

Accessible Digital Technology

FULLY DIGITAL GLITCH FREE PLL

DATASHEET

KEY FEATURES

- ... Ideal as a clock generator for digital design
- ... Excellent frequency jitter performance
- ... Ultra-low area fully digital PLL design
- ... Patented glitch free frequency adjustment
- : Fine frequency precision with fractional divider
- ... Low implementation charges due to predictable digital design
- .. Available for all modern TSMC processes

HPC+ 28 nm 16FFC 16 nm N7+ 7 nm

DESCRIPTION

A programmable fully digital PLL (FDPLL) designed to lock to an incoming clock source and produce an output clock. It is ideal as a clock generator for digital designs, but not intended for analog blocks like ADC/DAC or SERDES clocking. This digital PLL has ultra-low area and low implementation charges due to predictable digital design.

MSU Engineering Physics Center. Confidential www.maltsystem.com/dpll

ACCESSIBLE DIGITAL TECHNOLOGY

In the capture mode PLL provides periodic signal on CLKO output with period equal to CLKR inputs period multiplied by MULO:EXPO value. Where MULO: EXPO is a denormalized floating-point number, MULO is an 8-bit mantissa, EXPO is a 3-bit exponent. Multiplication coefficient is calculated as follows: the EXPO exponent code [2..0] is interpreted as integer from 0 to 7, which determines the position of the binary point inside the MULO mantissa [7..0]. EXPO numerical value is the number of the MULO digit, followed by a binary dot dividing MULO into integer and fractional parts (the size of the fractional part). That is, for EXPO = 0, the fractional part is absent, and the entire integer part is in MULO [7..0]. For EXPO = 7, the integer part is in MULO [7], fractional in MULO [6..0]. In addition to the main output of the generator, the module has an auxiliary output CLKD, the frequency of which is obtained by dividing the main frequency by a factor of 2*DIVO [4..0].

PLL CHARACTERISTICS *

Parameter	Unit	Min	Тур	Max	Comment
Reference frequency	MHz	1	10	2000	
VCO frequency	MHz	200		2000	
Auxiliary frequency	MHz			1000	
Period jitter	%		< 2		CLKO=1000 MHz
Power	mW			6,6	CLKO=1000 MHz
Operational voltage	V	0,8	0,9	1,0	Digital only
Total area	mm ²		0,01		
Operational temp	°C	0	85	125	
Duty cycle	%	49	50	51	

* all data for TSMC HPC+ 28 nm

PIN LIST

Signal	Direction	Comment	
nRES	input	Asynchronous Reset (Active Low)	
CLKR	input	Reference frequency	
MULO[70]	input	Mantissa of the multiplication coefficient	
EXPO[20]	input	The exponent of the multiplication factor	
DIVO[40]	input	Post-divider ratio	
CLKO	output	The main frequency	
CLKD	output	Auxiliary frequency after the divider	
LOCK	output	Capture indication (Active High)	