

(a) (b)

Figure 25.5 Latency distributions for (a) packets traveling between (0,0) and (0,3) and (b) between (0,0)
and (4,4) in an 8-ary 2-mesh under uniform traffic with Valiant’s routing algorithm and offered
traffic at 20% of network capacity.

500 C H A P T E R 25 Simulation Examples

For this experiment, the throughput of an 8-ary 2-cube network is tested for both
dimension-order and minimal adaptive routing over a sample of 500 random per-
mutations. The resulting distribution of saturation throughputs for both routing al-
gorithms is shown in Figure 25.6. Dimension-order routing’s distribution shows two
distinct peaks, centered near 27% and 31% of capacity, and has an average throughput
of approximately 29.4% of capacity over the 500 samples. Minimal adaptive routing
has a more even distribution with a single wide peak near 33% of capacity and an
average throughput of about 33.3%. This throughput is approximately 13.3% greater
than dimension-order routing, illustrating the potential benefits of adaptive routing.

25.2 Flow Control Performance

The choice of routing algorithm used in a network sets an upper-bound on the achiev-
able throughput (ideal throughput) and a lower-bound on the packet latency (zero-
load latency). How closely a network operates to these bounds is determined by the
flow control mechanism used. The experiments presented in this section focus on the
relationship between aspects of the network and its workload that can significantly
affect the performance of a flow control mechanism.

25.2.1 Virtual Channels

In a typical design of a virtual channel router, a fixed amount of hardware resources
is set aside to implement the virtual-channel buffers. The decision that needs to

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Saturation throughput
(fraction of capacity)

20

40

60

F
re

q
u

en
cy

Dimension order

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Saturation throughput
(fraction of capacity)

0

20

40

60

F
re

q
u

en
cy

Minimal adaptive

Figure 25.6 Distributions of saturation throughputs for dimension-order and minimal adaptive routing over
a sampling of 500 random permutation traffic patterns on an 8-ary 2-cube.

25.2 Flow Control Performance 501

be made is how to partition these resources to maximize the performance of the
network. For example, do a few virtual channels, each with deep buffers, perform
better than many virtual channels with shallower buffers?

The performance of several different virtual-channel partitionings is shown in
Figure 25.7 for an 8-ary 2-mesh network. The total amount of buffering (the product
of the number of virtual channels times the individual virtual-channel depth) is held
constant across each of the configurations. Several trends can be observed in the
experiment. First, the throughput of the network tends to increase as the number of
virtual channels is increased.Although beyond the bounds of the graph, the saturation
throughput of the 8-virtual-channel case is slightly higher than that of the 4-virtual-
channel case. This fact is hidden by the second trend, which is that increasing the
number of virtual channels tends to increase latency below saturation. The larger
latency is simply a result of the increased interleaving of packets that occurs with
more virtual channels, which tends to “stretch” the packets across the network. This
interleaving effect can be reduced by giving priority in the switch allocator to packets
that are not blocked and also won the allocation in the previous round. However,
the designer must be careful to avoid both starvation issues and fairness problems
that could arise with variable size packets, for example.

One exception to the throughput trend occurs for the 16-virtual-channel case.
The fact that this configuration has a different zero-load latency is a key indicator of
the underlying problem. Because our router model includes pipelining latencies, the
buffer’s credit loop latency is greater than one cycle. Furthermore, once the virtual-
channel buffer depth is too small to cover this latency, the virtual channel can no
longer sustain 100% utilization and stalls waiting for credits. This is the same effect

0.0 0.2 0.4 0.6 0.8 1.0
Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

2 VCs, 16 buffers
4 VCs, 8 buffers
8 VCs, 4 buffers
16 VCs, 2 buffers

Figure 25.7 Latency vs. offered traffic for an 8-ary 2-mesh with various virtual channel partitionings under
uniform traffic. The data labels indicate the number of virtual channels and the depth of and
individual VC buffer.

502 C H A P T E R 25 Simulation Examples

described in Section 16.3. These credit stalls affect both the zero-load latency and
saturation throughput, as shown.

Finally, while it is reasonable to approximate the hardware cost of virtual chan-
nels strictly by the total amount of buffering, it is not always the case that increasing
the number of virtual channels is free in terms of latency. Generally, as the num-
ber of virtual channels increases, virtual-channel allocation time increases, which can
affect the pipelining of the router. This, in turn, tends to increase the zero-load la-
tency and may slightly decrease the saturation throughput because of the additional
time required to reallocate a virtual channel. Pipelining issues, along with the depth
required to cover the credit loop as mentioned above, often limit performance in par-
titionings that create close to the maximum number of virtual channels with very
shallow buffers. However, there are other important issues, such as non-interference,
that may still make these extreme partitionings attractive design points.

25.2.2 Network Size

The size of a network can have a significant effect on the fraction of its ideal through-
put it can achieve, as shown in Figure 25.8. The figure shows latency vs. offered traffic
curves for four different mesh networks under uniform traffic. It is important to note
that the channel sizes and routers for each of the networks are exactly the same. This
implies that the capacities of the networks are related by their radices. For example,
the 4-ary 3-mesh and 4-ary 4-mesh have a capacity of 4b/k = b and the 8-ary 2-mesh
has a capacity of 4b/k = b/2, or half that of the radix-4 networks.

0.0 0.2 0.4 0.6 0.8 1.0
Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

4-ary 3-cube
4-ary 4-cube
8-ary 2-cube
16-ary 2-cube

Figure 25.8 Latency vs. offered traffic for several mesh networks under uniform traffic with dimension-
ordered routing. The injection processes of all networks are Bernoulli with a packet size of 20
flits. Individual channel widths and routers for each network are the same.

25.2 Flow Control Performance 503

Although it might be natural to expect that different networks built from iden-
tical routers would achieve roughly the same fraction of capacity, the figure reveals a
different trend. Instead of the achieved fraction of capacity being constant, it seems
to be a function of the radix of the network. The radix-4 networks both begin to
saturate at approximately 65%, while the radix-8 and radix-16 networks saturate
near 80% and 83%, respectively. Further simulation confirms the trend of achieved
capacity being determined by the network’s radix.

One can explain these results by considering how the different network sizes
interact with the flow control mechanisms. Using the fraction of capacity allows us
to compare the curves of networks with different capacities, but it hides the absolute
throughput injected by each node. From our previous remarks on the capacities of
the networks, we know that the nodes in the radix-4 networks can ideally inject
twice as much traffic before saturating than the nodes in the 8-ary 2-mesh and four
times as much as the nodes in the 16-ary 2-mesh. Although the individual injection
processes used for each node in the simulations are the same, the aggregate traffic is
significantly different. For the radix-4 network, fewer nodes are injecting more traffic,
while for the larger radix networks, more nodes inject less traffic. This difference in
traffic greatly affects the flow control: a small number of intense sources generates
more instantaneous load (burstiness) than a larger number of less intense sources.
Mitigating this burstiness is the task of the flow control, and how effectively this
can be done is largely a function of the amount of buffering at each node. However,
because the networks all use identical routers, the smaller-radix networks are able to
mitigate less burstiness and therefore achieve a lower fraction of their capacity.

25.2.3 Injection Processes

As mentioned in the previous experiment on the affects of network size, the bursti-
ness of the underlying traffic can affect the efficiency of a network’s flow control.
We explore these ideas further in this section by explicitly varying the burstiness of
the injection processes used in the network simulation.

Perhaps the simplest source of burstiness in networks is the size of the packets
themselves. Even if a source is injecting at a very low average rate, the minimum unit
of injection is a packet, which may contain many flits. This can be thought of as a
burst of incoming flits all destined to the same node. The affects of packet size on
network performance are shown in Figure 25.9.

The dominant trend in the data is both the increasing latency and decreasing
throughput that comes from larger packet size. Larger packets are already handi-
capped in terms of latency because of their longer serialization overhead, as reflected
in the zero-load latencies shown in the figure. Additionally, the flow control is not
perfect and has more difficultly utilizing the resources as the packets get long. For
example, when the packet size is 40 flits, it is spread across at least 5 routers because
the buffer depth at each router is only 8 flits. If this packet becomes momentarily
blocked, the resources of at least 5 routers also become blocked, accounting for the

504 C H A P T E R 25 Simulation Examples

0.0 0.2 0.4 0.6 0.8 1.0

Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

PS = 1
PS = 5
PS = 10
PS = 20
PS = 40

Figure 25.9 Latency vs. offered traffic in an 8-ary 2-cube under uniform traffic with dimension-ordered
routing using different packet sizes. Each curve’s corresponding injection process uses fixed-size
packets and this packet size (PS) is indicated by its label in flits.

reduction in saturation throughput. This is in contrast to the the smaller packets,
which are not spread across as many resources.

The outlier from the overall trend is the case in which the packet size is one
(PS = 1). Because our router model adopts the conservative approach for reallocating
virtual channels, shown in Figure 16.7(a) of Section 16.4, several cycles are necessary
before a virtual channel can be reused. As the packet size gets smaller, more and more
of the virtual-channel time is spent in this reallocation period. Because of this, the
one flit packet greatly reduces the effective number of virtual channels in the routers.
Further simulations confirm this observation and the anomaly for one-flit packets
disappears when either the reallocation time is reduced or the number of virtual
channels is increased.

The affect of the injection process is further explored by considering a mesh
network with a two-state MMP, as discussed in Section 24.2.2. Packet lengths are
again fixed at 20 flits. Figure 25.10 shows the performance of a network under several
parameter values for the MMP. Each MMP has two parameters, α and β, that control
both the spacing and duration of bursts. 1

α
sets the average spacing between “on”

bursts. This gives an average spacing of 1, 200, and 400 cycles for the three curves.
Similarly, the β parameter can be interpreted as one over the average duration of a
burst period, so the first curve has an infinite burst period while the second and third
curves have average burst periods of 100 and 50 cycles, respectively.

The infinite burst length of the first MMP means that it is always in the on state
and therefore reduces to a Bernoulli injection process. Because of this, the α param-
eter of this MMP is arbitrary and does not affect the steady state. From the analysis
in Section 24.2.2, the injection rate during the burst period is 1 + β/α times the
average injection rate. The larger the ratio of β to α, the more intense the injection

25.2 Flow Control Performance 505

0.0 0.2 0.4 0.6 0.8 1.0
Offered traffic (fraction of capacity)

0

100

200

300

400

A
vg

. d
el

ay
 (

cy
cl

es
)

α =1, β =0
α =0.005, β = 0.01
α = 0.0025, β = 0.02

Figure 25.10 Latency vs. offered traffic in an 8-ary 2-mesh under uniform traffic with dimension-ordered rout-
ing and several MMPs. Each MMP is the simple two-state, on-off process shown in Figure 24.3
and the different α and β parameters used to generate each curve are shown in the labels.

rate is during the burst period. In the second MMP, β/α = 0.01/0.005 = 2, so at
an offered load of 40% of capacity, the process alternates between periods of no
packet injections and Bernoulli injections at a load of 40(1+2) = 120% of capacity.
As expected, this bursty behavior increases average latency and reduces the satura-
tion throughput (Figure 25.10). The third MMP has shorter, more intense bursts,
with β/α = 0.02/0.0025 = 8. Consequently, the average latency and saturation
throughput show further degradation vs. the second curve.

25.2.4 Prioritization

While most metrics of network latency focus on the aggregate or average latency of
messages through the network, different flow control approaches can greatly affect
the distribution of individual message latencies. Controlling these distributions is
important for applications sensitive to worst-cast delay and jitter, fairness, or when
different message priorities exist in the same network.

Consider a network that contains two message classes. One class might support
real-time video traffic that requires both low delay and low jitter. Another class may
contain latency-tolerant data transfers. To ensure that the high-priority video traf-
fic maintains its low delay requirements, it is given absolute priority over any data
transfer traffic.

Figure 25.11 shows a latency distribution from creating two priority classes in a
2-ary 6-fly network. For this experiment, 10% of the traffic is treated as high-priority,
the remaining 90% is low-priority, and data is taken near saturation. To incorporate
priority into the router model, separable allocators (Section 19.3) constructed from

506 C H A P T E R 25 Simulation Examples

0 100 200 300 400
Packet delay (cycles)

0

1000

2000

3000

F
re

q
u

en
cy

Low priority
High priority

11093

Figure 25.11 A latency distribution of packets in a 2-ary 6-fly with a two-level prioritization scheme. High
priority packets (dotted line) make up approximately 10% of the traffic and have absolute
priority over low-priority packets (solid line). Measurements are taken near saturation.

prioritized arbiters are used. The prioritized arbiters simply select the requester that
has the highest priority and break ties using a round-robin policy.

The resulting distribution shown in the figure plots the number of occurrences
for each particular latency. Despite the fact that the network is near saturation,
11,093 of the 15,612, or approximately 71%, of the high-priority messages sampled
are delivered at the network’s minimum latency of 37 cycles and almost 99% of
the high-priority messages are delivered within 70 cycles. The distribution of the
low-priority messages reflects the high average latency expected near saturation.
Although over 98% of the low-priority traffic is delivered in 300 cycles, the tail of
the distribution continues to over 700 cycles.

The level of differentiation between the two traffic classes is possible because the
high-priority traffic compromises only a small fraction of the overall network traffic.
Because this priority is absolute, the high-priority traffic sees a very lightly loaded
network — less than 10% of capacity. Therefore, it experiences very little contention
delay. However, as the fraction of high-priority traffic becomes larger, the differenti-
ation continues to diminish. In an extreme where the high-priority traffic represents
nearly all of the total traffic, there is little benefit to prioritization.

Another important message prioritization scheme approximates age-based fair-
ness,which is described in Section 15.4.1.As in the previous example of a two priority
levels, age-based fairness is implemented by using prioritized allocators in the routers.
However, in this case contention between requesters is decided by granting access
to the oldest of the requesting packets. A packet’s age is measured as the number of
network cycles that have elapsed since its initial injection into the network.

25.2 Flow Control Performance 507

0 200 400 600

Delay (cycles)

1e-2

1e-3

1e-4

1e-5

F
ra

ct
io

n
 o

f
P

ac
ke

ts

Age-based
Random

Figure 25.12 A latency distribution of packets in a 2-ary 6-fly with and without age-based arbitration.
Measurements are taken near saturation.

The distribution of packet latencies in a 2-ary 6-fly with and without age-based
arbitration is shown in Figure 25.12. As before, the network is operated near satu-
ration as the measurements are taken. While more packets are delivered quickly (in
less than about 50 cycles) when no age-based arbitration is used, the tail of the distri-
bution is long. A significant number of packets take more than 600 cycles to deliver
without age-based arbitration. In contrast, fewer packets are delivered quickly with
age-based arbitration, but the tail of the distribution is kept tighter and most packets
arrive within 400 cycles.

25.2.5 Stability

As a network approaches and exceeds its saturation throughput, the focus of the
designer generally shifts from latency to the underlying fairness of the flow control
technique. If a saturated channel is not fairly allocated between flows, an unstable
network can result — some flows become starved and their throughput can drop dra-
matically as the load increases beyond saturation. Figure 25.13 shows the throughput
of an unstable network along with two flow control mechanisms that implement fair-
ness and ensure stability. To prevent greedy flows from masking starved flows, the
figure shows minimum accepted throughput, as explained in Section 23.1.1.

The performance of the three flow control techniques is similar below satura-
tion and all three reach saturation at approximately 43% of the network’s capacity.
Beyond saturation, the throughputs begin to diverge. When no fairness mecha-
nisms are used, the throughput plummets to less than 5% of capacity as the offered
traffic continues to increase. The unfairness is produced by an effect analogous to
the parking lot example of Section 15.4.1 — packets that require fewer hops and

508 C H A P T E R 25 Simulation Examples

0.2 0.60.40.0 0.8 1.0
Offered traffic (fraction of capacity)

0.0

0.1

0.2

0.3

0.4

0.5

T
h

ro
u

g
h

p
u

t
(f

ra
ct

io
n

 o
f

ca
p

ac
it

y) Age
NI
None

Figure 25.13 Throughput of the minimum flow vs. offered traffic for an 8-ary 2-mesh under bit-complement
traffic using dimension-order routing. Several flow control techniques are shown: age-based
arbitration (Age), a non-interfering network with a separate virtual channel for each destination
(NI), and a network with no priority or isolation (None).

therefore fewer resource arbitrations get a higher proportion of the bandwidth of
these resources. In contrast, the addition of age-based arbitration results in very stable
throughputs beyond saturation. A non-interfering network, with one virtual channel
per destination, is also stable beyond saturation, but does suffer some degradation in
throughput before stabilizing at about 35% of capacity.

25.3 Fault Tolerance

For many interconnection networks, operation in the presence of one or more faults
is an important attribute. Additionally, it is desirable for these networks to degrade
gracefully in the presence of faults. An example of graceful degradation is shown in
Figure 25.14.

In this experiment, an 8-ary 2-mesh network is simulated with a variable num-
ber of failed links (horizontal axis) using the fault-tolerant variant of planar-adaptive
routing described in Exercise 14.8. For each number of failures, the saturation throu-
ghput of the network (vertical axis) under uniform traffic is measured. Since dif-
ferent arrangements of failed links may affect the saturation throughput more or
less severely, each throughput point is an average of 30 different arrangements of
failed links.1 Along with the average, the sample’s standard deviation is also plotted

1. For simplicity of presentation, we generate faults in the network so that the resulting fault regions are
convex. This ensures that all nodes in the network are still connected using planar-adaptive routing.
See [36] for further information.

25.3 Fault Tolerance 509

0 2 4 6 8 10 12
of channel faults

0.0

0.2

0.4

0.6

0.8

S
at

u
ra

ti
o

n
 t

h
ro

u
g

h
p

u
t

(f
ra

ct
io

n
 o

f
ca

p
ac

it
y)

Figure 25.14 Saturation throughput of an 8-ary 2-mesh under uniform traffic vs. the number of failed links.
Fault-tolerant planar-adaptive routing is used. Each point shows the average throughput over
a sampling of random failures and the error bars indicate one standard deviation from the
average.

using vertical error bars. The top and bottom of each error bar represents the average
throughput plus and minus the standard deviation, respectively.

The throughput of the non-faulty network is just above 60% of capacity and
the network’s grace in the presence of a small number of faults is illustrated by the
corresponding small drop in throughput. The network continues to remain resilient
even as the number of faults grows to 12 with only a slight increase in the rate
of throughput degradation. Also, the standard deviation slowly increases with the
number of faults, indicating the potentially greater impact of a collection of faults
vs. a single fault in isolation. For example, if many faults are clustered in a small area
of the network, the number of channels that can access nodes in that area may be
reduced, which, in turn, can significantly increase load on the remaining channels. As
the number of faults increases, the chance of these clusters of faults nearly isolating a
node also increase and, in extreme cases, the network may become partitioned such
that there is no available path between some particular nodes.

.
This Page Intentionally Left Blank

A P P E N D I X A

Nomenclature

Symbol Description Unit of Measurement

b Channel bandwidth, the product of signal frequency and
channel width, b = f w.

bits/s

BB Bisection bandwidth, the sum of the bandwidth of the
channels that cross a minimum bisection of a network.

bits/s

BC Channel bisection, the number of channels that cross a
minimum bisection of a system.

channels

Bn Node bandwidth, the sum of the bandwidth of the chan-
nels entering and leaving a node. This is the product of
node pinout (wire capacity) and signal frequency, Bn =
f Wn.

bits/s

Bs System bandwidth, the bandwidth of the maximum num-
ber of wires that can cross the midpoint of the system.
This is the product of system wire capacity and signal fre-
quency, Bs = f Ws .

bits/s

C The set of channels in a network.
d Duty factor.
D Distance, the physical length of the channels traversed

along a path from source to destination.
m

δ Node degree, the number of channels that terminate on
a node.

channels

f Frequency, the bandwidth per signal of a channel. 1/s

511

512 A P P E N D I X A Nomenclature

Symbol Description Unit of Measurement

F Number of flit buffers per virtual channel.
γ Channel load, ratio of the bandwidth on a channel to the

bandwidth on the network input, or, stated differently, the
load placed on a channel by a unit load at the network
input.

H Hop count, the number of channels traversed along a
path from source to destination.

channels

l Channel length, the physical length of a channel. m
λxy Routing probability, the fraction of all traffic that routes

from node x to node y.
L Packet length. bits
N The set of nodes in a network.
N The number of terminal nodes in a network.1

P the number of ports on a router.
Rxy Routes, the set of minimal routes from node x to node y.
R′

xy Routes, the set of all routes minimal and non-minimal
from node x to node y.

t Channel delay, the time required for a signal to traverse a
channel.

s

tr Router delay, the delay through a single router. s
tc Credit latency, the delay in clock cycles seen by a credit

passing through a router, on both ends.
cycles

tck Clock period. s
tcrt Credit round-trip latency, the round trip delay from a flit

leaving the SA stage of a router to a credit returning,
enabling the next flit to leave the SA stage using the same
buffer.

cycles

tf Flit latency, the delay in clock cycles seen by a flit passing
through a router.

cycles

T Latency, the time from when the head flit of a packet
enters the network to when the tail flit of a packet departs
the network.

s

Th Head latency, the time for the head of a packet to reach
the destination.

s

Tr Routing latency, the fraction of Th due to delay through
routers along the path, Tr = Htr .

s

1. We are overloading the symbol N . Wherever the meaning is not clear from the context, it will be explicitly
stated.

A P P E N D I X A Nomenclature 513

Symbol Description Unit of Measurement

Ts Serialization latency, the time required to send a packet
over a link, Ts = b/L.

s

Tw Time of flight, the fraction of Th due to propagation delay
over the wires of the channels.

s

� Throughput, the maximum traffic that the network can
accept from each network input.

bits/s

v Signal velocity, the rate at which signals travel over chan-
nels, t = l

v .
m/s

w Channel width. bits
Wn Node wire capacity, the number of signals that can enter

and leave a node. For node-limited topologies, Wn limits
network bandwidth, while for bisection-limited topolo-
gies, Ws limits network bandwidth.

signals

Ws System wire capacity, the number of signals that can pass
across the midpoint of a system. This is the fundamental
limit on bisection bandwidth, BB , along with wire fre-
quency f .

signals

.
This Page Intentionally Left Blank

A P P E N D I X B

Glossary

accepted traffic — See throughput.

adaptive routing — With adaptive routing, the path taken by a packet is deter-
mined dynamically based on the state of the network. For example, a path
may be chosen to avoid congested or faulty channels.

ASIC — Application-specific integrated circuit.

availability — The fraction of time a system is operating properly, which is com-
monly expressed by a number of “nines.” For example, a system with five nines
of availability is up 99.999% of the time.

backpressure — Information about the utilization of downstream resources.
Backpressure information is used by flow control to prevent overflow of
buffers and can be used by an adaptive routing algorithm to avoid congested
resources, for example.

blocking — A network is blocking if it cannot handle all circuit requests that
are a permutation of the inputs and outputs.

CAM — Content-addressable memory.

capacity —The throughput of a network on uniform,random traffic. Normalizing
the throughput of a network to its capacity (expressed as a fraction of capacity)
allows a meaningful comparison of throughputs of different networks.

dateline — A conceptual line across a channel of a ring network (or within a
single dimension of a torus). When a packet starts in a lower dateline class,
then switches to the upper dateline class as the packet crosses the dateline,
the cyclic dependencies inherent in the ring are removed.

515

516 A P P E N D I X B Glossary

deadlock —A deadlock occurs when a set of agents holding resources are waiting
on another set of resources such that a cycle of waiting agents is formed. Most
networks are designed to avoid deadlock, but it is also possible to recover from
deadlock by detecting and breaking cyclic wait-for relationships.

deterministic routing — With deterministic routing, the path a packet takes
is only a function of its source and destination. Moreover, packets between a
particular source-destination pair all follow the same path.Thus,deterministic
routing does not take advantage of any path diversity in the topology and is
subject to poor worst-case performance.

downstream — For a particular channel, packets traveling through that channel
travel downstream. Also, the router at the destination of the channel is the
downstream router. Relative to a particular packet, the downstream resources
are those that will be encountered as the packet’s route continues.

ECL — Emitter coupled logic.

escape channels — Escape channels provide a deadlock-free set of paths avail-
able to every packet. Then, additional channels can be used to provide routing
flexibility without the constraint of an acyclic channel dependency graph —
any packet trapped in a wait-for cycle in these additional channels can always
be “drained” via the escape channels.

fault tolerance — The ability of a network to detect, contain, and recover from
faulty resources.

FPGA — Field-programmable gate array.

flit — A flow control digit, or flit, is the smallest unit of resource allocation in a
router. Variable length packets are divided into one or more fixed length flits
to simplify the management and allocation of resources. Flits may be divided
further into phits for handling by the router datapath.

flow —A flow is a sequence packets traveling between a single source-destination
pair and is the unit at which quality of service is provided. It is possible for a
source or destination to support multiple flows concurrently.

flow control — Flow control is the scheduling and allocation of a network’s
resources, such as channel bandwidth, buffer space, and control state.

folding — Folding a topology combines nodes by taking advantage of a reflective
symmetry. For example, folding a Clos network combines the first and third
stage switching elements to form a fat-tree network. Similarly, a butterfly
network with n extra stages can be folded. Folding can also be used to refer
to the interleaving of nodes along the dimensions of a torus network. This
type of folding eliminates the need for long, wrap-around connections in the
packaging of a torus.

A P P E N D I X B Glossary 517

hot-spot — A hot-spot resource is one whose demand is significantly greater
than other, similar resources. For example, a particular destination terminal
becomes a hot-spot in a shared memory multicomputer when many proces-
sors are simultaneously reading from the same memory location (for example,
a shared lock or data structure).

jitter — The maximum difference in the latency between two packets within a
flow. Low jitter is often a requirement for video streams or other real time
data for which the regularity of data arrival is important. The jitter times the
bandwidth of a flow gives a lower bound on the size of buffer required.

latency — The time required to deliver a unit of data (usually a packet or mes-
sage) through the network, measured as the elapsed time between the injec-
tion of the first bit at the source to the ejection of the last bit at the destination.

livelock — Livelock occurs when a packet is not able to make progress in the
network and is never delivered to its destination. Unlike deadlock, though, a
livelocked packet continues to move through the network.

load balance — The measure of how uniformly resources are being utilized in a
network. A network is load-balanced if all the (expensive) resources tend to
saturate at the same offered traffic.

loss — The fraction of messages that is dropped by the network. For some ap-
plications, such as a shared-memory multicomputer interconnect, no packet
loss is allowed because a lost or malformed message will generally result in a
system crash. However, for other applications, such as a packet switch fabric,
a small fraction of messages can be lost without adversely affecting perfor-
mance.

LSB — Least significant bit.

message — Messages are the logical unit of data transfer provided by the net-
work interfaces. Because messages do not always have a bounded length, they
are often broken into smaller packets for handling within the network.

MIMD — Multiple-instruction-multiple-data parallel computer.

minimal — A route between a source-destination pair is minimal if it contains
the smallest possible number of hops between that pair. In torus and mesh
networks, the set of nodes along the union of all minimal routes between a
source-destination pair forms the minimal quadrant.

MSB — Most significant bit.

multicast —A multicast packet can be sent to multiple destinations.A broadcast
is a multicast in which a packet is sent to all destinations.

518 A P P E N D I X B Glossary

non-blocking —A network is non-blocking if it can simultaneously handle all cir-
cuit requests that are a permutation of the inputs and outputs. A non-blocking
network can always handle a request for a circuit from any idle input to any
idle output.

non-interfering — As in a non-blocking network, a non-interfering network pro-
vides full bandwidth between inputs and outputs for all request patterns.
However, a non-interfering network does not provide strict latency isolation
between flows. Rather, no flow is allowed to deny service to another flow for
more than a predetermined amount of time.

oblivious routing — With oblivious routing, the set of paths a packet can take
are only a function of its source and destination. Randomization is then used
to select a path for a particular packet from among the set of possible paths.
This randomization allows oblivious routing to both take advantage of path
diversity and achieve better load-balance than deterministic routing.

offered traffic — The amount of traffic (in bits/s) generated by the source termi-
nals of the network. If the network is below saturation, all the offered traffic
is accepted by the network and thus the offered traffic equals the throughput
of the network.

packet — Packets are the unit of routing within an interconnection network.
Messages are broken into one or more variable, but bounded, length packets
for processing by the network. All data contained within a packet follow the
same route through the network and packets are reassembled into messages
at the destination node.

path diversity — The path diversity of a network is the number of distinct paths
between each source-destination pair. Higher path diversity enables both bet-
ter fault tolerance and load balance within the network,but at the cost of longer
paths through the network.

PCI — Peripheral component interconnect.

permutation — A traffic pattern in which each input sends traffic to exactly one
output and each output receives traffic from exactly one input. Thus, the
entries of the corresponding traffic matrix � are either zero or one.

phit — A physical digit, or phit, is the smallest unit of data processed by a router.
One or more phits are combined to form a flit.

quality of service (QoS) — The bandwidth, latency, and/or jitter received by a
particular flow or class of traffic. A QoS policy differentiates between flows
and provides services to those flows based on a contract that guarantees the
QoS provided to each flow, provided that the flow complies with restrictions
on volume and burstiness of traffic.

RAM — Random-access memory.

A P P E N D I X B Glossary 519

reliability — The probability that a network is working at a given point in time.

routing — The process of choosing a path for a packet through the network.
Ideally, the path should load-balance the channels while maintaining a short
path length.

saturation — A resource is in saturation when the demands being placed on it
are beyond its capacity for servicing those demands. For example, a channel
becomes saturated when the amount of data that wants to be routed over
the channel (in bits/s) exceeds the bandwidth of the channel. The saturation
throughput of a network is the smallest rate of offered traffic for which some
resource in the network is saturated.

self-throttling — A network is self-throttling if its offered load naturally decreases
as the network approaches saturation. A shared-memory multiprocessor, for
example, is self-throttling because each processor can support only a small
number of outstanding requests. If the network approaches saturation, the
message latency increases and the outstanding request queues of the proces-
sors fill up, preventing any new requests from being issued.

serialization — Serialization occurs when a large piece of data, such as a packet
or flit, is squeezed over a narrow resource, such as a channel. The data must
be transferred across the narrow resource over a period of several cycles, thus
incurring a serialization latency.

SIMD — Single-instruction-multiple-data parallel computer.

SONET — Synchronous optical network.

speedup — Provisioning resource(s) with a capacity greater than that required
in the ideal case to compensate for other compromises or imperfections in a
network. For example, a network might support only two-thirds of its ideal
throughput due to load imbalance. By increasing the bandwidth of all the
network’s resources by 1.5 times (providing a speedup of 1.5), the original
ideal throughput can be realized.

stiff backpressure — Analogous to the stiffness of a spring in a mechanical sys-
tem, backpressure is stiff if downstream congestion is quickly relayed to up-
stream routers. Stiff backpressure allows rapid adaptation to congestion or
hot-spot resources, but can also result in an overcorrection for a momentary
load imbalance.

stable — A network is stable if its throughput remains constant (does not drop)
as offered traffic continues to increase beyond the saturation throughput.

STS — Synchronous transport signal. (STS-N refers to STS level-N, an N x
51.84Mbits/s signal.)

520 A P P E N D I X B Glossary

throughput — The amount of traffic (in bits/s) delivered to the destination ter-
minals of the network. If the network is below saturation, all the offered traffic
is accepted by the network and thus the offered traffic equals the throughput
of the network.

topology — The static arrangement of router nodes, channels, and terminals in
a network.

traffic — The sequence of injection times and destinations for the packets be-
ing offered to the network. This sequence is often modeled by a static traf-
fic pattern that defines the probability a packet travels between a particular
source-destination pair and an arrival process.

TTL — Transistor-transistor logic.

unicast — A unicast packet has a single destination terminal (as opposed to
multicast).

upstream — For a particular channel, credits or other flow-control information
along the back channel travel upstream. Also, the router at the source of the
channel is the upstream router. Relative to a particular packet, the upstream
resources are those that have already been visited along the packet’s route.

A P P E N D I X C

Network Simulator

Although the designer of an interconnection network should have strong intuition in
regard of the performance of that network, an accurate simulator is still an
important tool for verifying this intuition and analyzing specific design tradeoffs.
To aid in this process, the simulator written for this book is freely available at
http://cva.stanford.edu/. All the results from Chapters 19 and 25 were
created using this simulator. The simulator models the network at the flit level and
includes support for multiple topologies and routing algorithms. Buffering, speedup,
and pipeline timing of the routers are fully configurable. Also, several simple traf-
fic models and patterns are available. Internally, the simulator uses the two-phase
cycle-based simulation approach described in Section 24.4.1.

521

.
This Page Intentionally Left Blank

Bibliography

[1] Bülent Abali and Cevdet Aykanat. “Routing algorithms for IBM SP1.” In
Proc. of the First International Parallel Computer Routing and Communication
Workshop (PCRCW), pages 161–175, Seattle, 1994.

[2] Anant Agarwal. “Limits on interconnection network performance.” IEEE
Transactions on Parallel and Distributed Systems, 2(4):398–412, 1991.

[3] P. Agrawal, W.J. Dally, W.C. Fischer, H.V. Jagadish, A.S. Krishnakumar, and
R. Tutundjain. “MARS: A multiprocessor-based programmable accelerator.”
IEEE Design and Test of Computers, 4(5):28–37, Feb. 1987.

[4] Prathima Agrawal and William J. Dally. “A hardware logic simulation system.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
9(1):19–29, Jan. 1990.

[5] HamidAhmadi andWolfgang E. Denzel. “Survey of modern high performance
switching.” IEEE Journal on Selected Areas in Communications, 7(7):1091–
1103, Sept. 1989.

[6] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows:
Theory, algorithms, and applications. Upper Saddle River, New Jersey Prentice-
Hall, Inc. 1993.

[7] Sheldon B. Akers and Balakrishnan Krishnamurthy. “A group-theoritic model
for symmetric interconnection networks.” IEEE Transactions on Computers,
38(4):555–566, April 1989.

[8] James D. Allen, Patrick T. Gaughan, David E. Schimmel, and Sudhakar
Yalamanchili. “Ariadne — an adaptive router for fault-tolerant multicomput-
ers.” In Proc. of the International Symposium on Computer Architecture (ISCA),
pages 278–288, Chicago, 1994.

523

524 Bibliography

[9] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan
Porterfield, and Burton Smith. “The Tera computer system.” In Proc. of the
International Conference on Supercomputing, pages 1–6, 1990.

[10] T. Anderson, D. Culler, and D. Patterson. “A case for NOW (networks of
workstations)” IEEE Micro, 15(1): 54–64, Feb. 1995.

[11] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.
“High speed switch scheduling for local area networks.” ACM Transactions on
Computer Systems, 11(4):319–352, Nov. 1993.

[12] P. Baran. “On distributed communication networks.” IEEE Transactions on
Communications Systems, 12(1):1–9, March 1964.

[13] George H. Barnes, Richard M. Brown, Maso Kato, David J. Kuck, Daniel L.
Slotnick, and Richard A. Stokes. “The ILLIAC IV computer.” IEEE Transac-
tions on Computers, 17(8):746–757, Aug. 1968.

[14] K. E. Batcher. “Sorting networks and their applications.” In AFIPS Conference
Proceedings 32, page 307. Montvale, N.J.: AFIPS Press. 1968.

[15] K.E. Batcher. “The flip network in STARAN.” In Proc. of the International
Conference on Parallel Processing, pages 65–71, 1976.

[16] Simoni Ben-Michael, Michael Ben-Nun, and Yifat Ben-Shahar. “Method and
apparatus to expand an on chip fifo into local memory.” United States Patent
6,078,565. June 2000.

[17] V.E. Beneš. Rearrangeable three stage connecting networks. Bell System Tech-
nical Journal, 41:1481–1492, 1962.

[18] V.E. Beneš. Mathematical theory of connecting networks and telephone traffic.
New York: Academic Press. 1965.

[19] Elwyn R. Berlekamp. Algebraic Coding Theory, Revised Edition. Berkeley,
Aegean Press, June 1984.

[20] D. Bertsekas and R. Gallager. Data Networks. Upper Saddle River, N.J.:
Prentice-Hall, Inc. 2nd edition, 1992.

[21] Richard E. Blahut. Algebraic Codes for Data Transmission. Cambridge Uni-
versity Press, 2002.

[22] Matthias A. Blumrich, Richard D. Alpert, Yuqun Chen, Douglas W. Clark,
Stefanos N. Damianakis, Cezary Dubnicki, Edward W. Felten, Liviu Iftode,
Kai Li, Margaret Martonosi, and Robert A. Shillner. “Design choices in the
SHRIMP system: An empirical study.” In Proc. of the International Symposium
on Computer Architecture (ISCA), pages 330–341, 1998.

Bibliography 525

[23] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward W.
Felten, and Jonathan Sandberg. “Virtual memory mapped network interface
for the SHRIMP multicomputer.” In Proc. of the International Symposium on
Computer Architecture (ISCA), pages 142–153, April 1994.

[24] Nannette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles E. Seitz, Jakov N. Seizovic, and Wen-King Su. “Myrinet: a gigabit-per-
second local area network.” IEEE Micro, pages 29–36, Feb. 1995.

[25] Kevin Bolding. “Non-uniformities introduced by virtual channel deadlock
prevention.” Technical Report UW-CSE-92-07-07, University of Washington,
July 1992.

[26] Kevin Bolding, Melanie Fulgham, and Lawrence Snyder. “The case for chaotic
adaptive routing.” IEEE Transactions on Computers, 12(46):1281–1292,
Dec. 1997.

[27] Rajendra V. Boppana and Suresh Chalasani. “A comparison of adaptive worm-
hole routing algorithms.” In Proc. of the International Symposium on Computer
Architecture (ISCA), pages 351–360, 1993.

[28] Allan Borodin and John E. Hopcroft. “Routing,merging,and sorting on parallel
models of computation.” Journal of Computer and System Sciences, 30:130–
145, 1985.

[29] Paul Bratley, Bennett L. Fox, and Linus E. Schrage. A guide to simulation. New
York: Springer-Verlag, 2nd edition, 1986.

[30] Mark S. Brirrittella, Richard E. Kessler, Steven M. Oberlin, Randal S. Passint,
and Greg Thorson. “System for allocating messages between virtual channels
to avoid deadlock and to optimize the amount of message traffic on each type
of virtual channel.” United States Patent 5,583,990. Dec. 1996.

[31] Randy Brown. “Calendar queues: A fast O(1) priority queue implementa-
tion of the simulation event set problem.” Communications of the ACM,
31(10):1220–1227, Oct. 1988.

[32] Nicholas P. Carter. Processor Mechanisms for Software Shared Memory. Ph.D.
thesis, Massachusetts Institute of Technology, Feb. 1999.

[33] Philip P. Carvey, William J. Dally, and Larry R. Dennison. “Apparatus and
methods for connecting modules using remote switching.” United States
Patent 6,205,532. March 2001.

[34] Philip P. Carvey, William J. Dally, and Larry R. Dennison. “Composite trunk-
ing.” United States Patent 6,359,879. March 2002.

[35] Alan Charlesworth. “Starfire — extending the SMP envelope.” IEEE Micro,
18(1):39–49, Jan./Feb. 1998.

526 Bibliography

[36] Andrew A. Chien and Jae H. Kim. “Planar-adaptive routing: Low-cost adap-
tive networks for multiprocessors.” In Proc. of the International Symposium on
Computer Architecture (ISCA), pages 268–277, 1992.

[37] Charles Clos. “A study of non-blocking switching networks.” Bell System
Technical Journal, 32:406–424, 1953.

[38] P. Close. “The iPSC/2 node architecture.” In Proc. of the Conference on Hyper-
cube Concurrent Computers and Applications, pages 43–55, Jan. 1988.

[39] R. Cole and J. Hopcroft. “On edge coloring bipartite graphs.” SIAM Journal
on Computing, 11:540–546, 1982.

[40] Richard Cole, Kirstin Ost, and Stefan Schirra. “Edge-coloring bipartite multi-
graphs in O(E log D) time.” Combinatorica, 21(1):5–12, 2001.

[41] Richard Crisp. “Direct Rambus technology:The new main memory standard.”
IEEE Micro, 17(6):18–28, Nov./Dec. 1997.

[42] Rene L. Cruz. “A calculus for network delay, part I: Network elements in
isolation.” IEEE Transactions on Information Theory, 37(1):114–131, Jan. 1991.

[43] Rene L. Cruz. “A calculus for network delay, part II: Network analysis.” IEEE
Transactions on Information Theory, 37(1):132–141, Jan. 1991.

[44] William J. Dally. “Virtual-channel flow control.” In Proc. of the International
Symposium on Computer Architecture (ISCA), pages 60–68, May 1990.

[45] William J. Dally. “Express cube: Improving the performance of k-ary n-cube in-
terconnection networks.” IEEE Transactions on Computers, 40(9):1016–1023,
Sept. 1991.

[46] William J. Dally. “Performance analysis of k-ary n-cube interconnection net-
works.” IEEE Transactions on Computers, 39(6):775–785, June 1991.

[47] William J. Dally. “Virtual-channel flow control.” IEEE Transactions on Parallel
and Distributed Systems, 3(2):194–205, March 1992.

[48] William J. Dally and Hiromichi Aoki. “Deadlock-free adaptive routing in
multicomputer networks using virtual channels.” IEEE Transactions on Parallel
and Distributed Systems, 4(4):466–475, April 1993.

[49] William J. Dally, P. P. Carvey, and L. R. Dennison. “The Avici terabit
switch/router.” In Proc. of the Symposium on Hot Interconnects, pages 41–50,
Aug. 1998.

[50] William J. Dally, Philip P. Carvey, Larry R. Dennison, and Allen P. King. “In-
ternet switch router.” United States Patent 6,370,145. April 2002.

Bibliography 527

[51] William J. Dally, Andrew Chang, Andrew Chien, Stuart Fiske, Waldemar
Horwat, John Keen, Richard Lethin, Michael Noakes, Peter Nuth, Ellen Sper-
tus, Deborah Wallach, and Scott D. Wills. “The J-machine.” In Retrospective in
25 Years of the International Symposia on Computer Architecture, pages 54–58,
1998.

[52] William J. Dally, Larry R. Dennison, David Harris, Kinhong Kan, and
Thucydides Xanthopoulos. “The Reliable Router: A reliable and high-
performance communication substrate for parallel computers.” In Proc. of the
First International Parallel Computer Routing and Communication Workshop
(PCRCW), Seattle, May 1994.

[53] William J. Dally, J. A. Stuart Fiske, John S. Keen, Richard A. Lethin, Michael D.
Noakes, Peter R. Nuth, Roy E. Davison, and Gregory A. Fyler. “The message-
driven processor — a multicomputer processing node with efficient mecha-
nisms.” IEEE Micro, 12(2):23–39, April 1992.

[54] William J. Dally and John Poulton. “Transmitter equalization for 4-Gbps
signaling.” IEEE Micro, 17(1):48–56, Jan./Feb. 1997.

[55] William J. Dally and John W. Poulton. Digital Systems Engineering. Cambridge
University Press, 1998.

[56] William J. Dally and Charles L. Seitz. “The torus routing chip.” Journal of
Parallel and Distributed Computing, 1(3):187–196, 1986.

[57] William J. Dally and Charles L. Seitz. “Deadlock free message routing in
multiprocessor interconnection networks.” IEEE Transactions on Computers,
36(5):547–553, May 1987.

[58] Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis and simula-
tion of a fair queueing algorithm.” Proc. of ACM SIGCOMM, 19(4):1–12,
Sept. 1989.

[59] Willibald Doeringer,Günter Karjoth,and Mehdi Nassehi. “Routing on longest-
matching prefixes.” IEEE/ACM Transactions on Networking, 4(1):86–97,
Feb. 1996.

[60] José Duato. “A new theory of deadlock-free adaptive routing in wormhole
networks.” IEEE Transactions on Parallel and Distributed Systems, 4(12):1320–
1331, Dec. 1993.

[61] José Duato. “A necessary and sufficient condition for deadlock-free adaptive
routing in wormhole networks.” IEEE Transactions on Parallel and Distributed
Systems, 6(10):1055–1067, Oct. 1995.

[62] José Duato. “A necessary and sufficient condition for deadlock-free routing in
cut-through and store-and-forward networks.” IEEE Transactions on Parallel
and Distributed Systems, 7(6):841–854, Aug. 1996.

528 Bibliography

[63] Jose Duato, Sudhakar Yalamanchili, Blanca Caminero, Damon S. Love, and
Francisco J. Quiles. “MMR: A high-performance multimedia router —
architecture and design trade-offs.” In Proc. of the International Symposium
on High-Performance Computer Architecture (HPCA), pages 300–309, 1999.

[64] A.M. Duguid. “Structural properties of switching networks.” Technical Report
BTL-7, Brown University, 1959.

[65] T-Y. Feng. “Data manipulating functions in parallel processors and their imple-
mentations.” IEEE Transactions on Computers, 23(3):309–318, March 1974.

[66] George S. Fishman. Discrete-Event Simulation: Modeling, Programmning, and
Analysis. New York: Springer-Verlag, 2001.

[67] L.R. Ford and D.R. Fulkerson. “Maximal flow through a network.” Canadian
Journal of Mathematics, pages 399–404, 1956.

[68] Edward Fredkin. “Trie memory.” Communications of the ACM, 3(9):490–499,
August 1960.

[69] Mike Galles. “Scalable pipelined interconnect for distributed endpoint rout-
ing: The SGI SPIDER chip.” In Proc. of the Symposium on Hot Interconnects,
pages 141–146, Aug. 1996.

[70] D. Gelernter. “A DAG-based algorithm for prevention of store-and-forward
deadlock in packet networks.” IEEE Transactions on Computers, 30(10):709–
715, Oct. 1981.

[71] Paolo Giaccone, Balaji Prabhakar, and Devavrat Shah. “Towards simple, high-
performance schedulers for high-aggregate bandwidth switches.” In Proc. of
IEEE INFOCOM, pages 1160–1169, New York, June 2002.

[72] Joseph Di Giacomo. Digital Bus Handbook. McGraw-Hill Professional,
Jan. 1990.

[73] Christopher J. Glass and Lionel M. Ni. “The turn model for adaptive routing.”
In Proc. of the International Symposium on Computer Architecture (ISCA), pages
278–287, 1992.

[74] S. Jamaloddin Golestani. “A stop-and-go queueing framework for congestion
management.” Proc. of ACM SIGCOMM, 20(4):8–18, Aug. 1990.

[75] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe,
Larry Rudolph, and Marc Snir. “The NYU Ultracomputer — Designining
a MIMD shared memory parallel computer.” IEEE Transactions on Computers,
32(2):175–189, Feb. 1983.

[76] Luis Gravano, Gustavo D. Pifarré, Pablo E. Berman, and Jorge L.C. Sanz.
“Adaptive deadlock- and livelock-free routing with all minimal paths in torus
networks.” IEEE Transactions on Parallel and Distributed Systems, 5(12):1233–
1251, Dec. 1994.

Bibliography 529

[77] Jim Gray, editor. The Benchmark Handbook. San Mateo, CA: Morgan
Kaufmann, 2nd edition, 1993.

[78] K.D. Gunther. “Prevention of deadlocks in packet-switched data transport
systems.” IEEE Transactions on Communications, 29(4), 1981.

[79] Pankaj Gupta and Nick McKeown. “Designing and implementing a fast cross-
bar scheduler.” IEEE Micro, 19(1):20–28, Jan./Feb. 1999.

[80] Kenichi Hayashi, Tunehisa Doi, Takeshi Horie, Yoichi Koyanagi, Osamu
Shiraki, Nobutaka Imamura,Toshiyuki Shimizu, Hiroaki Ishihata, and Tatsuya
Shindo. “AP1000+: Architectural support of PUT/GET interface for paral-
lelizing compiler.” In Proc of. Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 196–207, San Jose, CA, 1994.

[81] H. Heffes and D.M. Lucantoni. “A Markov modulated characterization of
packetized voice and data traffic and related statistical multiplexer perfor-
mance.” IEEE Journal on Selected Areas in Communications, 4(6):856–868,
Sept. 1986.

[82] Dana S. Henry and Christopher F. Joerg. “A tightly-coupled processor-network
interface.” In Proc of. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 111–121, 1992.

[83] J. E. Hopcroft and R. M. Karp. “An n5/2 algorithm for maximum matching in
bipartite graphs.” SIAM Journal on Computing, 2:225–231, 1973.

[84] Robert W. Horst. “TNet: a reliable system area network.” IEEE Micro,
15(1):37–45, Feb. 1995.

[85] BBN Advanced Computers Incorporated. “Butterfly parallel processor
overview.” BBN Report No. 6148, March 1986.

[86] INMOS. The T9000 Transputer Products Overview Manual, 1991.

[87] Sundar Iyer, Ramana Rao Kompella, and Nick McKeown. “Analysis of a mem-
ory architecture for fast packet buffers.” In Proc. of the IEEE Workshop on
High Performance Switching and Routing (HPSR), pages 368–373, Dallas, TX,
May 2001.

[88] Jeffrey M. Jaffe. “Bottleneck flow control.” IEEE Transactions on Communica-
tions, 29(7):954–962, July 1981.

[89] A. Jain, W. Anderson, T. Benninghoff, D. Berucci, M. Braganza, J. Burnetie,
T. Chang, J. Eble, R. Faber, O. Gowda, J. Grodstein, G. Hess, J. Kowaleski,
A. Kumar, B. Miller, R. Mueller, P. Paul, J. Pickholtz, S. Russell, M. Shen,
T. Truex, A. Vardharajan, D. Xanthopoulus, and T. Zou. “A 1.2GHz Alpha
microprocessor with 44.8Gb/s chip pin bandwidth.” In Proc. of the IEEE
International Solid-State Circuits Conference (ISSCC), pages 240–241,
San Francisco, Feb. 2001.

530 Bibliography

[90] Raj Jain and Shawn A. Routhier. “Packet trains – measurements and a new
model for computer network traffic.” IEEE Journal on Selected Areas in Com-
munications, 4(6):986–995, Sept. 1986.

[91] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. “Tight bounds
for oblivious routing in the hypercube.” In Proc. of the Symposium on Parallel
Algorithms and Architectures (SPAA), pages 31–36, 1990.

[92] Manolis Katevenis, Panagiota Vatsolaki, and Aristides Efthymiou. “Pipelined
memory shared buffer for VLSI switches.” Proc. of ACM SIGCOMM,
25(4):39–48, Oct. 1995.

[93] Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P. Carter,
Andrew Chang, and Whay Sing Lee. “Exploiting fine-grain thread level par-
allelism on the MIT multi-ALU processor.” In Proc. of the International Sym-
posium on Computer Architecture (ISCA), pages 306–317, Barcelona, Spain,
July 1998.

[94] P. Kermani and L. Kleinrock. “Virtual-cut through: a new computer commu-
nications switching technique.” Computer Networks, 3(4):267–286, 1979.

[95] R.E. Kessler and J.L. Schwarzmeier. “Cray T3D: a new dimension for Cray
Research.” In Proc. of the IEEE Computer Society International Conferrence
(COMPCON), pages 176–182, Feb. 1993.

[96] Jae H. Kim and Andrew A. Chien. “Network performance under bimodal
traffic loads.” Journal of Parallel and Distributed Computing, 28(1):43–64,
Jul. 1995.

[97] Jae H. Kim and Andrew A. Chien. “Rotating combined queueing (RCQ):
bandwidth and latency guarantees in low-cost, high-performance networks.”
In Proc. of the International Symposium on Computer Architecture (ISCA), pages
226–236, May 1996.

[98] Jae H. Kim, Ziqiang Liu, and Andrew A. Chien. “Compressionless routing:
A framework for adaptive and fault-tolerant routing.” IEEE Transactions on
Parallel and Distributed Systems, 8(3):229–244, March 1997.

[99] Leonard Kleinrock. Queuing Systems, Volume 1. New York: John Wiley &
Sons, Inc., 1975.

[100] Leonard Kleinrock and Farouk Kamoun. “Hierarchical routing for large net-
works:Performance evaluation and optimization.” Computer Networks,1:154–
174, 1977.

[101] Donald E. Knuth. Seminumerical Algorithms. Reading, Mass.:Addison-Wesley,
3rd edition, 1997.

[102] Donald E. Knuth. Sorting and Searching. Reading, Mass.: Addison-Wesley,
2nd edition, 1998.

Bibliography 531

[103] D.König. “Graphok és alkalmazásuk a determinánsok és a halmazok
elméletére [Hungarian].” Mathematikai és Természettudományi Értesito,
34:104–119, 1916.

[104] S. Konstantinidou and L. Snyder. “The Chaos Router: A practical applica-
tion of randomization in network routing.” Proc. of the Symposium on Parallel
Algorithms and Architectures (SPAA), pages 21–30, 1990.

[105] David Kroft. “Lockup-free instruction fetch/prefetch cache organization.” In
Proc. of the International Symposium on Computer Architecture (ISCA), pages
81–88, 1981.

[106] Clyde P. Kruskal and Marc Snir. “A unified theory of interconnection network
structure.” Theoretical Computer Science, 48(3):75–94, 1986.

[107] Vijay P. Kumar, T. V. Lashman, and Dimitrios Stiliadis. “Beyond best effort:
Router architectures for the differentiated services of tomorrow’s internet.”
IEEE Communications Magazine, pages 152–164, May 1998.

[108] James Laudon and Daniel Lenoski. “The SGI Origin: a ccNUMA highly scal-
able server.” In Proc. of the International Symposium on Computer Architecture
(ISCA), pages 241–251, June 1997.

[109] Averill M. Law and David W. Kelton. Simulation Modeling and Analysis. New
York: McGraw Hill, 3rd edition, 2000.

[110] D. H. Lawrie. “Access and alignment of data in an array processor.” IEEE
Transactions on Computers, 24:1145–1155, Dec. 1975.

[111] Pierre L’Ecuyer. “Random numbers for simulation.” Communications of the
ACM, 33(10):85–97, Oct. 1990.

[112] Whay Sing Lee, William J. Dally, Stephen W. Keckler, Nicholas P. Carter,
and Andrew Chang. “Efficient, protected message interface in the MIT
M-Machine.” IEEE Computer, 31(11):69–75, Nov. 1998.

[113] Charles E. Leiserson. “Fat-trees: Universal networks for hardware effi-
cient supercomputing.” IEEE Transactions on Computers, 34(10):892–901,
October 1985.

[114] Charles E. Leiserson,Zahi S.Abuhamdeh,David C. Douglas,Carl R. Feynman,
Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,
Margaret A. St Pierre, David S. Wells, Monica C. Wong-Chan, Shaw-Wen
Yang, and Robert Zak. “The network architecture of the Connection Machine
CM-5.” Journal of Parallel and Distributed Computing, 33(2):145–158, 1996.

[115] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Henessy, Mark Horowitz, and Monica S. Lam. “The
Stanford Dash multiprocessor.” IEEE Computer, 25(3):63–79, March 1992.

532 Bibliography

[116] Daniel E. Lenoski and Wolf-Dietrich Weber. Scalable Shared-Memory Multi-
processing. Morgan Kaufmann, 1995.

[117] Sigurd L. Lillevik. “The Touchstone 30 gigaflop DELTA prototype.” In
DMCC, pages 671–677, April 1991.

[118] Daniel H. Linder and Jim C. Harden. “An adaptive and fault tolerant worm-
hole routing strategy for k-ary n-cubes.” IEEE Transactions on Computers,
40(1):2–12, Jan. 1991.

[119] Alain. J. Martin. “The TORUS: An exercise in constructing a processing
surface.” In Proc. of the 2nd Caltech Conference on VLSI, pages 527–537,
Jan. 1981.

[120] G. M. Masson and B. W. Jordan Jr. “Generalized multi-stage connection net-
works.” Networks, 2:191–209, 1972.

[121] Makoto Matsumoto and Yoshiharu Kurita. “Twisted GFSR generators.” ACM
Transactions on Modeling and Computer Simulation, 2(3):179–194, July 1992.

[122] Anthony J. McAuley and Paul Francis. “Fast routing table lookup using CAMs.”
In Proc. of IEEE INFOCOM, pages 1382–1391, San Francisco, March 1993.

[123] Nick McKeown. “The iSLIP scheduling algorithm for input-queued switches.”
IEEE/ACM Transactions on Networking, 7(2):188–201, April 1999.

[124] Nick McKeown, Venkat Anatharam, and Jean Warland. “Achieving 100%
throughput in an input-queued switch.” In Proc. of IEEE INFOCOM, pages
296–302, San Franciso, 1996.

[125] Nick McKeown, Martin Izzard, Adisak Mekkittikul, Bill Ellersick, and Mark
Horowitz. “The Tiny Tera: A packet switch core.” IEEE Micro, 17(1):26–33,
Jan./Feb. 1997.

[126] Nick McKeown, Adisak Mekkittikul, Venkat Anantharam, and Jean Walrand.
“Achieving 100% throughput in an input-queued switch.” In Proc. of IEEE
INFOCOM, pages 296–302, San Francisco, March 1996.

[127] J. McQuillan. “Adaptive routing algorithms for distributed computer net-
works.” Technical Report BBN Tech. Rep. 2831, Cambridge, Mass.: Bolt Beranek
and Newman Inc., May 1974.

[128] Dikran S. Meliksetian and C.Y. Roger Chen. “Optimal routing algorithm and
the diameter of the cube-connected cycles.” IEEE Transactions on Parallel and
Distributed Systems, 4(10):1172–1178, Oct. 1993.

[129] P.M. Merlin and P.J. Schweitzer. “Deadlock avoidance in store-and-forward
networks — I: Store and forward deadlock.” IEEE Transactions on Communi-
cations, 28(3):345–352, March 1980.

Bibliography 533

[130] Shubhendu S. Mukherjee, Federico Silla, Peter Bannon, Joel Emer, Steve Lang,
and David Webb. “A comparative study of arbitration algorithms for the Alpha
21364 pipelined router.” In Proc of. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 223–234, San Jose, CA,
Oct. 2002.

[131] Shuhendu S. Mukherjee, Peter Bannno, Steven Lang, Aaron Spink, and David
Webb. “The Alpha 21364 network architecture.” In Proc. of the Symposium on
Hot Interconnects, pages 113–117, Aug. 2001.

[132] J. Nagle. “On packet switches with infinite storage.” IEEE Transactions on
Communications, 35(4):435–438, April 1987.

[133] T. Nakata, Y. Kanoh, K. Tatsukawa, S. Yanagida, N. Nishi, and H. Takayama.
“Architecture and the software environment of parallel computer Cenju-4.”
NEC Research and Development Journal, 39:385–390, Oct. 1998.

[134] nCUBE Corporation. nCUBE Processor Manual, 1990.

[135] Ted Nesson and S. Lennart Johnsson. “ROMM routing on mesh and torus
networks.” In Proc. of the Symposium on Parallel Algorithms and Architectures
(SPAA), pages 275–287, Santa Barbara, CA, 1995.

[136] Michael D. Noakes, DeborahA.Wallach, andWilliam J. Dally. “The J-machine
multicomputer:An architectural evaluation.” In Proc. of the International Sym-
posium on Computer Architecture (ISCA), pages 224–235, May 1993.

[137] Satoshi Nojima, Eiichi Tsutsui, Haruki Fukuda, and Masamichi Hashimoto.
“Integrated services packet network using bus matrix switch.” IEEE Journal
on Selected Areas in Communications, 5(8):1284–1292, Oct. 1987.

[138] Peter R. Nuth and William J. Dally. “The J-machine network.” In Proc. of the
International Conference on Computer Design, pages 420–423, Oct. 1992.

[139] Scott Pakin,Vijay Karamcheti, andAndrewA. Chien. “Fast Messages:Efficient,
portable communication for workstation clusters and MPPs.” IEEE Concur-
rency, 5(2):60–73, April/June 1997.

[140] J.F. Palmer. “The NCUBE family of parallel supercomputers.” In Proc. of the
International Conference on Computer Design, 1986.

[141] Stephen K. Park and Keith W. Miller. “Random number generators: good ones
are hard to find.” Communications of the ACM, 31(10):1192–1201, Oct. 1988.

[142] Krzysztof Pawlikowski. “Steady-state simulation of queueing processes: A
survey of problems and solutions.” ACM Computing Surveys, 22(2):123–170,
June 1990.

[143] PCI Special Interests Group, Portland, OR. PCI Local Bus Specification, 2001.
Revision 2.3.

534 Bibliography

[144] M.C. Pease. “The indirect binary n-cube microprocessor array.” IEEE Trans-
actions on Computers, 26(5):458–473, May 1977.

[145] Li-Shiuan Peh and William J. Dally. “Flit-reservation flow control.” In Proc.
of the International Symposium on High-Performance Computer Architecture
(HPCA), pages 73–84, Toulouse, France, Jan. 1999.

[146] Li-Shiuan Peh and William J. Dally. “A delay model and speculative archi-
tecture for pipelined routers.” In Proc. of the International Symposium on
High-Performance Computer Architecture (HPCA), pages 255–266, Monterrey,
Mexico, Jan. 2001.

[147] Tong-Bi Pei and Charles Zukowski. “VLSI implementation of routing tables:
tries and CAMs.” In Proc. of IEEE INFOCOM, pages 512–524, April 1991.

[148] Larry R. Peterson and Bruce S. Davie. Computer Networks: a systems approach.
San Francisco: Morgan Kaufmann, 2nd edition, 2000.

[149] Craig S. Petrie and J. Alvin Connelly. “A noise-based IC random number
generator for applications in cryptography.” IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 47(5):615–621, May 2000.

[150] Greg Pfister. High Performance Mass Storage and Parallel I/O, “An Introduction
to the InfiniBand Architecture,” Chapter 42, pages 617–632. IEEE Press and
Wiley Press, 2001.

[151] Gregory F. Pfister and V. Alan Norton. “Hot spot contention and combining
in multistage interconnection networks.” IEEE Transactions on Computers,
34(10):943–948, Oct. 1985.

[152] Timothy Mark Pinkston and Sugath Warnakulasuriya. “Characterization of
deadlocks in k-ary n-cube networks.” IEEE Transactions on Parallel and Dis-
tributed Systems, 10(9):904–921, Sept. 1999.

[153] Franco P. Preparata and Jean Vuillemin. “The cube-connected cycles: a
versatile network for parallel computation.” Communications of the ACM,
24(5):300–309, May 1981.

[154] Martin De Prycker. Asynchronous Transfer Mode: Solution for Broadband ISDN.
Prentice Hall, 3rd edition, 1995.

[155] J. Rattner. “Concurrent processing: a new direction in scientific computing.”
In AFIPS Conference Proceedings, National Computer Conference, volume 54,
pages 157–166, 1985.

[156] Randall D. Rettberg, William R. Crowther, Philip P. Carvey, and Raymond S.
Tomlinson. “The monarch parallel processor hardware design.” IEEE Com-
puter, 23(4):18–28, April 1990.

Bibliography 535

[157] Jerome H. Saltzer, David P. Reed, and David D. Clark. “End-to-end arguments
in system design.” ACM Transactions on Computer Systems, 2(4):277–288,
Nov. 1984.

[158] Nicola Santoro and Ramez Khatib. “Labeling and implicit routing in net-
works.” The Computer Journal, 28(1):5–8, 1985.

[159] Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray,
Roger M. Needham, Thomas L. Rodeheffer, Edwin H. Satterthwaite, and
Charles P. Thacker. “Autonet: a high-speed, self-configuring local area network
using point-to-point links.” IEEE Journal on Selected Areas in Communications,
9(8):1318–1335, Oct. 1991.

[160] Loren Schwiebert. “Deadlock-free oblivious wormhole routing with cyclic
dependencies.” IEEE Transactions on Computers, 50(9):865–876, Sept. 2001.

[161] Steven L. Scott and Greg Thorson. “Optimized routing in the Cray T3D”. In
Proc. of the First International Parallel Computer Routing and Communication
Workshop (PCRCW), pages 281–294, Seattle, May 1994.

[162] Steven L. Scott and Gregory M. Thorson. “The Cray T3E network: Adaptive
routing in a high performance 3D torus.” In Proc. of the Symposium on Hot
Interconnects, pages 147–156, Aug. 1996.

[163] Charles L. Seitz. “The Cosmic Cube.” Communications of the ACM, 28(1):22–
33, Jan. 1985.

[164] Charles L. Seitz,W. C. Athas, C. M. Flaig,A. J. Martin, J. Seizovic, C. S. Steele,
and W.-K. Su. “The architecture and programming of the Ametek series 2010
multicomputer.” In Proc. of the Conference on Hypercube Concurrent Computers
and Applications, pages 33–36, 1988.

[165] Carlo H. Séquin. “Doubly twisted torus networks for VLSI processing arrays.”
In Proc. of the International Symposium on Computer Architecture (ISCA), pages
471–480, 1981.

[166] H. J. Siegel. “Interconnection networks for SIMD machines.” IEEE Transac-
tions on Computers, 12(6):57–65, June 1979.

[167] Daniel Siewiorek and Robert Swarz. Theory and Practice of Reliable System
Design. Digital Press, Dec. 1983.

[168] Arjun Singh, William J. Dally, Brian Towles, and Amit K. Gupta. “Locality-
preserving randomized oblivious routing on torus networks.” In Proc. of
the Symposium on Parallel Algorithms and Architectures (SPAA), pages 9–19,
Winnipeg, Manitoba, Canada, Aug. 2002.

[169] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. “SPLASH:
Stanford parallel applications for shared-memory.” ACM SIGARCH Com-
puter Architecture News, 1(20):5–44, March 1992.

536 Bibliography

[170] Rajeev Sivaram, Craig B. Stunkel, and Dhabaleswar K. Panda. “HIPIQS: A
high-performance switch architecture using input queuing.” IEEETransactions
on Parallel and Distributed Systems, 13(3):275–289, May 1998.

[171] David Slepian. “Two theorems on a particular crossbar switching network.”
1952.

[172] Daniel L. Slotnick,W. Carl Borck, and Robert C. McReynolds. “The Soloman
computer.” In Proc. of the AFIPS Spring Joint Computer Conference, volume 22,
pages 97–107, New York: Spartan Books, 1967.

[173] Small computer systems interface — 2 (SCSI-2). ANSI X3.131-1994
(R1999), 1999.

[174] Burton J. Smith. “Architecture and applications of the HEP multiprocessor
computer system.” In Proc. of SPIE: Real-Time Signal Processing IV, volume
298, pages 241–248, 1981.

[175] Harold S. Stone. “Parallel processing with the perfect shuffle.” IEEE Transac-
tions on Computers, 20(2):153–161, Feb. 1971.

[176] C. B. Stunkel and P. H. Hochschild. “SP2 high-performance switch architec-
ture.” In Proc. of the Symposium on Hot Interconnects, pages 115–121, Stanford,
Ca., Aug. 1994.

[177] Craig B. Stunkel, Jay Herring,BulentAbali, and Rajeev Sivaram. “A new switch
chip for IBM RS/6000 SP systems.” In Proc. of the ACM/IEEE Conference on
Supercomputing, Portland, Or., Nov. 1999.

[178] Craig B. Stunkel, Dennis G. Shea, Don G. Grice, Peter H. Hochschild, and
Michael Tsao. “The SP1 high-performance switch.” In Proc. of the Scalable
High Performance Computing Conference, pages 150–157, May 1994.

[179] H. Sullivan and T. R. Bashkow. “A large scale, homogeneous, fully distributed
parallel machine.” In Proc. of the International Symposium on Computer Archi-
tecture (ISCA), pages 105–124, March 1977.

[180] Yuval Tamir and Hsin-Chou Chi. “Symmetric crossbar arbiters for VLSI com-
munication switches.” IEEE Transactions on Parallel and Distributed Systems,
4(1):13–27, Jan. 1993.

[181] Yuval Tamir and Gregory L. Frazier. “High performance multi-queue buffers
for VLSI communication switches.” In Proc. of the International Symposium on
Computer Architecture (ISCA), pages 343–354, June 1988.

[182] Yuval Tamir and Gregory L. Frazier. “Dynamically-allocated multi-queue
buffers for VLSI communication switches.” IEEE Transactions on Computers,
41(6):725–737, June 1992.

Bibliography 537

[183] Leandros Tassiulas. “Linear complexity algorithms for maximum throughput
in radio networks and input queued switches.” In Proc. of IEEE INFOCOM,
pages 533–539, New York, April 1998.

[184] Fouad A. Tobagi. “Fast packet switch architectures for broadband integrated
services digital networks.” Proc. of the IEEE, 78(1):137–167, Jan. 1990.

[185] Brian Towles and William J. Dally. “Worst-case traffic for oblivious routing
functions.” In Proc. of the Symposium on Parallel Algorithms and Architectures
(SPAA), pages 1–8, Winnipeg, Manitoba, Canada, Aug. 2002.

[186] Anjan K. V. and Timothy Mark Pinkston. “An efficient, fully adaptive deadlock
recovery scheme:DISHA.” In Proc. of the International Symposium on Computer
Architecture (ISCA), pages 201–210, 1997.

[187] L. G. Valiant and G. J. Brebner. “Universal schemes for parallel communi-
cation.” In Proc. of the ACM Symposium of the Theory of Computing, pages
263–277, Milwaukee, Minn., 1981.

[188] J. van Leeuwen and R. B. Tan. “Interval routing.” The Computer Journal, 30(4):
298–307, 1987.

[189] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. “Active messages: A mechanism for integrated communication and
computation.” In Proc. of the International Symposium on Computer Architecture
(ISCA), pages 256–266, Gold Coast, Australia, 1992.

[190] Abraham Waksman. “A permutation network.” Journal of the ACM, 15(1):
159–163, Jan. 1968.

[191] Duncan J.Watts and Steven H. Strogatz. “Collective dyanmics of ’small-world’
networks.” Nature, 393:440–442, June 1998.

[192] C. Whitby-Strevens. “The transputer.” In Proc. of the International Symposium
on Computer Architecture (ISCA), pages 292–300, June 1985.

[193] Drew Wingard. “MicroNetwork-based integration for SOCs.” In Proc. of the
Design Automation Conference, pages 673–677, Las Vegas, June 2001.

[194] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
and Anoop Gupta. “The SPLASH-2 programs: Characterization and method-
ological considerations.” In Proc. of the International Symposium on Computer
Architecture (ISCA), pages 24–36, June 1995.

[195] C.W. Wu and T. Feng. “On a class of multistage interconnection networks.”
IEEE Transactions on Computers, 29(8):694–702, August 1980.

[196] Yuanyuan Yang and Gerald M. Masson. “Nonblocking broadcast switching
networks.” IEEE Transactions on Computers, 40(9):1005–1015, Sept. 1991.

538 Bibliography

[197] Kenneth Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro,
16(2):28–40, April 1996.

[198] Ki Hwan Yum, Eun Jung Kim, Chinta R. Das, and Aniruddha S. Vaidya. “Me-
diaWorm: a QoS capable router architecture for clusters.” IEEE Transactions
on Parallel and Distributed Systems, 13(12):1261–1274, Dec. 2002.

[199] Robert C. Zak, Charles E. Leiserson, Bradley C. Kuzmaul, Shaw-Wen Yang,
W. Daniel Hillis, David C. Douglas, and David Potter. “Parallel computer
system including arrangement for transferring messages from a source pro-
cessor to selected ones of a plurality of destination processors and combining
responses.” United States Patent 5,265,207. Nov. 1993.

[200] L. Zhang. “VirtualClock: A new traffic control algorithm for packet-switched
networks.” ACM Transactions on Computer Systems, 9(2):101–124, May 1991.

[201] Daniel Zwillinger, editor. CRC Standard Mathematical Tables and Formulae.
Chemical Rubber Company Press, 30th edition, 1995.

[202] Will E. Leland, Murad S. Taqque, Walter Willinger, and Daniel V. Wilson.
“On the self-similar nature of Ethernet traffic.” IEEE/ACM Transactions on
Networking, 2(1): 1-15, Feb. 1994.

Index

A
ABR (available bit rate) service

class, 300
Accepted traffic, 21, 38–40,

452–454, 458–459, 515
Accepted vs. offered traffic curve,

452–454
Ack/nack flow control, 249–250
Active state, 237
Adaptive routing, 162, 189, 208,

272–277, 422, 515
basics, 189–192
chaotic, 195, 458
deadlock avoidance, 272–277
Duato’s protocol for

deadlock-free adaptive
algorithms, 276–277

fully, 193–195
load-balanced, 195–196
minimal, 192–193
routing subfunctions and

extended dependences,
272–276

stiff flow control, 191
Thinking Machines CM-5,

196–200
Age-based arbitration, 295–296
Age-based priority, 279
Agents, 257

circuit switching, 258
deadlock, 258–259
flit-buffer flow control,

258–259

packet-buffer flow control,
258, 260–261

wait-for and holds
relationships, 259

Aggregate resource allocation,
291–292

Algorithmic routing, 211–212
All-at-once routing, 163
Allocation, 363

batch, 376–378
exact algorithms, 366–367
grant matrix, 364
incremental, 376–378
maximal matching, 365
maximum matching, 364
max-min fairness, 296–297
request matrix, 364

Allocators, 363
greedy, 378
incremental, 376–378
iSLIP, 371–372
lonely output (LOA),

372–373
multistage, 378–380
parallel iterative matching

(PIM), 371
performance, 380–383
separable, 367–373
sliding limit, 334
speedup, 382
variable length packets, 378
Verilog example, 35–36
wavefront, 373–376

Alpha 21364 router, 22, 256, 281,
321–324, 385

Alpha-particle strike, 411–412
Ametek S14, 22
Analysis of performance. See

Performance
Application-driven workloads,

475–476
Arbiters, 349

distributed, 434
fixed-priority, 352–353, 432
grant-hold circuit, 355–357
iterative, 352–353
matrix, 358–360
oblivious, 354–355
queueing, 360–362
radial, 432–433, 435
replicated, 435–436
round-robin, 355
timing, 349–350
variable length grants, 350
variable priority iterative, 354
weighted round-robin,

357–358
Arbitration, 349

age-based, 295–296
buses, 430–434
fairness, 351–352
FIFO fairness, 351
locally fair, 295, 351
strong fairness, 351
timing, 349–350
weak fairness, 351

539

540 Index

ASIC (application-specific
integrated circuit), 515

Asynchronous bus, 429–430
ATM (Asynchronous Transfer

Mode)
service classes, 299–300
switches and Batcher sorting

network, 137
virtual circuits, 293

Augmenting path algorithm,
366–367

Availability, 286, 411, 515
Avici TSR (Terabit Switch

Router), 157, 183–186, 216,
217, 299, 300–302

routing, 183–186
virtual networks, 183, 300–302

B
Backpressure, 245–248, 515
Backtracking, 160
Bandwidth

average, 4
bisection, 48
channels, 47
cuts, 48
peak, 4
peak-to-average, 9–10

Batch allocation, 376–378
Batch means method, 481
Batcher bitonic sorting networks,

135–137, 155
Batcher-banyan network, 137
BBN Butterfly, 84–86, 230
BBN Monarch, 230, 468–470
Behavioral simulations, 474
Beneš networks, 21, 134–135,

176–178
BER (bit-error rate), 412
Bernoulli process, 477
Best efforts classes, 286
Best-effort services, 294–297
Binary 2-fly networks, 153
Binary n-cube networks, 22, 65
Bipartite graphs

allocators, 365
Clos networks, 122

Bipartite multigraphs, 126
Bisections, 21, 48

bandwidth, 48
butterfly networks, 79–80
channel, 48
channel load bound, 52

mesh networks, 92–93
packaging model, 60–61
torus networks, 92–93

Bit permutations, 50–51
Bit slicing, 149–151

Avici TSR, 183
Tiny Tera, 155–157
Bit-complement traffic pattern,

50–51
Bitonic sorting networks, 135
Bit-reversal traffic patterns, 41,

50–51, 58
Blocked packets, 221
Blocking, 111, 515
BNF (Burton normal form),

459–460
Boards,

cabling example, 28–31
packaging 60–62
SGI Origin 2000, 64–69

Body flit, 224
BR (bit-rotation) traffic, 50–51,

57
Broadcast, 425
Buffered flow control, 233
Bufferless flow control, 225–230
Buffers

acyclic dependences, 265
allocating to flits or packets,

233–234
classes, 264–267
circular, 328–330
credits, 312–313
data structures, 328–333
decoupling channel allocation,

234
empty stall, 310–312
exclusive class, 267
linked list, 330–333
management, 245–248
non-exclusive class, 267
organizing, 244, 325
partitioning, 326–328
sharing across virtual channels,

326
turnaround time, 251

Burn-in of components, 413
Burst messages, 439–441
Burstiness, 287–290

flows, 287
Markov modulated process,

477–478
performance affects, 501–503
synthetic workloads, 477

Burton normal form (BNF),
459–460

Bus master, 430
Bus switches, 335–338
Buses, 3, 427

acknowledge phase, 431
addressing phase, 430
arbitration, 430, 432–436
asynchronous, 429–431
basics, 428–432
broadcast, 427
burst messages, 439–441
cycles, 429
daisy-chain arbitration,

433–434
electrical constraints, 428, 441
externally sequenced, 429
idle cycle, 431
internally sequenced, 429
interrupting burst messages,

440–441
messages, 427, 429
parallel, 431, 442
performance limitations, 428
pipelining, 436–438
read transaction, 431–432
receive interface, 429
reservation table, 436–438
SECDED (single error

correcting, double error
detecting) codes, 421

serialization, 427
split-transaction, 438–439
synchronous, 429–431
transactions, 429
transfer phase, 431
transmit interface, 428–429
write transaction 431–432

Butterfly networks, 22, 27–31, 75
2-D view, 81
BBN Butterfly, 84–86
BBN Monarch, 468–470
Beneš network, 84
bisection, 79
channel bisection, 79
channel load, 79
channel width, 79–80
destination-tag routing, 31–32,

165–166, 174
dropping flow control example,

32–33
extra stages, 81–84
hop count, 79
isomorphic, 77–78

Index 541

latency, 79–80
load imbalance, 81–84
long wires, 75
packaging, 78–80
path diversity, 75, 79, 81–84
performance analysis, 36–42,

463–465, 468–470
reverse traffic pattern, 79
router design example, 33–36
serialization latency, 80
structure, 75–77
switch nodes, 78
throughput, 79
Valiant’s algorithm, 175–176
wire latency, 80

Byzantine failures, 413

C
Cable, 26
Cache coherence, 263, 397–398

message ordering, 208
CAM (content addressable

memory), 210, 515
CAM-based node routing tables,

210–211
Capacity, 27, 55, 515

simulation level, 472
Cayley graphs, 63–64, 69
CBR (constant bit rate) service

class, 300
Channel load, 51–55

bounds on, 52–55
butterfly networks, 79
mesh networks, 93
torus networks, 93

Channel slicing, 145–146,
152–155

Channels, 46–47
bandwidth, 47
constraints on width, 60–64
critical length, 62
decoupling with buffers, 222
demand, 53
destination node, 47
error counter, 419
forward, 222
latency, 47
length of wired, 60
load, 17, 51–55
maximum load, 51–55
optical signaling, 63
packaging, 60–64
reconfiguration, 419–420

reverse, 222
saturated, 52
shared, 13
shutdown, 419–420
source node, 47
state, 242–244
virtual, 239–244
width, 14–15, 47, 60–64

Chaotic routing, 195, 458
Chunk, 345
Circuit boards. See Boards
Circuit switching, 111, 221–222,

228–230
agents, 258
allocating a circuit, 228
blocking request flit, 228–229
contention time, 229
deadlock example, 258
header latency, 229
latency, 229
resource dependence graph

example, 260
resources, 258, 260
serialization latency, 229
throughput, 230
zero-load latency, 229

Circular buffers, 328–332
Classes, allocating resources based

on, 285–286
Clos networks, 21–22, 116–134,

176
channel slicing, 155
crossbar switches, 116
folded, 176
more than three stages,

133–134
multicast routing, 128–132
path diversity, 118
properties, 116–118
rearrangeable, 122–126
routing circuits, 118
routing using matrix

decomposition, 126–127
SGI Origin 2000, 66
strictly non-blocking, 118–121
structure, 116–118
symmetric, 116
unicast routing, 118–126
Velio VC2002, 137–142

Closed-loop measurement
systems, 451

CM-5. See Thinking Machines
CM-5

Cold solder joint failure, 411–412

Complement subrelation, 275
Component failures, 411
Components, 413, 419, 422
Compressionless routing, 278
Concentration, 9–10, 145–148,

176
factor, 146

Concentrators, 145–148
Confidence intervals, 482–484
Connected, 48
Connection Machine. See

Thinking Machines CM-5
Connector corrosion open,

411–412
Conservative deadlock detection,

277
Conservative speculation, 317
Consistency checks, 421
Constraints

bisection, 21, 48
cable, 26, 62–63
board, 28–31
packaging, 60–64
signaling, 62–63

Containment of errors, 414–415
Contention latency, 56
Control body flit, 252
Control head flit, 252
Control plane, 305–306
Control state, 222–223
Corner-turn operations, 50–51
Corrosion open, 411–412
Cosmic Cube, 22, 106
Cray T3D, 22, 157, 168–170,

256, 279–280, 324, 347
Cray T3E, 6, 22, 201, 256,

279–282, 324, 347, 394
CRC (cyclic redundancy check),

150, 415–416
Credit consistency checks, 421
Credit loop, 312–313
Credit-based flow control,

245–247
Credits, 245–247, 312–313,

319–321
Cross connect switch, 137–138
Cross dependences, 275
Crossbar switches, 19, 22,

112–116, 338–342
allocation, 339–340, 380
performance, 341–342,

380–383
speedup, 338–342
structure, 112–116

542 Index

Cube-connected cycles, 69
Cuts, 48
Cut-through flow control, 222,

234, 235–236
Alpha 21364, 322–323
extended dependences, 276

Cycle-based simulation, 485–488

D
Daisy-chain arbitration, 431–432
Dance-hall architecture, 5–7, 22
Datapath, 305–306, 325

input buffer organization,
325–334

switches, 334–343
Dateline classes, 265–267,

270–271, 515
Deadlock, 18, 257, 516

agents, 258–259
avoiding, 263–272
circuit switching, 258
conservative detection, 277
dependence graph example,

260–261
dependences external to

network, 262–263
detection, 277
fully adaptive routing

algorithm, 195
high-level (protocol), 262–263
holds relation, 259
progressive recovery, 278–279
recovery, 277–279
regressive recovery, 278
resource dependences, 260
resources, 257–259
wait-for relation, 259

Deadlock avoidance, 257
acyclic buffer dependence

graph, 264
adaptive routing, 275
Cray T3E, 279–281
Duato’s protocol, 276–278
escape channels, 272–274, 514
hybrid deadlock avoidance,

270–272
resource classes, 263–267
restricted physical routes,

267–270
uphill-only resource allocation

rule, 264
Deallocating channels, 222
Decoders, 33

Decoupling
channels with buffers, 222
resource dependencies, 18

Deflection routing, 82, 230
Delayed transactions, 446
Delays, calculating

deterministic, 288–290
probabilistic analysis, 465–467
queuing theory, 461

Dependences, 260
cross, 275
direct, 275
extended, 272–276
indirect, 273–275

Descriptor-based interfaces, 393
Destination-tag routing, 31–32,

165–166, 174
Deterministic livelock avoidance,

279
Deterministic delay bounds,

288–289
Deterministic routing, 17, 162,

164–168, 203–204, 516
Cray T3D, 168–170
destination-tag routing,

165–166
dimension-order routing,

166–168, 268–270
direction-order routing, 280

Digit permutations, 50–51
Dimension slicing, 145, 151–152

Cray T3D, 168–170
Dimension-order routing, 16–17,

166–168, 268–270
Cray T3D, 168–170
MIT J-Machine, 104
performance, 496–500
relative address, 166–167
shortest or preferred direction,

166–168
valid directions, 168
Valiant’s algorithm, 174–175

Direct dependence, 275
Direct networks, 13, 47, 90
Direction-order routing, 280
DISHA architecture, 278–279
Disk storage, 9–11
Distance classes, 263–266
Distributed arbitration, 434–435
Distributors, 145, 148–149
DOR. See Dimension-order

routing
Dotted-emitter driver interface,

426

Double speculation, 317
Downstream, 516
Dropping flow control, 32–33,

225–228
BBN Monarch, 468–470
performance, 36–42, 468–470

Duato’s protocol, 276–278

E
ECC (error control code), 415,

421
ECL (emitter coupled logic), 516
E-cube routing. See

Dimension-order routing
Edge-disjoint paths, 59
Edge-symmetric networks, 50, 53,

90
Electromigration, 411–412
End-to-end error control, 423
End-to-end flow control, 401
Ensemble average, 480
Error control, 411

bit-slicing, 150
containment, 414
detection, 414
end-to-end, 423
failure modes, 411–414
fault models, 411–414
link level, 415–422
network-level, 422
recovery, 414
router, 421–422

Errors
masking, 416
physical causes of, 411

Escape channels, 272–274, 514
Event queue, 485–486
Event-driven simulation,

485–488
Exclusive buffer class, 267
Execution-driven workloads, 475
Exponential process, 462
Express cube networks, 100–102
Extended dependences, 272–276
Externally sequenced buses, 429

F
Fabric scheduler, 402
Failed components, 422
Fail-stop faults, 412
Failure modes, 411–414
Fairness, 286, 378, 351–352

Index 543

channel arbitration, 242
FIFO, 352
latency, 294–296
strong, 352
throughput, 296–297
weak, 351

Fat tree networks, 22, 69
Thinking Machines CM-5,

196–200
Fault models, 411–414
Fault tolerance, 411, 456, 516

distributors, 148
simulation examples, 506–507

Fault-containment regions, 421
FEC (forward error-correcting)

code, 416
FFT (Fast Fourier transform), 51
Fibre Channel Switched Fabric,

441
FIFO transmit queue, 418
FIFO fairness, 352
First-come-first-served priority,

360
Five-stage Clos network,

133–134, 141–142
Fixed-priority arbiters, 34,

352–353
Fixed-priority arbitration,

433–434
Flit level simulation, 472
Flit stalls, 310–312
Flit-buffer flow control, 233,

237–244
agents, 258–259
deadlock avoidance,

265–266,
dependence graph example,

261–262
indirect dependence, 274
resources, 258–259
virtual-channel flow control,

239–244
wormhole flow control,

237–239
Flit-reservation flow control,

251–255
Flits (flow control digits), 18,

224–225, 516
checking for errors, 320
encoding, 319–321
error detection, 415–416
separating from credits, 319
sizes, 224–225
stalls, 310–312

VCID (virtual-channel
identifier) field, 224

Flow control, 17–18, 32–33, 221,
516

ack/nack, 249–250
allocation of resources,

222–225
avoiding deadlock, 18
buffered, 233
bufferless, 225–228
circuit switching, 228–230
control state, 222
credit-based, 245–246
cut-through, 234–236
dropping, 227
end-to-end, 401
flit-buffer, 237–244
flit-reservation, 251–255
on/off, 247–249
packet-buffer, 234–236
resources, 222–225
stiff, 191
store-and-forward, 234–235
time-space diagrams, 18
unfair, 452
units, 222–225
virtual-channel, 239–244
wormhole, 222, 237–239

Flow control performance
dropping, 36–42, 468–470
injection processes,

501–503
network size, 500–501
prioritization, 503–505
stability, 505–506
virtual channels, 498–500

Flow identifier, 185
Flows, 208, 516

(σ ,ρ) regulated, 287–288
average rate of, 287–288
burstiness, 287–290
controlling parameters, 288
fairness between, 286
packets, 208
regulator, 288

Folding, 516
Beneš networks, 176–178
Clos networks, 196–200, 216,
Thinking Machines CM-5,

196–200
torus networks, 98

Forward channels, 222
FPGA (field-programmable gate

array), 515

FRU (field replaceable unit), 422
Fully adaptive routing, 193–195

G
Graceful degradation, 419, 456,

508
Grant matrix, 364
Grant-hold circuit, 355–357
Greedy routing

Clos multicast, 132
ring, 160–162
Velio VC2002, 140

Grooming switches, 137–138
Guaranteed services, 290–294

H
Hard failure, 422
Hardware level simulation,

472–473
Header latency, 40, 55–56,

trading with serialization,
153–154

Head flit, 224, 319–320
Head phit, 32, 224, 319–320
Head-of-line blocking, 380
Hierarchical node-routing, 210
High performance bus protocol,

436–441
High-level (protocol) deadlock,

262–263
High-priority allocation, 378
Holds relation, 259
Hop count, 15–16, 48–49
Hop latency, 20, 56
Hot swapping, 422
Hot-spots, 297–298, 515
Hybrid deadlock avoidance,

270–272
Hypercube networks, 22, 69, 89

I
IBM Colony router, 344–347
IBM SP series, 212–217, 256,

324, 344–347
IBM Vulcan network,

212–217
Idle state, 237
Illiac, 22, 106
Incremental allocation,

376–378
Incremental routing, 163–164

544 Index

Indirect dependence, 273–275
Indirect networks, 47, 75

Valiant’s randomized routing
algorithm, 175–176

Infiniband, 439
Injection processes, 476–478,

503–505
Injection rate, 476
Input buffers, 305–307,

325–334
allocation, 333–334
data structures, 328–333
dynamic memory allocation,

333–334
organization, 325–334
partitioning, 326–328
sliding limit allocator, 334

Input queues, 402
Input reservation table,

253, 255
Input scheduler, 255
Input unit, 306
Input-first separable allocators,

368–370
Input-partitioned multiple-bus

switches, 338
Integrated-node configuration,

5–6
Intel DELTA, 22
Intel iPSC series, 22, 106
Interface level simulation, 474
Interfaces. See Network

interfaces
Internally addressed

messages, 430
Internally sequenced

buses, 429
Inter-processor interconnection

networks, 5–8, 21–22
I/O interconnection network,

8–11
I/O interfaces, 390–391
Irregular network

topology, 46
ISLIP allocators, 371–372
Isomorphic butterfly networks,

77–78
Iterative arbiters, 352–354

J
Jitter, 41, 285–287, 517

VBR-rt service class, 300
J-Machine. See MIT J-Machine

K
k-ary n-cubes. See Torus

networks
k-ary n-flies. See Butterfly

networks
k-ary n-meshes. See Mesh

networks

L
Latency, 55–57, 517

analysis, 36–42,
average, 56
bounds, 19–21
butterfly networks, 79–80
distribution, 41, 505–507
fairness, 294–296
header, 55
insensitivity to, 10–11
measuring, 450–452, 455–460
queuing, 40
serialization, 40, 55–56
simulation examples, 496–507
time of flight, 56
time-evolution of, 478
torus networks, 95–96
vs. offered traffic curve, 19–21,

455–456
zero-load, 20, 56

Least recently served, 358–360
Line cards, 11, 400–401

Avici TSR, 183–185
Line-fabric interfaces, 400–403
Link errors, masking, 416
Link level error control, 415–420
Link level retransmission,

416–418
Link monitoring, 415–416
Linked lists, 330–333

defensive coding, 332–333
error control methods,

332–333
IBM Colony router, 344–347

Livelock, 279, 515
deterministic avoidance, 279
fully adaptive routing, 194–195
node-table routing, 209
probabilistic avoidance, 279

LOA (lonely output allocators),
372–373

Load balance, 51–52, 517
Load imbalance, 266–267
Load-balanced adaptive routing,

195–196

Load-balanced oblivious
routing, 180

Locality, 5, 51
tradeoff with load balance 173

Locally fair arbitration, 295
Logical dimensions, 99–100
Lonely output allocators (LOA),
Lookahead, 318–319

SGI SPIDER, 324
Looping algorithm, 122–125,

140–141
Loss, 285–286, 517
LSB (least significant bit), 517

M
MAD (minimal-adaptive

routing), 494–497
MAP (Multi-ALU Processor)

chip, 403
Markov chain, 462–463
Markov modulated process,

477–478
Masking errors, 416
Matrix arbiters, 358–360
Matrix decomposition, 126–127
Matrix transpose operations,

50–51
Maximal matching, 364–365
Maximum channel load, 51–55
Maximum matching, 364
Max-min fairness, 296–297
MDP chip, 102–105
Measurement, 449–460

common pitfalls 456–460
Measurement packets, 451–452
Memory request register, 395
Memory server, 262–263
Memory switches, 338
Memoryless process, 462
Memory-network interfaces,

398–400
Mesh networks, 89

bisection, 92–93
channel bisection, 92–93
channel load, 93
channel width, 94
dimension-order routing,

166–168
hop count, 96
latency, 95–96
packaging, 98–100
path diversity, 96–98
MIT J-Machine, 22, 102–106

Index 545

mixed-radix, 92
serialization latency, 95
structure, 90–92
throughput, 92–95
unidirectional, 90
wire length, 100

Message handler, 406
Message-passing

interfaces, 390
Messages, 2, 7, 223–224, 517

buses, 429
internally addressed, 430
interface, 390–394
size, 4–5
spatial distribution of,

50–51
MIMD (multiple-instruction-

multiple data), 517
Minimal, 163, 517
Minimal adaptive routing,

192–193
deadlock-free, 276–277
performance, 495–500
Thinking Machines CM-5,

196–200
Minimal oblivious routing,

176–180
Minimal quadrant, 178
Minimum bisection, 48

butterfly networks,
mesh networks, 92–93
packaging, 60–64
torus networks, 92–93

Misrouting packets, 193–195,
225–228, 230

livelock, 193–195, 279
stability, 454

MIT J-Machine, 22, 102–106,
157, 168, 347, 391, 407

MIT M-Machine, 393–394,
403–408

MIT Reliable Router, 281, 324,
420, 423

Modeling source queues,
488–490

MPP, 22
MSB (most significant bit), 517
MSHR (miss-status holding

register), 395, 397
MTBF (mean-time between

failures), 412
Multicast, 112, 517

Clos networks, 128–132
crossbar switch, 114

Multicommodity flow
problem, 55

Multi-drop bus, 3, 428
Multiple-bus switches, 337–338
Multistage allocation, 378–380
Multistage networks

butterfly networks, 75
folding Clos networks, 134–135
slicing, 153–155

Multistage switches, 334

N
Nacks (negative

acknowledgments), 225–228
ack/nack flow control, 249–250

nCUBE computers, 22, 106
Nearest neighbor traffic, 50–51
Negative-first routing, 269
Network input register, 391
Network interfaces, 389, 441

descriptor-based, 393
I/O, 389
line-fabric, 400–403
memory-network, 398–400
message-passing, 390
processor-network, 390–397
register-mapped, 392–393, 403
safe, 392
shared-memory, 394–395
two-register, 391–392

Network output register, 391
Network switches, 342–343
Network-level error

control, 422
Node-arc incidence matrix, 54
Node-based routing algorithms,

163
Node-disjoint paths, 59
Nodes, 46–47

address in dimension, 98
bit slicing, 149–151
channel slicing, 152
combined, 47–48
dimension slicing, 151–152
destination, 47
packaging, 60–64
pin limit, 60
switch, 46–47
terminal, 46–47

Node-table routing, 208–211
Non-blocking networks, 111, 516

Beneš networks, 134–135
Clos networks, 116–134

crossbar networks, 112–116
rearrangeably non-blocking,

111–112
sorting networks, 135–137
strictly non-blocking, 111
vs. non-interfering networks,

112
Non-bursty flows, 287
Non-exclusive buffer class, 267
Non-interfering networks, 12,

112, 299, 401, 518
Avici TSR, 300–302

Non-minimal routing, 174–176,
180, 193–196

livelock, 194–195, 279

O
Oblivious arbiters, 354–355
Oblivious routing, 162, 173, 518

analysis, 180–183
Avici TSR, 183–186
IBM Vulcan network, 212–217
load-balanced, 180
minimal, 176–180
performance, 495–500
ROMM, 178–180, 186,

496–500
source routing, 204
table-based, 422
Valiant’s algorithm,

174–176
worst-case traffic pattern,

180–183
Offered traffic, 19–21, 38–41,

452–454, 518
On-chip networks, 2
On/off flow control,

247–249
Open-drain driver interface,

428–429
Open-loop measurement

configuration, 450–451
Optical channel cost, 63
Origin 2000. See SGI Origin

2000
OR-network, 441–442
Output buffer, 306–307,

340–341, 343–344
Output reservation

table, 253
Output scheduler, 253–255
Output-first separable allocators,

369–371

546 Index

Output-partitioned multiple-bus
switches, 338

Overlapping resource classes,
266–267

P
Packaging, 60–64

bisections, 60–61
boards, 60–62
butterfly networks, 78–80
channels, 60–64
constraints, 60–64
cost, 60–64
crossbar networks, 115–116
examples, 27–31, 63–64, 80,

94–96
length of wired, 60
mesh networks, 98–100
MIT J-Machine, 104
nodes, 60–64
SGI Origin 2000, 64–69
torus networks, 98–100
two-level hierarchy, 61–62

Packet stalls, 310–311
Packet switching fabric, 11–12,

400–403
Packet-buffer flow control,

234–236
agents, 258
cut-through flow control,

234–236
deadlock avoidance, 263–265,

276–277
dependence graph example,

260–261
resources, 258
store-and-forward flow control,

234–235
Packets, 7–8, 223–234, 518

control state allocation, 223
deadlock, 258–259
flow identifier, 185
header, 223–224
latency, 55–56
packet-buffer flow control,

234–236
preserving order of, 208
routing information,

223–224
sequence number,

223–224
serialization latency, 55
sizes, 224–225

split across failed channel,
420–421

zero-load latency, 55–56
Parallel buses, 431, 442
Parallel iterative matching (PIM)

allocators, 371
Partial destination-tag routing,

177–178
Partitioning input buffers,

326–328
Path diversity, 57–60, 518

butterfly networks, 81–84
Clos networks, 118
torus networks, 96–98

Paths, 48–49
PCI (Peripheral

Component Interconnect)
bus, 441, 443–446, 518

PCI-Express, 439
Peak bandwidth, 4
Pending read, 395
Performance, 19–21, 449

accepted vs. offered traffic
curve, 452–454

analysis, 460
butterfly networks, 78–80
closed-loop measurement, 451
fault tolerance, 456
latency, 55–57, 455–456
latency vs. offered traffic curve,

19–21, 455–456
maximum channel load, 51–55
measurement, 449–452
measurement pitfalls, 456–460
mesh networks, 92–98
probabilistic analysis, 465–467
queuing theory, 461–465
simulation, 458–459
source queue, 450
steady-state measures, 451
terminal instrumentation, 450
throughput, 51–55, 452–454
torus networks, 92–98
transient measures, 451

Periodic process, 476–477
Permanent failures, 412
Permutation traffic, 50–51,

181–182, 518
Phits (physical digits), 32–33,

224, 518
encoding, 319–321
sizes, 225

Physical dimensions, 99–100
Piggybacking credits, 319–321

PIM (parallel iterative matching)
allocators, 371

Pipelined buses, 436–438
Pipelines, 308–310

credit, 312–313
lookahead, 318–319
speculation, 316–318
stalls, 310–312

Planar-adaptive routing, 271–272
Poisson arrival process, 464
Port slicing. See Dimension

slicing
Ports. See Terminals
Premium traffic, 302
Priority

age-based, 279
classes, 286
performance, 503–505

Priority inversion, 296
PRNGs (pseudo-random number

generators), 490–491
Probabilistic analysis, 465–467
Probabilistic livelock avoidance,

279
Processor-memory interconnect,

5–8
Processor-network interfaces,

390–397
Progressive deadlock recovery,

278–279
Protection events, 138
Protocol consistency checks, 421
Protocol deadlock. See High-level

deadlock
Protocols

cache coherence, 208, 397–398
ordering requirements, 208,

441
requested word first, 398

Power supply failure, 412–413
Pseudo-random number

generators (PRNGs),
490–491

Q
QoS (quality of service), 4–5,

285, 518
ATM service classes, 299–300
Avici TSR, 300–302
best-effort services, 286,

294–297
burstiness, 287–290
delay, 287–290

Index 547

fairness, 286, 294–297
flows, 286
guaranteed services, 286,

290–294
separation of resources,

297–299
service classes, 285–286
service contracts, 285–286

Queue manager, 401–403
Queuing arbiters, 360–362
Queuing theory, 459–463
Queues. See Buffers

R
Radial arbitration, 432–433
Random access memory (RAM),

518
Random arbiters, 355
Random number generation,

490–491
Random separable allocator, 339,

371
Random traffic, 50–51
Randomized routing. See

Oblivious routing
Read operation, 395

pending, 395
request, 395
complete, 395

Reallocating virtual channels,
313–316

Rearrangeable, 111–112,
unicast routing on Clos

networks, 122–126
Receive interface, 429
Recovery, 414
Register-mapped network

interfaces, 392–393, 403
Regressive recovery, 278
Regulated flows, 287–288
Reliable Router. See MIT

Reliable Router
Reliability, 5, 411, 519
Repeaters, 62–63
Replicated arbiter, 435–436
Replication method, 482
Request matrix, 364
Reply packets, 8
Request packets, 8
Requesters, 363
Requests, 397
Reservation table, 436–438
Residual graph, 366–367

Resources, 222–225
aggregate allocation, 291–292
allocators, 363
arbiters, 349
buffer capacity, 222
channel bandwidth, 222
control state, 222
classes for deadlock avoidance,

263–267
deadlock, 258–259
dependences, 260
ordering, 263–267
separation of, 297–299
reserving, 292–294
units, 223

Return-to-sender convention, 406
Reverse channels, 222
Reverse traffic pattern, 79
Ring topology, 15–16, 90–91
ROMM, 178–180, 186, 496–500
Rotating arbiters, 355
Round-robin arbiters, 355, 371
Router error control, 421–422
Routers, 33–36, 305, 325

See also virtual-channel routers
allocators, 363

Alpha 21364, 321–324
Avici TSR, 183–186
arbiters, 349
architecture, 305–310
bit-sliced, 150–151
control plane, 306–307
Cray T3D, 168–170
credit loop, 312–316
datapath, 305–306, 325
dimension-sliced, 151–152
errors control, 421–422
flit-reservation, 252–253
IBM Colony, 344–347
IBM Vulcan, 212–217
input buffers, 325–334
output organization, 343–344
pipeline, 308–310
stalls, 310–312
switches, 334–343
Thinking Machines CM-5,

196–200
Tiny Tera, 155–157
Verilog example, 35–36

Routing, 16–17, 31–32, 159, 173,
189, 203, 519 See also
Adaptive routing,
deterministic routing, and
oblivious routing

algorithmic, 211–212
all-at-once, 163–164
backtracking, 160
deadlock-free, 263, 272
greedy, 160–162
incremental, 163–164

mechanics, 203
minimal, 162–163

node-table, 208–211
non-minimal, 162–163
relations, 163–164
search-based, 196
performance, 495–500
source, 204–208
subfunctions, 272–276
table-based, 203–211
worst-case traffic, 182–183

Routing tables. See Table-based
routing

S
Safe interfaces, 392
Sampling errors, 476
SANs (system-area

networks), 10
Saturation, 21, 40, 52, 450, 519
Search-based routing, 196
SECDED (single error correcting,

double error detecting)
codes, 421

Sectors, 9
Self-throttling, 8, 12, 519
Separable allocators, 367–373

Alpha 21364, 321–324
input-first, 368–370
iSLIP, 371–372
lonely output allocator (LOA),

372–373
output-first, 369–371
parallel iterative matching

(PIM), 371
multiple iterations, 371
Tiny Tera, 383–385

Separation of resources, 297–299
Sequence number, 223–224
Sequential distributed arbiters,

434
SER (soft-error rate), 412
Serialization latency, 15–16, 20,

55–56, 519
butterfly networks, 80
distributors, 149
torus networks, 95

548 Index

tradeoff with head latency,
153–155

Service classes, 285–286
Service contracts, 285–286
SGI Origin 2000, 64–69, 394,

408
Shadow copy of router logic, 421
Shared-memory interfaces,

394–400
Shuffle permutation, 50–51, 77
Shuffle-exchange network, 77
SIMD (single-instruction-

multiple-data), 519
Simulation examples, 495

allocators, 380–384
fault tolerance, 508–509
flow control performance,

500–508
injection processes, 503–505
latency, 496–499
network size, 502–503
prioritization, 505–507
routing, 495–500
stability, 507–508
throughput distributions,

499–500
virtual channels, 500–502

Simulation measurements,
478–484

batch means method, 481
confidence intervals, 482–484
replication method, 482
simulator warm-up, 479–480
steady-state sampling, 481–482

Simulations, 473
application-driven workloads,

475–476
levels of detail, 473–475
network workloads, 475–478
synthetic workloads, 476–478

Simulator design, 484
cycle-based, 485–488
event-driven, 485–488
modeling source queues,

488–490
random number generation,

490–491
troubleshooting, 491

Single-point fault tolerant
networks, 456

Slicing, 145
bit, 149–151
channel, 152
dimension, 151–152

multistage networks, 153–155
port, 151–152

Sliding limit allocators, 334
Software failures, 411–413
Software switching, 47
Solomon machine, 22, 106
SONET (synchronous optical

network), 137–140,
183–185, 519

Sorting networks, 135–137
Source queue, 450, 486–487
Source routing, 204–208

IBM Vulcan, 214–215
Special purpose networks, 45–46
Speculation, 316–318
Speedup, 27–28, 130, 519

allocators, 382–383
buffer partitions, 326–327
crossbar switches, 338–342
speculation, 317

Split-transaction buses, 438–439
Stability, 228, 453–454,

507–508, 519
Starvation, 454
State consistency checks, 421
Stationary processes, 451
Steady state, 451, 481–484
Stiff backpressure, 191, 519
Strong fairness, 352
Store-and-forward flow control,

18, 234–235
Strictly non-blocking, 111

multicast routing on Clos
networks, 128–132

unicast routing on Clos
networks, 118–121

STS (synchronous transport
signal), 137–141, 519

Stuck-at fault model, 412
Student’s t distribution, 483
Switch allocation stall, 310–311
Switch allocator, 306–307
Switch fabric, 11–12
Switch nodes, 47–48
Switch traversal speculation,

317–318
Switch-based crossbar

networks, 113
Switches, 334–343

bus, 335–338
crossbar, 338–342
memory, 338
multiple-bus, 337
network, 342–343

speedup, 334
Symmetric bandwidth, 4
Symmetry, 49–50
Synchronous buses, 429–433
Synthetic workloads, 476–478
Systematic errors, 476
System-level networks, 2

T
T3D. See Cray T3D
T3E. See Cray T3E
Table-based routing, 203–211

Avici TSR, 183–186
CAM-based, 210–211
node-table, 208–211
storing arbitrary-length strings,

206–207
source routing, 204–208

Tail flit, 224
TDM (time-division

multiplexing), 137–142,
293–294

Terminal instrumentation, 450
Terminal nodes, 46–49
Thinking Machines CM-5, 69,

196–200, 69, 196–200,
216–217

Three-stage Clos networks,
116–118

Throughput, 21, 36–40, 51–55,
452–454, 520

butterfly networks, 79–80
capacity, 55, 515
distributions, 499–500
fairness, 296–297
ideal, 55
lower bound, 53
torus networks, 92–95
upper bound, 52–53
worst-case, 180–183

Time of flight, 56
Time-division multiplexing,

137–142, 293–294
Time-space diagrams, 18,

221, 233
Tiny Tera

allocator, 383–385
bit slicing, 155–157

Topologies, 13–16, 27–31, 45, 520
See also butterfly networks,

Clos networks,
concentration, distributors,
fat tree networks, mesh

Index 549

networks, slicing, and torus
networks

bisections, 48
Cayley graphs, 63–64, 69
channels, 46–47
cost, 60–64
cube-connected cycles, 69
cuts, 48
direct, 47–48
indirect, 47–48
latency, 55–57
maximum channel load, 51–55
nodes, 46–47
packaging, 60–64
path diversity, 57–60
paths, 48–49
performance, 51–60
SGI Origin 2000, 64–69
symmetry, 49–50
throughput, 51–55
traffic patterns, 50–51

Tornado pattern, 50–51,
161–162, 174

Torus networks, 89
bisection, 92–93
channel bisection, 92–93
channel load, 93
channel width, 94

Cray T3D, 168–170
Cray T3E, 279–281

dimension-order routing,
166–168

direction-order routing, 280
fully adaptive routing, 193–195
hop count, 96
latency, 95–96
load-balanced adaptive routing,

195–196
load-balanced oblivious

routing, 180
packaging, 98–100
path diversity, 96–98
minimal adaptive routing,

192–193
minimal oblivious routing,

178–180
mixed-radix, 92
serialization latency, 95

structure, 90–92
throughput, 92–95

unidirectional, 90
wire length, 100
Valiant’s algorithm, 174–175
Trace-driven workloads, 473–474

Traffic, 50–51, 452–454, 520
accepted, 452
ATM classes, 299–300
classes, 285–286
offered, 452
patterns, 50–51
worst-case, 180–183

Transactions, 429
initiating, 430
overhead, 437–439
PCI bus, 443–446
split, 438–439
timing, 431–432
variable delay, 438

Transient failures, 412
Transpose traffic pattern, 50–51
Tree saturation, 297–299
Tri-state driver interface,

428–429
TSHR (transaction status holding

register), 398–400
TSIs (time-slot

interchangers), 139–142
TST (time-space-time) TDM

switches, 139
TTL (transistor-transistor

logic), 520
Turnaround time, 251
Turn-model, 268–270
Two-register interfaces, 391–392

U
UBR (unspecified bit rate) service

class, 300
Unicast, 112, 520

rearrangeable Clos networks,
122–126

strictly non-blocking Clos
networks, 118–121

Uniform random traffic, 50–51
Unstable networks, 453
Uphill-only resource allocation

rule, 263–266
Upstream, 520

V
Valiant’s randomized routing

algorithm, 173–176,
496–500

Validation, 467–468
Variable priority iterative

arbiters, 354

VBR (variable bit rate) service
class, 300

VBR-rt (variable bit rate,
real-time) service class, 300

VCID (virtual-channel
identifier), 224

Velio VC2002, 137–142
Vertex-symmetric networks,

49–50
Virtual-channel flow control, 222,

237–244
active state, 237
idle state, 237
performance, 500–502
reallocating a channel, 313–316
waiting state, 237

Virtual circuits, 293
Virtual cut-through flow control.

See Cut-through flow
control

Virtual networks, 300–302
Virtual output queues, 380, 400
Virtual-channel allocator,

306–307
Virtual-channel routers, 316–317

credit loop, 312–313
control plane, 306–307
datapath, 305–306
flit rate, 307
flit stalls, 310–312
input unit, 306
packet rate, 307
packet stalls, 310–311
pipeline, 308–310
route computation, 306–309
stalls, 310–312
state fields, 307
switch allocation, 307–309
switch traversal, 309–310
virtual-channel allocation,

307–309

W
Wait for relation, 259, 260–262
Waiting state, 237
Warm-up period, 479–480
Wavefront allocators 373–376
Weak fairness, 351
Weighted random routing,

161–162
Weighted round-robin arbiters,

357–358
Wide-area networks, 2

550 Index

Winner-take-all allocation, 242
Wire mat, 169
Wire-or bus, 432
Wires, 60–64

critical length, 62–63
Work-conserving multiplexer,

288–290
Workloads, 475–478

application-driven, 475–476
execution-driven, 475
synthetic, 476–478
trace-driven, 475–476

Wormhole flow control, 222,
237–239

Worst-case traffic patterns,
180–183

Write operation, 396

Z
Zero-load latency, 20–21, 56,

455–456, 494

k-ary n-cube (Torus) k-ary n-mesh (Mesh)

bisection boundhop count bound

Two-level packaging (k even)

router serialization wire

k-ary 1-cube

0 1

nk

2 k

k-ary 1-mesh

0 1 2 k

Two-level packaging (k even)

0

3

1

2

Folding to eliminate long channels
from a torus layout.

k-
ar

y
(n

-1
)-

cu
be

k-
ar

y
(n

-1
)-

cu
be

k-
ar

y
(n

-1
)-

cu
be

kn–1 channels

Recursive construction of higher
dimensional k-ary n-cubes.

uniform
traffic

Topology

Hmin

BC

w

Θideal

NHmin

=
b

γmax

γmax γmax

γmax

C
>– 2BC

>–
N

T0=Hmintr
L
b

Dmin
υ+ +

4

k
8

4n (k
4k
1) –

–

k even
k odd

k even
k odd

=

= =

k

k

8
1
8k

4kn–1 4N

=
b

Ts
L

δ=4n

b=wf<– min
Wn kWs

4n 4N

Θideal =
8b

nk

uniform
traffic

Hmin

BC

w

γmax

4

k
4

3n (k
3k
1) –

 –

k even
k odd

k even
k odd

=

==

= =

k

k

4
1
4k

2kn–1 2N

=Ts
L

δ=4n

b=wf<– min
Wn kWs

4n 2N

Θideal =
4b

k b k

, ,

k-ary n-fly (Butterfly) Clos

2-ary 3-fly

(m = 3, n = 3, r = 4) Clos network

Two-level packaging:

0

1

2

3

4

5

6

7

00

01

02

03

10

11

12

13

20

21

22

23

0

1

2

3

4

5

6

7

m = 3 r × r
middle switches

M1

M2

M3

I1

I2

I3

I4

O1

O2

O3

O4

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3

r = 4 n × m
input switches

r = 4 m × n
output switches

Rearrangeably non-blocking if m ≥ n

Non-blocking for fanout f multicast if

Strictly non-blocking if m ≥ 2n – 1

Channel Slicing

worst-case (n even)uniform traffic

1

2

3

0

1

2

3

0

Channel sliced 4-ary 1-fly

Channel slicing a butterfly
with slicing factor x:

γmax=1 γmax,wc= N

Hmin BC == n+1
N
2

1+logk x

δ=2k

w b=wf<– min
Wn 2Ws

2k N
,

=
b

Ts
L Θideal = b

f <–
m(m – n)
m(n – 1)

n′=

Ts=

Th=tr

xL
b

n
1+logk x

n

Units of Resource Allocation

C
ha

nn
el

Cycle

H B B B T
H B B B T

H B B B T
H B B B T

0
1
2
3

0 1 2 3 4 5 6 7

C
ha

nn
el

Cycle

H B B B T
H B B B T

H B B B T
H B B B T

0
1
2
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Store-and-forward Flow Control Cut-through / Wormhole FC

Message

Packet

Header

Head Flit
Tail Flit

Flit

Body Flit

PhitHead, Body,
Tail, or H&T

SNRI

VC

Node 1 Node 2

flit

flit

flit

flit

flit

flit

flit

flit

flit

flit

cre
dit

cre
dit

cre
dit

flit

flit

t cr
t

t bi

pr
oc

es
s

pr
oc

es
s

Node 1 Node 2

t r
t

t r
t

off

pr
oc

es
s

on

pr
oc

es
s

On/Off Flow ControlCredit-based Flow Control

TY

F ≥
Lf

tcrtb
F ≥

Lf

2trtb

T0=H T0=Htr b
L

+tr b
L

+

An Input Queued, Virtual Channel Router

G R O P C

G R O P C

Switch
Allocator

VC
Allocator

Input Unit

Input Unit

Output Unit

Switch

G I C

G I C

Route rRouter

Output Unit

Head Flit

Body Flit

Cycle

RC VA SA ST

SA ST

1 2 3 4 5

Saturation throughput (λ S)

Routing bound

Offered Traffic (bits/sec)

Latency Versus Offered Traffic

La
te

n
cy

 (
se

c)

Zero-load latency (T0)

Topology bound

Topology bound

Routing bound

Θideal <
2bBC

Havgtr+

Ν

ΘR <
bC

NHavg

Θideal <
bC

ΝΗmin

b
L

Hmintr+ b
L

	Front Cover
	Principles and Practices of Interconnection Networks
	Copyright Page
	Contents
	Acknowledgments
	Preface
	About the Authors
	Chapter 1. Introduction to Interconnection Networks
	1.1 Three Questions About Interconnection Networks
	1.2 Uses of Interconnection Networks
	1.3 Network Basics
	1.4 History
	1.5 Organization of this Book

	Chapter 2. A Simple Interconnection Network
	2.1 Network Specifications and Constraints
	2.2 Topology
	2.3 Routing
	2.4 Flow Control
	2.5 Router Design
	2.6 Performance Analysis
	2.7 Exercises

	Chapter 3 .Topology Basics
	3.1 Nomenclature
	3.2 Traffic Patterns
	3.3 Performance
	3.4 Packaging Cost
	3.5 Case Study: The SGI Origin 2000
	3.6 Bibliographic Notes
	3.7 Exercises

	Chapter 4. Butterfly Networks
	4.1 The Structure of Butterfly Networks
	4.2 Isomorphic Butterflies
	4.3 Performance and Packaging Cost
	4.4 Path Diversity and Extra Stages
	4.5 Case Study: The BBN Butterfly
	4.6 Bibliographic Notes
	4.7 Exercises

	Chapter 5. Torus Networks
	5.1 The Structure of Torus Networks
	5.2 Performance
	5.3 Building Mesh and Torus Networks
	5.4 Express Cubes
	5.5 Case Study: The MIT J-Machine
	5.6 Bibliographic Notes
	5.7 Exercises

	Chapter 6. Non-Blocking Networks
	6.1 Non-Blocking vs. Non-Interfering Networks
	6.2 Crossbar Networks
	6.3 Clos Networks
	6.4 Beneˇs Networks
	6.5 Sorting Networks
	6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch
	6.7 Bibliographic Notes
	6.8 Exercises

	Chapter 7. Slicing and Dicing
	7.1 Concentrators and Distributors
	7.2 Slicing and Dicing
	7.3 Slicing Multistage Networks
	7.4 Case Study: Bit Slicing in the Tiny Tera
	7.5 Bibliographic Notes
	7.6 Exercises

	Chapter 8. Routing Basics
	8.1 A Routing Example
	8.2 Taxonomy of Routing Algorithms
	8.3 The Routing Relation
	8.4 Deterministic Routing
	8.5 Case Study: Dimension-Order Routing in the Cray T3D
	8.6 Bibliographic Notes
	8.7 Exercises

	Chapter 9. Oblivious Routing
	9.1 Valiant’s Randomized Routing Algorithm
	9.2 Minimal Oblivious Routing
	9.3 Load-Balanced Oblivious Routing
	9.4 Analysis of Oblivious Routing
	9.5 Case Study: Oblivious Routing in the Avici Terabit Switch Router(TSR)
	9.6 Bibliographic Notes
	9.7 Exercises

	Chapter 10. Adaptive Routing
	10.1 Adaptive Routing Basics
	10.2 Minimal Adaptive Routing
	10.3 Fully Adaptive Routing
	10.4 Load-Balanced Adaptive Routing
	10.5 Search-Based Routing
	10.6 Case Study: Adaptive Routing in the Thinking Machines CM-5
	10.7 Bibliographic Notes
	10.8 Exercises

	Chapter 11. Routing Mechanics
	11.1 Table-Based Routing
	11.2 Algorithmic Routing
	11.3 Case Study: Oblivious Source Routing in the IBM Vulcan Network
	11.4 Bibliographic Notes
	11.5 Exercises

	Chapter 12. Flow Control Basics
	12.1 Resources and Allocation Units
	12.2 Bufferless Flow Control
	12.3 Circuit Switching
	12.4 Bibliographic Notes
	12.5 Exercises

	Chapter 13. Buffered Flow Control
	13.1 Packet-Buffer Flow Control
	13.2 Flit-Buffer Flow Control
	13.3 Buffer Management and Backpressure
	13.4 Flit-Reservation Flow Control
	13.5 Bibliographic Notes
	13.6 Exercises

	Chapter 14. Deadlock and Livelock
	14.1 Deadlock
	14.2 Deadlock Avoidance
	14.3 Adaptive Routing
	14.4 Deadlock Recovery
	14.5 Livelock
	14.6 Case Study: Deadlock Avoidance in the Cray T3E
	14.7 Bibliographic Notes
	14.8 Exercises

	Chapter 15. Quality of Service
	15.1 Service Classes and Service Contracts
	15.2 Burstiness and Network Delays
	15.3 Implementation of Guaranteed Services
	15.4 Implementation of Best-Effort Services
	15.5 Separation of Resources
	15.6 Case Study: ATM Service Classes
	15.7 Case Study: Virtual Networks in the Avici TSR
	15.8 Bibliographic Notes
	15.9 Exercises

	Chapter 16. Router Architecture
	16.1 Basic Router Architecture
	16.2 Stalls
	16.3 Closing the Loop with Credits
	16.4 Reallocating a Channel
	16.5 Speculation and Lookahead
	16.6 Flit and Credit Encoding
	16.7 Case Study: The Alpha 21364 Router
	16.8 Bibliographic Notes
	16.9 Exercises

	Chapter 17. Router Datapath Components
	17.1 Input Buffer Organization
	17.2 Switches
	17.3 Output Organization
	17.4 Case Study: The Datapath of the IBM Colony Router
	17.5 Bibliographic Notes
	17.6 Exercises

	Chapter 18. Arbitration
	18.1 Arbitration Timing
	18.2 Fairness
	18.3 Fixed Priority Arbiter
	18.4 Variable Priority Iterative Arbiters
	18.5 Matrix Arbiter
	18.6 Queuing Arbiter
	18.7 Exercises

	Chapter 19. Allocation
	19.1 Representations
	19.2 Exact Algorithms
	19.3 Separable Allocators
	19.4 Wavefront Allocator
	19.5 Incremental vs. Batch Allocation
	19.6 Multistage Allocation
	19.7 Performance of Allocators
	19.8 Case Study: The Tiny Tera Allocator
	19.9 Bibliographic Notes
	19.10 Exercises

	Chapter 20. Network Interfaces
	20.1 Processor-Network Interface
	20.2 Shared-Memory Interface
	20.3 Line-Fabric Interface
	20.4 Case Study: The MIT M-Machine Network Interface
	20.5 Bibliographic Notes
	20.6 Exercises

	Chapter 21. Error Control
	21.1 Know Thy Enemy: Failure Modes and Fault Models
	21.2 The Error Control Process: Detection, Containment, and Recovery
	21.3 Link Level Error Control
	21.4 Router Error Control
	21.5 Network-Level Error Control
	21.6 End-to-end Error Control
	21.7 Bibliographic Notes
	21.8 Exercises

	Chapter 22. Buses
	22.1 Bus Basics
	22.2 Bus Arbitration
	22.3 High Performance Bus Protocol
	22.4 From Buses to Networks
	22.5 Case Study: The PCI Bus
	22.6 Bibliographic Notes
	22.7 Exercises

	Chapter 23. Performance Analysis
	23.1 Measures of Interconnection Network Performance
	23.2 Analysis
	23.3 Valldation
	23.4 Case Study: Efficiency and Loss in the BBN Monarch Network
	23.5 Bibliographic Notes
	23.6 Exercises

	Chapter 24. Simulation
	24.1 Levels of Detail
	24.2 Network Workloads
	24.3 Simulation Measurements
	24.4 Simulator Design
	24.5 Bibliographic Notes
	24.6 Exercises

	Chapter 25. Simulation Examples
	25.1 Routing
	25.2 Flow Control Performance
	25.3 Fault Tolerance

	Appendix A. Nomenclature
	Appendix B. Glossary
	Appendix C. Network Simulator
	Bibliography
	Index
	Topology

